首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kohala revisited     
We present new isotopic data for Sr and Nd in basalts and alkalic volcanics from Kohala volcano, Hawaii, which had previously been described by Feigenson et al. (1983). These data complement our own isotopic data presented in that paper and those given in the companion paper by Lanphere and Frey (1986). We show that in spite of appearances to the contrary, there is no significant analytical bias in our previously published analyses. Accidental sampling bias and one erroneous value prevented us from recognizing the isotopic heterogeneity in our previously published data. The new data both confirm the Sr-isotopic distinction between Pololu and Hawi volcanics discovered by Lanphere and Frey and narrow the gap between them significantly. The two data sets agree for the Hawi samples, but the mean 87Sr/86Sr=0.703651±13 for our Pololu basalts is significantly lower than the mean 87Sr/86Sr= 0.703748±18 found by Lanphere and Frey. The Ndisotopic ratios are also heterogeneous, but they overlap for the two formations. We agree with the assessment of Lanphere and Frey that some of our samples originally classified as belonging to the Hawi Formation are actually derived from the uppermost Pololu Formation, but with some stratigraphic ambiguities remaining.We believe that our previous results of inverse modelling are valid for the tholeiitic and moderately alkalic Pololu Formation despite the isotopic heterogeneity because this heterogeneity does not correlate with the trace element chemistry of the Pololu samples.The severe depletion of Sc, which correlates with decreasing CaO/Al2O3 ratios and increasing Yb concentrations, confirms the importance of clinopyroxene fractionation in the evolved lavas of the Hawi Formation. In addition, apatite precipitation did fractionate the P/Ce ratios in the more evolved Hawi lavas, but its effect on the REE abundances is still uncertain and may not be significant.The MgO — P2O5 plot of Lanphere and Frey does not provide compelling evidence against a simple genetic relationship between Pololu and Hawi lavas. The internal consistency of the (fractionation corrected) trace element ratios such as Ba/Ce indicates that Ba is depleted in both the Hawi and the Pololu sources and that these sources do have similar chemistry.Finally, we show that contrary to the conclusions of Lanphere and Frey the REE patterns of Kohala volcanics can be generated from sources with only slightly negatively sloping REE patterns without involvement of garnet, as was indicated by the formal inversion analysis. Models which include garnet yield more highly anomalous source abundance patterns and calculated bulk-source partition coefficients which are inconsistent with the presence of garnet. The persistence of residual garnet is also inconsistent with the absence of significant heavy-REE fractionation among the Pololu basalts.  相似文献   

2.
Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source.  相似文献   

3.
A variety of alkaline lavas from the Dunedin Volcano have been analyzed for the rare earth elements (REE) La-Yb. The compositions analyzed were: basalt-hawaiite-mugearite-benmoreite; basanite, nepheline hawaiite, nepheline trachyandesite and nepheline benmoreite; trachyte; phonolite. The series from basalt to mugearite shows continuous enrichment in the REE, consistent with a crystal fractionation model involving removal of olivine and clinopyroxene. From mugearite to benmoreite there is a depletion in the REE which is explained by the appearance of apatite as a liquidus phase. The chondrite normalized REE patterns for the phonolites are characterized by strong enrichment and fractionation coupled with a sharp depletion in Eu. Removal of plagioclase from benmoreite magma is suggested for the derivation of the phonolites. The series basanite-nepheline hawaiite, and basanite-nepheline hawaiite-nepheline benmoreite appear to be high pH2O analogues of the series basalt-ben-moreite, with enrichment of the REE being achieved by removal of clinopyroxene, kaersutite and olivine. Compared with other lavas the trachyte has low REE abundances and is characterized by a striking positive Eu anomaly.  相似文献   

4.
We have examined Re, Platinum-Group Element (PGE) and Os-isotope variations in suites of variably fractionated lavas from Kohala Volcano, Hawaii, in order to evaluate the effects of melt/crust interaction on the mantle isotopic signature of these lavas. This study reveals that the behavior of Os and other PGEs changes during magma differentiation. The concentrations of all PGEs strongly decrease with increasing fractionation for melts with MgO < 8 wt.%. Fractionation trends indicate significantly higher bulk partition coefficients for PGEs in lavas with less than 8 wt.% MgO (DPGE = 35–60) when compared to values for more primitive lavas with MgO > 8 wt.% (DPGE ≤ 6). This sudden change in PGE behavior most likely reflects the onset of sulfur saturation and sulfide fractionation in Hawaiian magmas at about 8 wt.% MgO.

The Os-rich primitive lavas (≥ 8 wt.% MgO, > 0.1 ppb Os) display a narrow range of 187Os/188Os values (0.130–0.133), which are similar to values in high-MgO lavas from Mauna Kea and Haleakala Volcanoes and likely represent the mantle signature of Kohala lavas. However, Os-isotopic ratios become more radiogenic with decreasing MgO and Os content in evolved lavas, ranging from 0.130 to 0.196 in the shield-stage Pololu basalts and from 0.131 to 0.223 in the post-shield Hawi lavas. This reflects assimilation of local oceanic crust material during fractional crystallization of the magma at shallow level (AFC processes). AFC modeling suggests that assimilation of up to 10% upper oceanic crust could produce the most radiogenic Os-isotope ratios recorded in the Pololu lavas. This amount of upper crust assimilation has a negligible effect on the Sr and Nd-isotopic compositions of Kohala lavas. Thus, these isotopic compositions likely represent the composition of the mantle source of Kohala lavas.  相似文献   


5.
Most Hawaiian basaltic shield volcanoes are capped by moderately to strongly evolved alkalic lavas (MgO<4.5 wt.%). On Mauna Kea Volcano the cap is dominantly composed of hawaiite with minor mugearite. Although these lavas contain dunite and gabbroic xenoliths, they are nearly aphyric with rare olivine and plagioclase phenocrysts and xenocrysts. The hawaiites are nearly homogeneous in radiogenic isotope ratios (Sr, Nd, Pb) and they define coherent major and trace element abundance trends. These compositional trends are consistent with segregation of a plagioclase-rich cumulate containing significant clinopyroxene and Fe-Ti oxides plus minor olivine. Elements which are usually highly incompatible, e.g., Rb, Ba, Nb, are only moderately incompatible within the hawaiite suite because these elements are incorporated into feldspar (Rb, Ba) and oxides (Nb). However, in the most evolved lavas abundances of the most incompatible elements (P, La, Ce, Th) exceed (by 5–10%) the maximum enrichments expected from models based on major elements. Apparently, the crystal fractionation process was more complex than simple, closed system fractionation. The large amounts of clinopyroxene in the fractionating assemblage and the presence of dense dunite xenoliths with CO2 inclusions formed at minimum pressures of 2 kb are consistent with fractionation occurring at moderate depths. Crystal segregation along conduit or magma chamber walls is a possible mechanism for explaining compositional variations within these alkalic cap lavas.  相似文献   

6.
Within the volcanic sequence of the twin volcanoes of Lyttelton and Akaroa, Banks Peninsula, New Zealand a number of different magma series have been distinguished.An early series of hawaiites (McQueens Valley Formation) was erupted about 32 m.y. ago and is of transitional or mildly tholeiitic chemistry. Stratigraphically above the McQueens Valley Formation, but unconformably overlain by the main volcanic dome sequence, is a unit of rhyolite (Gebbies Pass Rhyolites) which is not directly related to the earlier or later basaltic volcanism. The rhyolite was probably formed during intracrustal melting which was related to the rise of basaltic magma into the crust.Between 12 and 9.7 m.y. a large volcanic dome, composed mainly of hawaiite, was built at Lyttelton. Dykes, which intrude the Lyttelton volcanic sequence, range in composition from basalt to trachyte. Late, mildly alkalic, basaltic flank flows (7.5–5.8 m.y.) occur in several areas and they, and the differentiated rocks of the dyke swarm can be related by a crystal fractionation model which has been quantitatively tested.Following construction of the Lyttelton dome a second larger dome was built at Akaroa between 9 and 7.5 m.y. The rocks of the Akaroa Volcano are principally hawaiites but rocks ranging in composition through to trachyte also occur. The differentiated rocks of the Akaroa volcano have derived from the basaltic rocks by a crystal fractionation controlled process, operating during ascent through the crust.None of the Banks Peninsula basalts appear to have derived from primitive (pyrolitic) mantle material, but progressive changes in the chemistry of the basalts with time implies that the mantle source regions were evolving geochemically as partial melting proceeded. Later lavas tend to be more alkalic and to have lower MgO/FeO ratios than earlier lavas. The volcanic rocks of the Banks Peninsula volcanoes were derived by fractional removal of olivine, plagioclase, clinopyroxene, magnetite and apatite from ascending basaltic magma batches. Variations between the suites reflect differences between the parental magma batches.  相似文献   

7.
The Gough Island lavas range from picrite basalt through tosodalite-bearing aegirine-augite trachyte. The basaltic lavasare predominantly nepheline normative alkali basalts, althougha group of hypersthene normative tholeiitic basalts does occur.The oldest lavas on the island, represented by the Lower Basaltseries, are approximately 1?0 m.y. old and the youngest arethe Upper Basalts with an age of {small tilde} 0?13 m.y. Relatively coherent variations are described by the basalticand trachytic lavas with respect to both bulk rock major andtrace element geochemistry and mineral chemistry, and quantitativepetrogenetic modelling suggests that most of the variation canbe attributed to crystal fractionation/accumulation processesacting on a number of geochemically distinct parental magmas.The Upper Basalts and Lower Basalts have (within the limitsof sampling) a relatively restricted composition compared tothe Middle Basalt series lavas, with the latter ranging frompicrite basalt through to trachyandesite. The picrite basaltsand coarsely pyroxene-olivine phyric basalts represent partialcumulates with varying proportions (up to 40 wt. per cent) ofaccumulated olivine and clinopyroxene. In contrast, the moderatelyphyric and aphyric/finely porphyritic lavas represent the productsof crystal fractionation with the most evolved lavas havingexperienced at least 40 per cent fractional crystallizationof clinopyroxene, olivine, plagioclase and minor Fe-Ti oxidesand apatite. The detailed abundance variations in these lavasindicate that a number of parental magma compositions have fractionatedto produce the overall variations in basalt geochemistry, andsome of the magmas have interacted through mixing processes. The trachytic lavas show a large range in trace element abundance,but have only a limited major element variation. Most of thisvariation can be attributed to extensive (up to 70 per cent)fractional crystallization of predominantly alkali feldsparwith minor clinopyroxene, olivine, biotite, titano-magnetiteand apatite. A number of genetically distinct trachytes canbe recognized which are probably not related to each other byany simple fractional crystallization process. The compositionof the least evolved trachytes can be adequately accounted forby relatively extensive (up to 60 per cent) fractionation ofthe more evolved Middle Basalt series lavas. The trace element and isotopic characteristics of primitiveGough Island basalts support the concept that the source region(s)giving rise to these lavas is extremely enriched in highly incompatibleelements relative to primordial or ‘undepleted’mantle of bulk earth composition. It is unlikely that the lavashave sampled undepleted mantle as might be suggested by thesimilarity of the Sr and Nd isotopic ratios to ‘bulk earth’values. Rather, a model is favoured whereby the lavas are derivedfrom previously enriched sub-oceanic mantle which was subsequentlyinvaded and further enriched, at some time prior to partialmelting, by melts or fluids highly enriched in incompatibleelements. The enrichment could have occurred as veining by smalldegree partial melts or by infiltration of metasomatic fluids.  相似文献   

8.
A potassium-rich Alkalic Suite from the Deccan Traps,Rajpipla, India   总被引:4,自引:0,他引:4  
The Rajpipla Alkalic Suite is the most potassium-enriched group of basaltic rocks so far described from the Deccan Traps. In the same area however early tholeiitic flows and late tholeiitic dykes show the potassium-poor nature characteristic of most Deccan Trap magmas. The rocks of the alkalic suite are highly porphyritic and their major element variation can be interpreted in terms of crystal fractionation dominated by clinopyroxene. Plagioclase, which is an important phenocryst phase, has fractionated only in relatively small amounts as a result of a lack of density contrast between it and the liquids. A dyke-like form for the magma chambers in which fractionation has taken place is postulated to account for the abundance of highly porphyritic types. The Rajpipla area is also notable as being one of the few Deccan localities where rhyolites are found.Abbreviations AB ankaramitic basalt - PB porphyritic basalt - PTB porphyritic trachybasalt - FPM feldsparphyric mugearite - M mugearite - TR trachyte - P. RHY potassic rhyolite - Th. B. tholeiitic basalt - Th. D. tholeiitic dolerite - Af alkali feldspar  相似文献   

9.
The postshield and posterosional stages of Haleakala Volcano contain intercalated alkalic basalt and evolved alkalic lavas. Isotopic and incompatible element abundance ratios in the Haleakala postshield basalts changed systematically with time, providing evidence for significant temporal changes in the mantle components contributing to the magmatic sources. Specifically, a depleted, i.e. low87Sr/86Sr and high143Nd/144Nd, mantle component is more abundant in younger lavas. However, as magma-production rates decreased during the postshield and posterosional stages, basaltic melts in magma reservoirs cooled and fractionated, leading to evolved residual melts such as hawaiite. Because primary basalt compositions changed with time, the evolved Haleakala lavas formed from a range of parental compositions. However, basalts and evolved lavas of similar age and isotopic ratios (Sr and Nd) have major and trace element contents that are consistent with a crystal-fractionation model. Although alkalic basalt and hawaiite are the dominant lavas of the postshield stages of both Haleakala and Mauna Kea volcanoes, there are important differences between their lavas. For example, compositional differences between the hawaiite suites at Haleakala and Mauna Kea indicate that, on average, the evolved lavas at Haleakala formed at lower pressures. Also, at Haleakala basalts are intercalated with hawaiites, whereas at Mauna Kea basalts and hawaiites are separated by a sharp boundary. These differences probably reflect a higher magma supply rate to the Haleakala volcano.  相似文献   

10.
Rare earth element (REE) concentrations were determined in 16 Ross Island and northern Victoria Land alkaline lava samples which were representative of four lava lineages of the McMurdo Volcanic Group, Antarctica. A kaersutite and two feldspar mineral separates were also analysed.

Two of the lava lineages, a basanite to nepheline benmoreite and a basanite to phonolite, have similar chondrite-normalized REE fractionation patterns, with a continuous enrichment of light and heavy REE and depletion of middle REE. The patterns result from the fractionation of olivine, clinopyroxene, spinels, feldspar, kaersutite and apatite. Kaersutite is an important fractionated phase responsible for the middle REE depletion.

Another of the lava lineages is mildly potassic with trachyandesite to peralkaline K-trachyte lavas which have partly overlapping REE fractionation patterns. There is a depletion in REE from tristanite to K-trachyte. Fractionation of olivine, clinopyroxene, feldspar and apatite probably control the REE chemistry of the lineage, greater degrees of apatite fractionation deplete the K-trachyte in REE relative to the tristanite. Feldspar fractionation in the genesis of the peralkaline K-trachyte is shown by a large negative Eu anomaly (Eu/Eu* = 0.10).

A nepheline hawaiite to anorthoclase phonolite lava lineage from the Erebus Centre shows enrichment of REE, although minor overlapping in the middle REE does occur. Anorthoclase phonolite has a positive Eu anomaly (Eu/Eu* = 1.31), indicating possible accumulation of anorthoclase. The lineage resulted from fractionation of olivine, clinopyroxene, magnetite and apatite.  相似文献   


11.
Major and trace element data for a sequence of peralkaline silicic lavas and pyroclastic flows, exposed in the caldera wall of the Paisano volcano, west Texas, document systematic fractional crystallization during magmatic evolution and an open system, magma mixing event in the upper parts of the sequence. Stratigraphically lowest flows are comendite and comenditic quartz trachyte lavas and ash flow tufts. Overlying these units is a trachyte with compositional, textural and mineralogical features indicating that it is the product of magma-mixing; similar flows occur in other parts of the volcano at the same stratigraphic level. This composite trachyte is considered to be a mixture of mugearitic or mafic trachytic magma, derived from a similar source region which yielded the earlier caldera wall flows. Trace element concentrations of the post-trachyte comenditic quartz trachyte lavas suggest they were erupted from a chamber whose magma was diluted by an influx of mugearitic or mafic trachytic magma during a magma mixing event.Rayleigh fractionation calculations show that the comendites and comenditic quartz trachytes can be derived from a parental mugearite magma by 88% to 93% fractionation of dominantly plagioclase and alkali feldspar, with lesser amounts of clinopyroxene, magnetite and apatite. Zircon was not a significant fractionating phase. The composition, mineralogy and depth of the source region(s) which generated these magmas cannot be constrained from the present data set.  相似文献   

12.
Hawaiite-type lavas were erupted in three cycles (3.7, 1.2, and 0.3 M.y.) at Crater Flat, Nevada. The compositions of all three cycles, considered together, form a straddling alkalic series as defined by Miyashiro, in which the less evolved basalts plot near the normative olivine-diopside divide and the more evolved basalts project into hypersthene or nepheline fields. Fractionation modeling based on the oldest cycle allows the removal of olivine, clinopyroxene, and amphibole to arrive at the more evolved hawaiite compositions. In general, fractionation of phlogo-pite or feldspar is limited by the fractionation modeling and by Eu/REE relations. In detail, all hawaiites within one cycle (3.7 M.y.) need not be derived from a single parent magma. Varied parentage is more evident between cycles although all cycles are consistently of hawaiite composition. Basalts of the youngest two cycles are generally enriched in trace elements. Superimposed on this enrichment is a lack of Rb variation, leading to Rb/Sr ratios far lower than required to generate the high 87Sr/86Sr ratio (0.707) typical of basalts in this region. The very low Rb/Sr ratios limit processes that may lead to trace-element enrichment during magma evolution (cyclic recharge of a fractionating magma chamber). Decreased fractions of mantle melting leaving phlogopite in the residuum or an earlier event of metasomatic transport from phlogopite-bearing mantle rocks into a phlogopite-absent mantle assemblage might explain the observed trace-element enrichment with low Rb/Sr.  相似文献   

13.
The Vestmannaeyjar archipelago is composed of alkalic lavas erupted at the southern end of the active, southward propagating, Eastern Volcanic Zone. Recent eruptions include the most primitive (Surtsey) and most evolved (Eldfell) compositions found in this area. We studied time-stratigraphic sample suites from both eruptions to characterize the magmatic environment of Vestmannacyjar. All samples are nearly homogeneous in radiogenic isotopic ratios (87Sr/86Sr 0.70304 to 0.70327;143Nd/144Nd 0.51301 to 0.50307;206Pb/204Pb 18.96 to 19.18;207Pb/204Pb 15.50 to 15.53;208Pb/204Pb 38.47 to 38.76; KH Park and A Zindler, in preparation). Compositional trends of lavas from the two eruptions are not consistent with fractionation in a near-surface environment, but indicate rather moderate pressure evolution of small magma batches. At Eldfell, mugearite lavas can be modeled by 30% closed-system fractional crystallization of olivine+plagioclase+clinopyroxene+Fe–Ti oxides from parental hawaiite. The phase proportions are consistent with an experimentally determined moderate pressure (8 kbar) cotectic in mildly alkaline systems (Mahood and Baker 1986). Compositional variations of Surtsey lavas can be modeled by crystallization of clinopyroxene+olivine+plagioclase+minor Fe–Ti oxides. The presence of sodic plagioclase megacrysts and clinopyroxene with 8 wt% Al2O3 in xenoliths from Surtsey lavas are consistent with a moderate pressure fractionation event. Based on major-element and REE data the most primitive Surtsey lavas formed by small degrees of melting of a lherzolite source. The alkaline nature of Vestmannaeyjar lavas is not the result of assimilation of lower crustal melts (cf. Oskarsson et al. 1985; Steinthorsson et al. 1985).  相似文献   

14.
GANDY  M. K. 《Journal of Petrology》1975,16(1):189-211
The calc-alkaline lava sequence of the eastern Sidlaw Hillsforms a small part of an extensive volcanic province of LowerOld Red Sandstone (Devonian) age in Scotland and N. England.The Sidlaw lavas ranging from olivine basalt to dacite are allporphyritic with combinations of olivine, plagioclase, clinopyroxene,orthopyroxene, and opaque oxide pheno-crysts. Chemically, thelavas are slightly more alkalic than modern calc-alkaline lavas.There is considerable variation in the ‘incompatible elements’.The differentiation of the lavas can be accounted for by fractionationof olivine+plagioclase+minor ore from a chemically variable,immediately parental magma at low pressure (c. 1 kb PH2O). Itis suggested that fractionation of variable amounts of olivineand clinopyroxene from an olivine tholeiite at moderate PH2Ocould give rise to this chemically variable, high alumina, immediatelyparental magma.  相似文献   

15.
The Cretaceous M?gantic intrusive complex of southern Qu?beccontains early noritic gabbrodiorites which represent cumulatesfrom crustally contaminated hawaiite to syenite magmas. Wholerock and mineral chemistry, as well as textural evidence, indicatethat post-cumulus recrystallization and reaction were important,and most of the amphibole and biotite are thought to have formedin this way. A younger plutonic quartz-syenite ringdyke maynot be cogenetic with the gabbro-diorites sice it lacks orthopyroxene.It may, however, be cogenetic with basaltic to riebeckite granitedykes. Fractionation of olivine, plagioclase, aluminous clinopyroxene,and minor Ti-magnetite from critically undersaturated alkalibasaltic magmas generated hawaiitic magmas. The developmentof quartzbearing mugearitic and syenitic residua from the hawaiitescan best be modelled by fractionation of amphibole, plagioclase,olivine, oxides, and apatite. Attempts to model fractionationusing observed phenocrysts (including clinopyroxene) were unsuccessful.Amphibole fractionation is interpreted to have taken place througha reaction with still-porous, higher-temperature cumulates onthe walls of the magma chamber. The plutonic syenites probablyrepresent alkali feldspar cumulates from the residual syeniticmelts. Magnesian calc-alkaline lamprophyres exhibit olivineto phlogopite reaction textures, are enriched in Cr, Ni, K,Rb, Nb, Y, Zr, and Si relative to the basaltic dykes, yet havesimilar incompatible element ratios. Their relation to the basaltsis problematical. The late biotite-granite core to the complexis identical to typical White Mountain granites and may haveformed as an anatectic cap on rising, fractionating, mantlederivedmagmas.  相似文献   

16.
Principe is one of the volcanic centres comprising the Cameroun line in West Africa. The volcanic rocks can be divided into two stratigraphic units:
  1. Younger lava series — basanite and nephelinite overlying.
  2. Older lava series — transitional to mildly alkaline basalt and hawaiite.
These units lie on a basement of palagonite breccias of tholeiitic affinities. The basic lavas are intruded by plugs ranging in composition from tristanite to phonolite and are overlain by phonolite lavas. These rocks form two chemically and mineralogically distinct suites:
  1. Phonolites which evolved by low pressure crystal fractionation of the younger lava series basanitic magma, and
  2. Tristanite — trachyte — trachyphonolite suite which may have evolved by high pressure crystal fractionation of the older lava series magma.
  相似文献   

17.
Geochemical and Isotopic Evolution of Loihi Volcano, Hawaii   总被引:2,自引:6,他引:2  
A 680m thick section from the deeply dissected east flank ofLoihi Volcano was sampled using the Pisces V submersible toevaluate the volcano's geochemical evolution. Three types oflavas were recovered: tholeiitic, weakly alkalic and stronglyalkalic. The ratio of alkalic to tholeiitic lavas varies systematicallywith depth, from predominantly alkalic at the base of the sectionto tholeiitic at the top. Glasses from these rocks have similarratios of highly incompatible elements and Pb, Sr and Nd isotopes,but distinct ratios of highly to moderately incompatible elements.Partial melting modeling indicates that these tholeiitic andalkalic lavas could be derived by variable degrees of partialmelting of a slightly heterogeneous source. Many distinct parentalmagmas were generated for each rock type during the 100–150k.y. that the east flank section was formed. Crystal fractionationand olivine accumulation were the dominant processes controllingcompositional variation among lavas of the same rock type. Magmamixing features were observed in only a few of the lavas collected. Loihi typifies the preshield stage of Hawaiian volcanism whenthe volcano drifts closer to the focus of the hotspot. The compositionalvariation in Loihi's east flank section, which may represent40% of the volcano's extrusive history, is consistent with thepredicted increase in partial melting during this drift. Thetransition from dominantly alkalic to tholeiitic volcanism onLoihi was fitful but relatively rapid and is now nearly complete.This transition is the opposite of that which occurs duringthe post-shield stage of Hawaiian volcanism as the volcano migratesaway from the hotspot focus. Loihi's tholeiitic lavas overlap in ratios of incompatible traceelements and Pb, Sr and Nd isotopes with lavas from its moreactive neighbor, Kilauea. The small differences in major elementcontents between lavas from these adjacent volcanoes can beexplained by high-pressure orthopyroxene fractionation of Loihimagmas, which may be a consequence of a low magma-supply rate,or by slightly shallower depths of melt segregation for Kilaueamagmas. KEY WORDS: Loihi volcano; Hawaii; geochemistry; Sr-Nd-Pb isotopes  相似文献   

18.
The major and trace element chemistry of phonolites containing spinel Iherzolite xenoliths from Bokkos (Nigeria), Phonolite Hill (northeastern Australia) and Heldburg (East Germany) is consistent with an origin by fractional crystallization of basanitic magmas at upper mantle pressures (10–15 kbar). At Bokkos, spatially associated lavas ranging from hawaiitic nepheline mugearite to nepheline benmoreite can be modeled very well by fractional crystallization of kaersutitic amphibole + olivine + Fe-Ti-spinel + apatite, a crystal extract consistent with experimentally-determined near-liquidus phase relationships for mugearitic liquids. Further fractional crystallization of aluminous clinopyroxene + mica + apatite will yield the phonolites. A similar model relating the unusual Iherzolite-bearing mafic nepheline benmoreite from Pigroot (New Zealand) to basanitic lavas of the East Otago province is not supported by major and trace element data. The Pigroot lava is possibly the product of melting of a mantle source region previously enriched in Sr and light rare earth elements, with subsequent minor fractional crystallization of olivine + kaersutite. Dynamic flow crystallization processes operating within conduit systems from mantle pressures are capable of yielding large volumes of evolved phonolitic liquids from primary basanitic liquids, if magma flow rates are appropriate. This mechanism may provide an explanation for the volumetric bias towards salic differentiates in some alkalic provinces.  相似文献   

19.
Two suites of felsic eruptives and intrusives are represented in a set of samples from the summit region of the Plio-Pleistocene volcano, Mt. Kenya. Most of the samples are moderately or strongly undersaturated and have 87Sr/86Sr initial ratios in the range 0.70360–0.70368 (mean=0.70362). Members of this phonolitic suite are phonolites, nepheline syenites or kenytes and as a group they show a wide variation in TiO2, FeO, P2O5, Sr, Ba, Zr and Nb. The minor and trace element geochemistry reflect variation in the nature of the parental basaltic magmas from which the phonolitic rocks evolved and variation in the crystal fractionation process in individual cases. Crystal fractionation involving plagioclase, alkali feldspar, clinopyroxene, olivine and magnetite is the process by which most of the phonolitic rocks evolved and variation in the relative proportions of these phases in individual cases has led to a broad spectrum of trace and minor element behaviour. The second suite of felsic samples is critically saturated and consists of trachytes showing either slight oversaturation or slight undersaturation with respect to SiO2. This trachyte suite has lower initial 87Sr/86Sr ratios (mean=0.70355) and is derived from transitional alkalic basalts by low pressure (crustal) crystal fractionation involving feldspar, clinopyroxene, magnetite and olivine. The range in minor and trace element chemistry observed among the felsic rocks is a consequence of variation in the parental basalts which is related to mantle source variation and to the specific nature of the crystal fractionation process.  相似文献   

20.
Anjouan is one of four volcanic islands comprising the Comores Archipelago. Three (arbitrarily defined) categories of basic magma are recognised on Anjouan: ‘hypersthenenormative’, ‘alkalic’ and ‘basanitic’, which appear in that order with an eruptive sequence involving 1) shield construction, 2) peripheral fissure-controlled activity, and 3) rejuvenescent (posterosional) eruptions. Differentiated magmas have evolved within the three chemical groupings, and trend mainly towards undersaturated trachyte and phonolite. These trends are considered to have developed by initial removal of olivine and clinopyroxene, followed by Fe-Ti oxides, apatite and amphibole from arrested liquid pools within and beneath the volcano. The appearance of feldspar on the liquidus was clearly inhibited by the high contents of normative diopside in most Anjouan magmas, although late stage plagioclase fractionation is probably responsible for development of peralkaline phonolites at shallow depths, assisted eventually by alkali feldspar. Lherzolite-xenolith-bearing lavas are likely to be directly mantle-derived liquids. Three analysed representatives with 100 · Mg/Mg + Fe2+ (atomic) ratios approaching 70 are characteristically rich in normative diopside and may confirm the suggestion of primitive ankaramitic melts in mantle regions. High pressure fractional crystallisation may involve fractionation of ‘eclogite’, orthopyroxene or clinopyroxene, with or without olivine. It is believed however that such processes do not adequately explain the compositional change from hypersthene-normative basalt towards basanite, as they imply unacceptable degrees of Fe-enrichment. Problems of large ion element enrichment and fractionation would also remain, while the high contents of Cr and Ni place limits on the extent of crystal fractionation. A partial melting model of magma genesis is able to explain the main features of basalt geochemistry, especially if the upper mantle low velocity zone is regarded as having been severely fractionated due to upward migration of large ion elements. An ‘open’ system of magma production in the context of regional plate movement, and the implied decoupling between lithosphere and asthenosphere, accomodates realistic degrees of partial melting and allows a greater potential volume of mantle available for melting than possible ‘closed’ systems. The model also accounts for the migratory pattern of Comores volcanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号