首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
利用显微红外光谱区域扫描,在辽宁50号岩筒产出的金刚石中发现1粒IaB、IaA混合型金刚石,且IaB、IaAB间存在明显的界线.DiamondView荧光图像观察显示,该粒金刚石呈不规则的同心圈层生长结构,并可分为两个生长阶段,生长结构特征能够与显微红外光谱分析获得的结果相互验证.样品氮、氢含量的规律及变化趋势分析结果表明,样品不同阶段生长环境变化大,且出现明显的生长停顿,也验证了金刚石由A中心逐渐向B中心的转化过程.该金刚石的发现对研究金刚石生长过程中地质环境的变化具有重要意义.  相似文献   

2.
利用显微红外光谱区域扫描,在辽宁50号岩筒产出的金刚石中发现1粒ⅠaB、ⅠaAB混合型金刚石,且ⅠaB、ⅠaAB间存在明显的界线。DiamondView荧光图像观察显示,该粒金刚石呈不规则的同心圈层生长结构,并可分为两个生长阶段,生长结构特征能够与显微红外光谱分析获得的结果相互验证。样品氮、氢含量的规律及变化趋势分析结果表明,样品不同阶段生长环境变化大,且出现明显的生长停顿,也验证了金刚石由A中心逐渐向B中心的转化过程。该金刚石的发现对研究金刚石生长过程中地质环境的变化具有重要意义。  相似文献   

3.
金刚石的微区显微红外光谱分析及其意义   总被引:7,自引:3,他引:7  
金刚石的微区显微红外光谱分析表明:金刚石的形成是一个结晶物化条件变异,原始物质变换的复杂而又漫长的过程;杂质N、H等在其中的分布不均匀;同一晶体的中心部位其氮聚合态的转变时间与边缘相差约602Ma;金刚石中的成键氢以对应-CH3的C-H键形式存在要比对应于>C=CH2的C-H键形式存在更为广泛。利用红外光谱研究晶化固态物质必须强调定向及微区研究的意义。  相似文献   

4.
金刚石中的氢及其在金刚石高温高压合成中的意义   总被引:1,自引:0,他引:1  
氢在金刚石中往往以一定的化学态形式存在,不同类型的金刚石中氢会以不同的电荷状态进行迁移与扩散,也可以与其他杂质元素N、B、P等作用,形成(N,H)、(B,H)、(P,H)对;为高温高压合成金刚石的物质体系中引入氢,有利于提高高温高压合成金刚石的产量、粒度及品级,也将为模拟天然金刚石的形成与探讨地球深部的动力学过程提供科学线索。  相似文献   

5.
天然金刚石形成于地球深部,反映丰富的地幔信息及演变历史[1-2]。金刚石中特征的氮原子缺陷是追溯其地幔存留时间和保存温度的重要依据[3-4],氮缺陷近年来也被认为是实现量子计算的优良载体,成为炙手可热的研究热点[5-6]。本世纪初新发现的储量巨大的津巴布韦砂矿型天然金刚石,引起了国内外学者的极大关注[7-10]。我们对已获得的津巴布韦金刚石样品进行预研究,注意到该产地金刚石具有特殊的立方体-八面体同时发育的镶嵌结构(下文简称mixed-habit),其氮和氢含量丰富,且氮和氢分别沿八面体生长区{111}和立方体生长区{100}具有择优取向特点。这种mixed-habit结构,不同于传统天然金刚石以八面体生长为主的结构[11],而与高温高压(HPHT)合成金刚石的结构较为相似[12],因而具有特殊的地质学背景和研究意义。我们将在下一阶段对这类金刚石在不同生长方向氮和氢缺陷存在形式及分布规律进行深入定量研究。重点通过电子顺磁共振光谱(EPR)对于不同氮缺陷如孤氮、双氮等的浓度比、占位形式和晶格畸变程度、自旋状态等进行表征,弥补传统红外光谱对于氮缺陷表征的不足。利用密度泛函理论(DFT)模拟不同氮缺陷的形成能解释实验观测的氮缺陷择优取向分布规律。根据对氮缺陷的聚集状态推算对应地幔存留时间和保存温度,追溯其形成过程和演变历史。  相似文献   

6.
山东金刚石碳同位素组成的二次离子质谱显微分析   总被引:1,自引:0,他引:1  
张健  陈华  陆太进  丘志力  魏然  柯捷 《岩矿测试》2012,31(4):591-596
华北克拉通山东金刚石晶体生长的多阶段性及碳同位素组成已被人们关注,但很少有人对不同阶段金刚石及其内部的碳同位素组成变化进行分析。本文利用二次离子质谱(SIMS)微区分析技术对山东金刚石晶体内部不同阶段生长的δ13C进行了原位测试分析,得出山东金刚石δ13C的变化范围在-5.6‰~-2.01‰,平均值为-3.63‰,与前人对华北克拉通金刚石碳同位素组成测试值(δ13C在-14.71‰~-0.46‰,主要集中在-9‰~-4‰之间)大致相同,位于全球橄榄岩型金刚石及幔源碳同位素组成主要范围(-8‰~-2‰)内。结合金刚石生长环带阴极发光图像,认为金刚石自核心部位至边缘,在同一期生长环带内,其δ13C值呈变重趋势;在多期复杂生长环带之间,δ13C值因结晶时的地质环境不同而存在差异。δ13C值的这种变化揭示了该地区金刚石复杂的生长环境,为解析华北克拉通地幔碳循环提供了定量数据。  相似文献   

7.
<正>金刚石以其独特的物理、化学性能及其科学意义受到全世界相关科学家的高度关注。杂质元素在极大程度上影响着金刚石的性能,至今,人们已经在金刚石晶体中发现有氮、氢、氧、硼等80多种杂质元素。其中,氮是金刚石中最丰富的杂质元素,氢次之。氮、氢两种杂质元素也是当  相似文献   

8.
辽宁复县金刚石的阴极发光特征及其意义   总被引:6,自引:0,他引:6  
阴极发光图像揭示了辽宁复县金刚石的内部结构具有3种类型;(1)简单的生长环带结构;(2)多期生长的复杂环带结构;(3)稀少的似玛瑙状结构,这些内部结构特征反映金刚石的不均一性及生长具多期、多阶段特点、该特点与金刚石所处的流体-熔体的不同阶段相对应。玛瑙状结构除多生长中心聚集形成复杂种晶形态所致外,局部不均匀熔蚀、混合的生长机制的变化的结晶条件三者综合作用亦是原因之一,阴有发光图像还反映了金刚石晶体  相似文献   

9.
已知金刚石中能产生颜色的点缺陷(即色心)主要有氮、硼、空穴、填隙子以及各种形式的氮与空穴的复合体。随着各种现代微束与谱学分析技术以及量子化学计算的应用,对金刚石晶格中氮、硼以外的杂质—氢与过渡金属离子的赋存状态的研究,我们发现了新的致色点缺陷:成键氢,镍、钴离子,及其与氮的复合体,从而形成了氢致色与过渡金属离子致色的金刚石呈色机制的新观点。  相似文献   

10.
正金刚石结构是由两个面心立方点阵沿立方晶胞的体对角线偏移1/4单位嵌套而成的晶体结构。按N含量和N聚集类型,金刚石一般分为Ⅰa型、Ⅰb型、Ⅱa型和Ⅱb型(含B元素)。研究证实,金刚石形成时杂质N主要以孤N(C中心)形式存在,在一定条件下,孤N逐渐转变为双原子N(A中心),这一转变过程所需时间较短,因而在自然界中Ⅰb型金刚石较少见。Ⅰb型金刚石以孤原子氮的存在形式被作为合成金刚石的证据。目前,华北和扬子地区金刚石矿产调查二级项目组在湖南发现了8粒Ⅰb型金刚石,  相似文献   

11.
金刚石的研究将推动超硬矿物材料学,宝石矿物材料学,半导体材料科学甚至纳米材料科学等的发展,本综述了金刚石中的N、H、O、B及过渡金属等杂质元素,近年来金刚石的合成及优化处理的开发成果,探讨了有关的研究方法,为宝石级金刚石材料的系统化研究提供了较为详尽的资料。  相似文献   

12.
A unique xenolith of eclogite, 23×17×11 cm in size and 8 kg in weight, was found in the Udachnaya kimberlite pipe. One hundred twenty-four diamond crystals recovered from it were analyzed by a number of methods. The diamonds differ in morphology, internal structure, color, size, and composition of defects and impurities. The xenolith contains diamonds of octahedral and cubooctahedral habits. In cathodoluminescence, the octahedral crystals have a brightly glowing core with octahedral zones of growth and a weakly glowing rim. In the cores of these crystals the N impurity is mostly present in the B1 form (30 to 60%). At the same time, N in the rim is chiefly in the A form. The cubooctahedral crystals show a weak luminescence. The content of nitrogen and degree of its aggregation are close to those in the rim of octahedral crystals. The diversity of morphology and impurity composition of diamonds from the xenolith can be explained by their formation in two stages. At the first stage, the diamonds formed which became the cores of octahedra. After a long-time interruption, at the second stage of diamond formation crystals of cubooctahedral habit appeared and the octahedral crystals were overgrown. Wide variations in nitrogen contents in the xenolith crystals allowed their use to estimate the kinetics of aggregated nitrogen. The data obtained show that the aggregation of A centers into B1 centers in the diamonds is described by a kinetic reaction of an order of 1.5.  相似文献   

13.
The zonal distribution of impurities in six diamonds (2 clear. 1 green-skinned, 2 green-bodied and 1 coated) was studied by neutron activation followed by dissolution of the diamond into a number of fractions. High surface concentrations of impurities found here and by other workers were attributed to both laboratory and natural contaminants. No unusual element distributions were found in the outer layer of the green-skinned diamond, the green skin probably being caused by natural radiation damage. The green-bodied diamonds had very different compositions from each other and from the other diamonds and it is suggested that such stones owe their colour to a high general level of impurities. All the diamonds, including the clear core of the coated diamond, contained impurities thought to be submicroscopic inclusions, either silicates, carbonates or immiscible sulphides derived from the parental magma. Variations in the composition of these inclusions in one diamond suggest changes in the host magma composition during growth. Sulphides apparently occurred in very small amounts throughout all the diamonds. Variations in the concentration of impurities are probably related to changes in growth rate or environment during diamond formation, and could explain some of the zonal variations in the physical properties of diamonds.  相似文献   

14.
FTIR microspectroscopic data were used to construct two-dimension maps showing the distribution of structural impurities and mineral microinclusions in cubic and coated octahedral diamond crystals from the Udachnaya kimberlite pipe in Yakutia. Elevated concentrations of hydrogen and total nitrogen are detected in parts corresponding to the early growth of single-episode growth regions of diamond crystals. These concentrations decrease toward the peripheral portions of these regions. The microinclusions contain water and polyphase mineral associations that preserve a high residual pressure. Microinclusions in the coats of octahedral diamond crystals are dominated by silicates, in which the intensity of IR spectral bands increases toward the peripheries, whereas the cubes posses irregularly distributed domains rich in these phases. The carbonate phases of the microinclusions are distributed according to growth zones of the crystals, and their distribution is often not correlated with the concentrations of structural impurities. The facts that microinclusions in the diamond cuboids are dominated by carbonates and that the rims of the octahedra are dominated by silicates suggest that the diamonds crystallized from dominantly carbonate and silicate fluids/ melts, respectively. The chemical composition of the microinclusions point to an eclogitic paragenesis of the crystals. Facts are obtained that provide support for the earlier hypothesis that cubic diamond crystals and coated octahedral crystals grow at metasomatic interaction between deep fluids and eclogitic rocks in the lithospheric mantle.  相似文献   

15.
Notable within-crystal variability of mineralogical and geochemical properties of single natural diamonds are commonly attributed to changing chemistry of parental fluids, sources of carbon and redox conditions of diamond precipitation. A distinct type of compositional heterogeneity (mixed-habit structure) is well-known to occur in diamonds as well as in many other minerals due to purely “structural” reasons that are unequal crystal chemistry of crystallographically different faces and selective absorption and fractionation of impurities between adjacent growth pyramids. Based on the combined cathodoluminescence, Fourier-transformed infrared spectroscopy and photoluminescence spectroscopy, study of nine diamond crystals with different growth histories and external morphology, but all showing mixed-habit patterns at different growth stages, we show that mixed-diamonds may grow in closed system conditions or with a slowly decreasing growth rate from a media with a much lower impurity content than previously thought. Intracrystal nitrogen distribution seems to be a function of growth rate even in the cases of unusual impurity partitioning between growth sectors. Generally poor with IR-active hydrogen at moderate nitrogen aggregation parameters, studied diamonds likely resemble the low hydrogen content from the growth medium that, for cubic diamonds, was typically suggested hydrogen-rich and a crucial factor for growth of cubic and mixed-habit diamonds. We also show that mixed-habit diamond growth may occur not only in peridotitic suite but also in an extended field of geochemical affinities from high-Ni to low-Ni or maybe even Ni-free environments, such as pyroxenitic or eclogitic.  相似文献   

16.
In a diamond from New South Wales (Australia), cubic and octahedral growth sectors, as identified by cathodoluminescence (CL), show slight differences in N-contents of 29 and 42 ppm respectively but no significant differences in either δ13C, δ15N and nitrogen aggregation state with values at +1.96‰, +19.4‰, and 25% Type IaAB aggregation, respectively.Two gem cubes from the Orapa kimberlite (Botswana) were studied by CL revealing a nonfaceted cubic growth. Accordingly, nine other gem cubes were combusted and yielded δ13C-values from -5.33‰ to -6.63‰, δ15N from -1.0‰ to -5.5‰, and nitrogen contents from 914 to 1168 ppm, with nitrogen aggregation state being only Type IaA (zero % B). The gem cubes show striking similarities to fibrous/coated diamonds, not only in both δ13C ranges (less than 3‰ from -5 to -8‰), but also in the high levels of nitrogen (≈ 1000 ppm), suggesting that the two diamond types are related. Additionally, no δ15N variation was detected between the cube and octahedral growth sectors of the Australian diamond, in the cube sectors of the nine gem cubes from Botswana, nor in fibrous/coated diamonds previously studied. These analyses contrast with an earlier study on a synthetic diamond, which reported a strong kinetic fractionation of N-isotopes of about 40‰ between cube and octahedral growth. The present evidence, therefore, suggests that kinetic fractionation of N-isotopes does not operate during natural diamond formation.  相似文献   

17.
山东蒙阴金刚石的形成时代及地质环境   总被引:4,自引:0,他引:4  
对山东蒙阴胜利1号岩管的金刚石样品进行了CL、FTIR、RAMAN等测试。结果表明,除部分样品阴极发光显示平直的生长色带外,多数金刚石显示均一的CL颜色,说明金刚石生长过程连续,未遭受明显的溶(熔)蚀,不同于复县的多数金刚石。依据金刚石中N的聚集状态,估算了蒙阴金刚石主要形成于三个时期:1·8~1·7 ,1·3 ~1·1和0·9 ~0·6 Ga。有意义的是,这三个时期与华北克拉通三次伸展事件时间相吻合。通过金刚石中橄榄石包裹体拉曼漂移,计算出源区压力为4·6 ,5和5·5 GPa ,得出蒙阴金刚石形成的深度分别为:152 ,165和181 km,靠近岩石圈底部。上述成果为蒙阴金刚石的形成提供了时间、空间、压力等重要地质信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号