首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The Dashuigou tellurium deposit, located on the western margin of the Yangtze platform, is unique. The deposit is hosted by Triassic metabasalt 50 to 80 meters thick. The orebodies occur as a group of NNE-striking parallel veins. Mineralization developed in three stages: Stage I— pyrrhotite-pyrite, Stage II—tetradymite, and Stage III—chalcopyrite-pyrite. Stage II is the principal tellurium mineralization stage and the tellurium-bearing minerals are mainly tetradymite, tsumoite, tellurbismuth, joseite, calaverite, stuetzite, and native tellurium. The general ore grade of the tellurium in Stage II ranges from 0.2 to 5 wt%, and it reaches 15 to 25 wt% for the massive ores. The dominant gangue minerals are calcite and dolomite, with minor biotite, muscovite, albite, quartz, and chlorite.

Fluid-inclusion studies of calcite, dolomite, and quartz from Stages I, II, and III yield homogenization temperatures of 356° to 260° C (mean = 320° C), 295° to 198° C (mean = 240°), and 235° to 152° C (mean = 170° C), respectively. Salinities of primary fluid inclusions in all three stages are 1.5 to 5.8 wt% NaCl equivalent, 9 to 15.2 wt% NaCl equivalent, and 2.8 to 3.0 wt% NaCl equivalent, respectively.

Isotopic studies show that δ34 values of sulfides range from -2.2 to +2.8 per mil. δ13C values of calcites and dolomites in the ore veins range from -5.3 to -7.42 per mil, and δ18O values range from +10.9 to +13.1 per mil, which are quite different from the δ13C values of+1.0 to +2.8 per mil and δ18O values of +16.8 to +28.5 per mil for the calcites from the Triassic carbonates in the deposit. The δD and δ18O values of muscovite and quartz were measured to be -61 to -54 per mil and +9.9 to +13.0 per mil, respectively. Values of δ18Owater computed from fluid-inclusion trapping temperatures are +3.9 and +7 per mil.

A date of 93 Ma was obtained through measurement of muscovite from the No. 12 ore vein. Sulfur-, oxygen-, carbon-, and hydrogenisotope data indicate that the ore-forming substances of the Dashuigou tellurium deposit were derived from deep-seated sources, and the mineralizations probably are associated with Late Mesozoic alkaline or alkaline granitic magmatism. The estimated sulfur fugacities (fs2) are 10?16.7 for Stage I and 10?14 to 1015.5 for Stage II, whereas the tellurium fugacities (fTe2) are 10?15 to 10?14 and 10?11.2 to 10?10.5, respectively.  相似文献   

2.
Abstract. The Ta'ergou tungsten deposit in Gansu province, northwestern China, is located in the western part of the North Qilian Caledonian orogen, and consists of scheelite skarn bodies and wolframite quartz veins. The tungsten‐bearing skarn developed by the replacement of carbonate layers intercalated in the Precambrian schist and amphibolite whereas wolframite‐quartz ore veins developed along a group of fractures that cut through horizontal skarns. The Ta'ergou tungsten deposit is genetically related to the Caledonian Yeniutan granodiorite intrusion and occurs ca. 500 m wide in the exo‐contact zone 300 ~ 500 m apart from the intrusion. The granodiorite displays a lower grade of differentiation, low content of SiO2 and high contents of mafic components. There are three types of fluid inclusions in the wolframite‐quartz vein systems, i. e. aqueous, CO2‐H2O and CO2‐rich. The homogenization temperature of aqueous inclusion ranges from 140 to 380d?C and their salinities from 6.4 to 17.4 equivalent wt% NaCl. Laser Raman spectroscopy shows that the inclusions contain a relatively high content of CO2. The δ34S values of skarn type sulfides range from +8.1 to +12.7 per mil and those of quartz vein sulfides from +9.3 to +14.9 per mil, similar to sulfides of the granodiorite with from +6.0 to +11.7 per mil. The δ18O values of quartz are between +10.5 and +13.3 per mil and those of wolframite between +3.4 and +5.1 per mil. The δ18O water values of ore forming fluids range from +0.6 to +6.4 per mil and suggest the mixture of magmatic fluids with meteoric water formed the ore‐forming fluids. It has been proved that Precambrian strata in the west sector of North Qilian region are enriched in tungsten. We propose the strata were remelted to be tungsten‐granitoid during subduction. The polymetallic tungsten was gradually accumulated into the roof pendants of the granite intrusion by fractional crystallization and then was deposited by hydrothermal fluids during metasomatism and infilling along fractures. On the other hand, the granite intrusion also acted as “heating machine” to make hydrothermal fluids leach out the metals from Precambrian strata and these metals joined the ore‐forming hydrothermal system.  相似文献   

3.
We studied zinc and sulfur isotopes and the chemical composition of sphalerite samples from Picos de Europa (Aliva mine) and sphalerite and hydrozincite samples from La Florida mine, two carbonate-hosted Mississippi Valley-type (MVT) deposits located in northern Spain; despite being close, they are hosted in carbonatic rocks of different ages, Lower Carboniferous and Lower Cretaceous, respectively. The two generations of sphalerite at Picos de Europa show different δ66Zn values (stage 1 sphalerite +0.24 per mil and stage 2 sphalerite from ?0.75 to +0.08 per mil). Both generations also differ in the sulfur isotope composition (stage 1 has δ34S?=?+6.6 and stage 2 has δ34S?=??0.9 to +2.9 per mil) and the chemical composition (stage 1 sphalerite, compared to stage 2 sphalerite, is significantly enriched in Pb, As, Mn, Sb, slightly enriched in Ag, Ni, and Cu and depleted in Co, Ga, Tl, Te, Ge, and Sn). We suggest that Zn isotope fractionation was controlled predominantly by pH and T changes. High Zn isotope values reflect rapid precipitation of sphalerite from higher-temperature acidic fluids that carried Zn mostly as chloride species after interaction with carbonate rocks while lower Zn isotope values most likely resulted from a longer precipitation process from fluid at higher pH and decreasing T that carried dominantly Zn sulfide species. At La Florida, sphalerite samples show light 66Zn-depleted signatures with δ66Zn values from ?0.80 to ?0.01 per mil (mostly between ?0.80 and ?0.24 per mil) and δ34S values from +10.7 to +15.7 per mil without any relationship between the δ66Zn and δ34S values. Here, the variation in Zn isotope values is interpreted as related to mixing of fluids from two reservoirs. The Zn was carried by a single deep-seated and higher T (~250–320 °C) fluid, and precipitation took place after mixing with a connate S-rich fluid in a system with mH2S?>?mZn2+ as a result of change in pH, T, and Zn predominant species. The light δ66Zn accompanied by heavy δ34S values resulted from fractionation of Zn aqueous sulfides at near-neutral pH and decreasing T. Hydrozincite samples show much heavier δ66Zn values (+0.21 to +0.33 per mil), consistent with fractionation during supergene processes.  相似文献   

4.
Abstract: The disseminated Au‐Ag telluride Bulawan deposit, Negros island, Philippines, is hosted by dacite porphyry breccia pipes which formed in a Middle Miocene dacite porphyry stock. Electrum and Au‐Ag tellurides occur mostly as grains intergrown with or filling voids between sphalerite, pyrite, chalcopyrite, galena and tennantite. Calcite, quartz and rare dolomite are the principal gangue minerals. Four types of alteration were recognized in the deposit, namely; propylitic, K‐feldspar‐sericitic, sericitic and carbonate alteration. Carbonate alteration is correlatable to the gold deposition stage and occurs mostly along fault zones. The δ18O and δ13C compositions of calcite and dolomite in propylite zone and ore‐stage dacite porphyry breccia were determined. The δ18O values of calcite in propylitized andesite range from +12.2 to +14.7%, and their δ13C values range from ‐6.1 to ‐1.0%. The δ18O values of calcite and dolomite in sericite‐ and carbonate‐altered, mineralized dacite porphyry breccia and dacite porphyry rocks range from +15.1 to +23.1%, and the δ13C values of calcite and dolomite range from ‐3.9 to +0.9%. The δ18O and δ13C values of the hydrothermal fluids were estimated from inferred temperatures of formation on the basis of fluid inclusion microthermometry. The δ18O values of hydrothermal fluid for the propylitic alteration were calculated to be +8.5 ‐ +9.5%, assuming 375°C. On the other hand, the δ18O values of ore solutions for base metal and Au mineralization were computed to be +13.6 ‐ +14.6%, assuming 270°C. The hydrothermal fluids that formed the Bulawan deposit are dilute and 18O‐enriched fluids which reacted with 18O‐ and 13C‐rich wallrocks such as limestone.  相似文献   

5.
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ~(18)O_(fluid)values calculated from δ~(18)O_(quartz) and δ~(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ~(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.  相似文献   

6.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

7.
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite - sericite - quartz zone and an outer seicite - chlorite - calcite - epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from –1.67 to +0.49‰ with average of –0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66–17.75, 15.50–15.60, and 37.64–38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.  相似文献   

8.
The Antuoling Mo deposit is a major porphyry‐type deposit in the polymetallic metallogenic belt of the northern Taihang Mountains, China. The processes of mineralization in this deposit can be divided into three stages: an early quartz–pyrite stage, a middle quartz–polymetallic sulfide stage, and a late quartz–carbonate stage. Four types of primary fluid inclusions are found in the deposit: two‐phase aqueous inclusions, daughter‐mineral‐bearing multiphase inclusions, CO2–H2O inclusions, and pure CO2 inclusions. From the early to the late ore‐forming stages, the homogenization temperatures of the fluid inclusions are 300 to >500°C, 270–425°C, and 195–330°C, respectively, with salinities of up to 50.2 wt%, 5.3–47.3 wt%, and 2.2–10.4 wt% NaCl equivalent, revealing that the ore‐forming fluids changed from high temperature and high salinity to lower temperature and lower salinity. Moreover, based on the laser Raman spectra, the compositions of the fluid inclusions evolved from the NaCl–CO2–H2O to the NaCl–H2O system. The δ18OH2O and δD values of quartz in the deposit range from +3.9‰ to +7.0‰ and ?117.5‰ to ?134.2‰, respectively, reflecting the δD of local meteoric water after oxygen isotopic exchange with host rocks. The Pb isotope values of the sulfides (208Pb/204Pb, 36.320–37.428; 207Pb/204Pb, 15.210–15.495; 206Pb/204Pb, 16.366–17.822) indicate that the ore‐forming materials originated from a mixed upper mantle–lower crust source.  相似文献   

9.
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type.  相似文献   

10.
Abstract: The Dajing Cu‐polymetallic ore deposit in Linxi county, Inner Mongolia Autonomous Region, China, is economically a valuable Cu–Sn–Ag–Zn–Pb deposit in the southern section of the Da Hinggan metallogenic province. For the analyzed 23 samples of sulfide minerals, including chalcopyrite, pyrite, sphalerite and galena, the δ34S values range from –1.8 to +3.8 % with an average of +0.65 %. The narrow distributions of the δ34S values with +1 % peak value, including the published data, and the δ13C values around –5 % indicate that the sulfur and carbon of the hydrothermal fluids are derived from a hypomagmatic source, and exclude the possibility that the hosted strata, i.e., the Upper Permian Linxi Formation, provided certain amounts of sulfur and carbon. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of sulfide ores range respectively within 18.257‐18.368, 15.476‐15.609, and 37.916‐38.355 with the model ages of 122–209 Ma. The black shale, however, contains higher radiogenic lead with the 206Pb/204Pb ratios of 18.473‐20.156, differing from the ores. However, the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the ore, basaltic porphyrite and feldspar leads are similar, and lie on the same lines in the diagrams of 208Pb/204Pb vs. 206Pb/204Pb and 207Pb/204Pb vs. 206Pb/204Pb. The fact that these mixing lines are composed of the two end members, the mantle and orogenic belt, strongly supports that all the metallogenic elements were carried by the hypomagma mixing the matters of the mantle and orogenic belt prior to the Mesozoic. Therefore, the Dajing ore deposit is a typical mag–matic–hydrothermal vein type ore deposit associated with subvolcanic rocks.  相似文献   

11.
The Sin Quyen-Lung Po district is an important Cu metallogenic province in Vietnam, but there are few temporal and genetic constraints on deposits from this belt. Suoi Thau is one of the representative Cu deposits associated with granitic intrusion. The deposit consists of ore bodies in altered granite or along the contact zone between granite and Proterozoic meta-sedimentary rocks. The Cu-bearing intrusion is sub-alkaline I-type granite. It has a zircon U-Pb age of ~776 Ma, and has subduction-related geochemical signatures. Geochemical analysis reveals that the intrusion may be formed by melting of mafic lower crust in a subduction regime. Three stages of alteration and mineralization are identified in the Suoi Thau deposit, i.e., potassic alteration; silicification and Cu mineralization; and phyllic alteration. Two-phase aqueous fluid inclusions in quartz from silicification stage show wide ranges of homogenization temperatures(140–383℃) and salinities(4.18wt%–19.13wt%). The high temperature and high salinity natures of some inclusions are consistent with a magmatic derivation of the fluids, which is also supported by the H-O-S isotopes. Fluids in quartz have δD values of –41.9‰ to –68.8‰. The fluids in isotopic equilibrium with quartz have δ~(18)O values ranging from 7.9‰ to 9.2‰. These values are just plotted in the compositional field of magmatichydrothermal fluids in the δD_(water) versus δ~(18)O_(water) diagram. Sulfide minerals have relatively uniform δ~(34)S values from 1.84‰ to 3.57‰, which is supportive of a magmatic derivation of sulfur. The fluid inclusions with relatively low temperatures and salinities most probably represent variably cooled magmatic-hydrothermal fluids. The magmatic derivation of fluids and the close spatial relationship between Cu ore bodies and intrusion suggest that the Cu mineralization most likely had a genetic association with granite. The Suoi Thau deposit, together with other deposits in the region, may define a Neoproterozoic subduction-related ore-forming belt.  相似文献   

12.
Abstract: The Dajing Cu–Sn–Ag–Pb–Zn ore deposit, Inner Mongolia of China, is a fissure‐filling hydrothermal ore deposit that occurs within the Upper Permian Linxi group. No magmatic pluton and volcanic rocks outcrop on the surface of the deposit. Most of ore veins show clear‐cut boundary with country rocks. Wallrock alterations that include silicification, carbonation, chlori–tization, and sericitization are generally weak and occur in the close vicinity of ore veins. Mineralization is divided into three stages: (1) cassiterite–arsenopyrite–quartz stage, (2) sulfide stage, and (3) Pb–Zn–Ag–carbonate stage. These mineralization stages have distinct ranges of homogenization temperatures, 290–350C for Stage 1, 260–320C for Stage 2, and 150–250C for Stage 3. However, salinities for Stages 1, 2, and 3 overlap and range between 2.2 and 10.4 wt % NaCl equivalent. The dD values relative to V‐SMOW of inclusion water from quartz are lower than –88% and centered at –100 to –130%. The δ34S values relative to CDT of sulfide ore minerals and δ13C values relative to PDB of carbonate gangue minerals, vary from –0.3 to +2.6%, and from –7.0 to –2.9%, respectively. Integrated isotopic data point to two major contributions to the mineralizing fluid that include a dominant meteoric‐derived water and the other from hypogene magma for sulfur and carbon species. Analyses of inclusion gas and liquid compositions are performed. The H2O and CO2 are the two most abundant gaseous components, whereas SO42‐ and Cl, and Na+, Ca2+, and K+ are the major anions and cations, respectively. A linear trend is shown on the gaseous H2O versus CO2 plot. Phase separation is excluded as cause for the trend on the basis of isotope data and fluid inclusion microthermometry. In addition, a weak wallrock alteration does not support fluid‐rock interaction as an efficient mechanism. Hence, the linear H2O–CO2 trend is interpreted in terms of absorption or dilution of CO2–dominant magmatic vapor by meteoric‐derived water. Cooling effects resulting from dilution may have caused precipitation of ore minerals. Major and trace element compositions of regional granites show a high‐K calc–alkaline characteristics and an arc–affinity. Lead isotopic compositions of galena samples from the Dajing deposit exhibit elevated U/Pb and Th/Pb ratios. These characteristics indicate a common source of supra subduction zone mantle wedge for regional granites and metals from the Dajing deposit.  相似文献   

13.
Centimetre‐ to decimetre‐wide quartz+calcite veins in schistes lustrés from Alpine Corsica were formed during exhumation at 30–40 Ma following blueschist facies metamorphism. The δ18O and δ13C values of the veins overlap those of the host schistes lustrés, and the δ18O values of the veins are much higher than those of other rocks on Corsica. These data suggest that the vein‐forming fluids were derived from the schistes lustrés. Fluids were probably generated by reactions that broke down carpholite, lawsonite, chlorite and white mica at 300–350 °C during decompression between c. 1400 and 800 MPa. However, the δ18O values of the veins are locally several per mil higher than expected given those of their host rocks. The magnitude of oxygen isotope disequilibrium between the veins and the host rock is inversely proportional to the δ18O value of the host rock. Additionally, calcite in some schists is in isotopic equilibrium with calcite in adjacent veins, but not with the silicate fraction of the schists. Locally, the schists are calcite bearing only within 1–20 cm of the veins. The vein‐forming fluids may have been preferentially derived from calcite‐bearing, high‐δ18O rocks that are common within the schistes lustrés and that locally contain abundant (>15%) veins. If the fluids were unable to completely isotopically equilibrate with the rocks, due to relatively rapid flow at moderate temperatures or being confined to fractures, they could form veins with higher δ18O values than those of the surrounding rocks. Alteration of the host rocks was probably inhibited by isolation of the fluid in ‘quartz‐armoured’ veins. Overall, the veins represent a metre‐ to hectometre‐scale fluid‐flow system confined to within the schistes lustrés unit, with little input from external sources. This fluid‐flow system is one of several that operated in the western Alps during exhumation following high‐pressure metamorphism.  相似文献   

14.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

15.
The Maoniuping REE deposit, located about 22 km to the southwest of Mianning, Sichuan Province, is the second largest light REE deposit in China, subsequent to the Bayan Obo Fe-Nb-REE deposit in the Inner Mongolia Autonomous Region. Tectonically, it is located in the transitional zone between the Panxi rift and the Longmenshan-Jinpingshan orogenic zone. It is a carbonatite vein-type deposit hosted in alkaline complex rocks. The bastnaesite-barite, bastnaesite-calcite, and bastnaesite-microcline lodes are the main three types of REE ore lodes. Among these, the first lode is distributed most extensively and its REE mineralization is the strongest. Theδ34Sv-CDT values of the barites in the ore of the deposit vary in a narrow range of +5.0 to +5.1‰in the bastnaesite-calcite lode and +3.3 to +5.9‰in the bastnaesite-barite lode, showing the isotopic characteristics of magma-derived sulfur. Theδ13Cv-PDB values and theδ518OV-SMOW values in the bastnaesite-calcite lode range from -3.9 to -6.9‰and from +7.3 to +9.7‰, respectively, which fall into the range of "primary carbonatites", showing that carbon and oxygen in the ores of the Maoniuping deposit were derived mainly from a deep source. Theδ13Cv-PDB values of fluid inclusions vary from -3.0 to -5.6‰, with -3.0 to -4.0‰in the bastnaesite-calcite lode and -3.0 to -5.6‰in the bastnaesite-barite lode, which show characteristics of mantle-derived carbon. TheδDv-SMOW values of fluid inclusions range from -57 to -88‰, with -63 to -86‰in the bastnaesite-calcite lode and -57 to -88‰in the bastnaesite-barite lode, which show characteristics of mantle-derived hydrogen. Theδ18OH2OV-SMOW values vary from +7.4 to +8.6‰in the bastnaesite calcite lode, and +6.7 to +7.8‰in the bastnaesite-barite lode, almost overlapping the range of +5.5 to +9.5‰for magmatic water. The 4He content, R/Ra ratios are (13.95 to 119.58×10-6 (cm3/g)STP and 0.02 to 0.11, respectively, and 40Ar/36Ar is 313±1 to 437±2. Considering the 4He increase caused by high contents of radioactive elements, a mantle-derived fluid probably exists in the inclusions in the fluorite, calcite and bastnaesite samples. The Maoniuping deposit and its associated carbonatite-alkaline complex were formed in 40.3 to 12.2 Ma according to K-Ar and U-Pb data. All these data suggest that large quantities of mantle fluids were involved in the metallogenic process of the Maoniuping REE deposit through a fault system.  相似文献   

16.
The Nage Cu-Pb deposit,a new found ore deposit in the southeast Guizhou province,southwest China,is located on the southwestern margin of the Jiangnan Orogenic Belt.Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations,and are structurally controlled by EW-trending fault.It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb.Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks.The ore minerals include chalcopyrite,galena and pyrite,and gangue minerals are quartz,sericite and chlorite.The H-O isotopic compositions of quartz,S-Cu-Pb isotopic compositions of sulfide minerals,Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit.The δ65CuNBS values of chalcopyrite range from-0.09% to +0.33‰,similar to basic igneous rocks and chalcopyrite from magmatic deposits.δ65CuNBS values of chalcopyrite from the early,middle and final mineralization stages show an increasing trend due to63Cu prior migrated in gas phase when fluids exsolution from magma.δ34SCDT values of sulfide minerals range from 2.7‰ to +2.8‰,similar to mantle-derived sulfur(0±3‰).The positive correlation between δ65CuNBS and δ34SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma.δDH2OSMOW and δ18OH2O-SMOW values of water in fluid inclusions of quartz range from 60.7‰ to 44.4‰ and +7.9‰ to +9.0‰(T=260°C),respectively and fall in the field for magmatic and metamorphic waters,implicating that mixed sources for H2O in hydrothermal fluids.Ores and sulfide minerals have a small range of Pb isotopic compositions(208Pb/204Pb=38.152 to 38.384,207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve,and similar to Neoproterozoic host rocks(208Pb/204Pb=38.201 to 38.6373,207Pb/204Pb=15.648 to 15.673 and 206Pb/204Pb=17.820 to 18.258),but higher than diabase(208Pb/204Pb=37.830 to 38.012,207Pb/204Pb=15.620 to 15.635 and206Pb/204Pb=17.808 to 17.902).These results imply that the Pb metal originated mainly from host rocks.The H-O-S-Cu-Pb isotopes tegather with geology,indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.  相似文献   

17.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

18.
19.
The Liziyuan gold deposit, situated on the south side of the Shangdan suture zone, West Qinling Orogen, occurs in metamorphic volcanic rocks(greenschist facies) of the early Paleozoic Liziyuan Group and in Indosinian Tianzishan monzogranite. Orebodies in the Liziyuan gold field are controlled by the ductile-brittle shear zone, and by thrusting nappe faults related to the Indosinian orogeny. In detail, this paper analyzed the geological characteristics of the Liziyuan gold field, and the Pb isotopes of the Lziyuan host rocks, granitoids(Tianzishan monzogranite and Jiancaowan syenite porphyry), sulfides, and auriferous quartz veins by multiple-collector inductively coupled plasma mass spectrometry(MC-ICPMS). In addition, previous data on the sulfur, hydrogen, and oxygen isotopes were employed to discuss the possible sources of the ore-forming fluids and materials, and to further understand the tectonic setting of the Liziyuan gold deposit. The sulfides and their host rocks(Lziyuan Group), Tianzishan monzogranite and Jiancaowan syenite porphyry, and auriferous quartz veins have similar Pb isotopic compositions.Zartman's plumbotectonic model diagram shows that most of the data for the deposit fall near the orogenic Pb evolutionary curve or within the area between the orogenic and mantle Pb evolutionary curves. In the△β-△γ diagram, which genetically classifies the lead isotopes, most of the data fall within the range of the subduction-zone lead mixed with upper crust and mantle. This indicates that a complex source of the ore lead formed in the orogenic environment. The δ~(34)S values of the sulfides range from 3.90 to 8.50‰(average6.80‰), with a pronounced mode at 5.00‰-8.00‰. These values are consistent with that of orogenic gold deposits worldwide, indicating that the sulfur sourced mainly from reduced metamorphic fluids. The isotopic hydrogen and oxygen compositions support a predominantly metamorphic origin of the oreforming fluids, with possible mixing of minor magmatic fluids, but the late stage was dominated by meteoric water. The characteristics of the Liziyuan gold deposit formed in the Indosinian orogenic environment of the Qinling Orogen are consistent with those of orogenic gold deposits found worldwide.  相似文献   

20.
The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong‘er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently discovered. Ore formation includes three stages: Early (E), Middle (M) and Late (L), which include quartz-pyrite (E),polymetallic sulfides (M) and carbonates (L), respectively. The E-stage fluids are characterized by δD=-90%c,δ^13CCO2=2.0‰ and δ^18O=9‰ at 373℃, and are deeply sourced; the L-stage fluids, with δD=-70‰, δ^13C CO2=-1.3%c and δ^18O=-2‰, are shallow-sourced meteoric water; whereas the M-stage fluids, with δD=-109‰, δ^13C CO2=0.1%c and δ^18O2‰, are a mix of deep-sourced and shallow-sourced fluids. Comparisons of the D-O-C isotopic systematics of the Estage ore-forming fluids with the fluids derived from Mesozoic granites, Archean-Paleoproterozoic metamorphic basement and Paleo-Mesoproterozoic Xiong‘er Group, show that these units cannot generate fluids with the measured isotopic composition (high δ^180 and δ^13C ratios and low δD ratios) characteristic of the ore-forming fluids. This suggests that the E-stage ore-forming fluids originated from metamorphic devolatilization of a carbonate-shale-chert lithological association, locally rich in organic matter, which could correspond to the Meso-Neoproterozoic Guandaokou and Luanchuan Groups, rather than to geologic units in the Xiong‘er terrane, the lower crust and the mantle. This supports the view that the rocks of the Guandaokou and Luanchuan Groups south of the Machaoying fault might be the favorable sources. A tectonic model that combines collisional orogeny, metallogeny and hydrothermal fluid flow is proposed to explain the formation of the Tieluping silver deposit. During the Mesozoic collision between the South and North China paleocontinents, a crustal slab containing a lithological association consisting of carbonate-shale-chert, locally rich in organic matter (carbonaceous shale) was thrust northwards beneath the Xiong‘er terrane along the Machaoying fault.Metamorphic devolatilization of this underthrust slab provided the ore-forming fluids to develop the Au-Ag-(Pb-Zn) ore belt, which includes the Tieluping silver deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号