首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
At Deobhog, migmatitic gneisses and granulites of the Eastern Ghats Belt are juxtaposed against a cratonic ensemble of banded augen gneiss, amphibolite and calcsilicate gneiss, intruded by late hornblende granite and dolerite. In the migmatitic gneiss unit, early isoclinal folds (syn‐D1M and D2M) are reoriented along N–S‐trending and E‐dipping shear planes (S3M), with (S1M–S3M) intersection lineations having steep to moderate plunges. The near‐peak PT condition was syn‐D3M (≥900 °C, 9.5 kbar), as inferred from syn‐D3M Grt+Opx‐bearing leucosomes in mafic granulites, and from thermobarometry on Grt (corona)–Opx/Cpx–Pl–Qtz assemblages. The PT values are consistent with the occurrence of Opx–Spr–Crd assemblages in spatially associated high‐Mg–Al pelites. A subsequent period of cooling followed by isothermal decompression (800–850 °C, c. 7 kbar) is documented by the formation of coronal garnet and its decomposition to Opx+Pl symplectites in mafic granulites. Hydrous fluid infiltration accompanying the retrograde changes is manifested in biotite replacing Opx in some lithologies. The cratonic banded gneiss–granite unit also documents two phases of isoclinal folding (D1B & D2B), with the L2B lineation girdle different from the lineation spread in the migmatitic gneiss unit. Calcsilicate gneiss (Hbl–Pl–Cpx–Scap–Cal) and amphibolite (Hbl–Pl±Grt±Cpx) within banded gneisses record syn‐D2B peak metamorphic conditions (c. 700 °C, 6.5 kbar), followed by cooling (to c. 500 °C) manifested in the stabilization of coronal clinozoisite–epidote. The D3B shear deformation post‐dates granite and dolerite intrusions and is characterized by top‐to‐the‐west movement along N–S‐trending, E‐dipping shear planes. Deformation mechanisms of quartz and feldspar in granites and banded gneisses and amphibole–plagioclase thermometry within shear bands in dolerites document an inverted syn‐D3B thermal gradient with temperature increasing from 350 to 550 °C in the west to ≥700 °C near the contact with the migmatitic gneiss unit. The thermal gradient is reflected in the stabilization of chlorite after hornblende in S3B shears to the west, and post‐D2B neosome segregation along D3B folds and shears to the east. The contrasting lithologies, early structures and peak metamorphic conditions in the two units indicate unconnected pre‐D3PT –deformation histories. The shared D3 deformation in the two units, the syn‐D3 inverted thermal gradient preserved in the footwall cratonic rocks and the complementary cooling and hydration of the hanging wall granulites across the contact are attributed to westward thrusting of ‘hot’ Eastern Ghats granulites on ‘cool’ cratonic crust. It is suggested that the Eastern Ghats migmatitic gneiss unit is not a reworked part of the craton, but a para‐autochthonous/allochthonous unit emplaced on and amalgamated to the craton.  相似文献   

2.
Mid‐crustal Archean pelitic granulites in the Vredefort Dome experienced a static, low‐P granulite facies overprint associated with the formation of the dome by meteorite impact at 2.02 Ga. Heating and exhumation were virtually instantaneous, with the main source of heat being provided by energy released from nonadiabatic decay of the impact shock wave. Maximum temperatures within a radius of a few kilometres of the centre of the structure exceeded 900 °C and locally even exceeded 1350 °C. This led to comprehensive melting of the precursor Archean granulite assemblages (Grt + Bt + Qtz + Pl + Ksp ± Crd ± Opx ± Sil) followed by peritectic crystallization of aluminous alkali feldspar+Crd + Spl ± Crn ± Sil parageneses and the segregation of small, evolved, biotite leucogranite bodies. However, at a distance of c. 6 km from the centre pre‐impact rock features are largely preserved, although partial replacement of garnet by symplectitic coronas of Crd + Opx ± Spl ± Pl and biotite by orthopyroxene indicate that peak temperatures approached 775 ± 50 °C. Thin interstitial moats of K‐feldspar are closely associated with the orthopyroxene coronas; they are interpreted as the remnants of low‐proportion partial melts generated by biotite breakdown. Both the textures and mineral compositional data support reduced equilibration volumes in these rocks, which reflect rapid isobaric cooling following shock heating and exhumation. The high temperatures and strong lateral thermal gradient are consistent with the modelled impact‐induced isotherm pattern for a 200–300 km diameter impact crater.  相似文献   

3.
The Seiland Igneous Province of the North Norwegian Caledonides consists of a suite of deep-seated rift-related magmatic rocks emplaced into paragneisses during late Precambrian to Ordovician time. In the south-eastern part of the province, contact metamorphism of the paragneisses and later reworking of intrusives and associated contact aureoles have resulted in the development of three successive metamorphic stages. The contact metamorphic assemblage (M1) Opx + Grt + Qtz + Pl + Kfs + Hc + Ilm ± Crd is preserved in xenolithic rafts of paragneiss within metagabbro. Geothermobarometric calculations yield 930-960d? C and 5-6.5 kbar for the contact metamorphism. M1 was followed by cooling, accompanied by strong shearing, formation of the gneiss foliation and recrystallization at intermediate-P granulite facies conditions (M2). Stable M2 phases are Cpx + Opx + Pl +Ilm ± Hbl in metagabbro and Grt ± Sil ± Opx + Kfs + Qtz + Pl ± Bt + Ilm in host paragneiss. The M2 conditions are estimated to 700-750d? C and 5-7 kbar. A subsequent pressure increase is recorded in the M3 episode, which is associated with recrystallization in narrow ductile shear zones and secondary growth on M2 minerals. M3 is defined by the assemblages Grt + Cpx ± Opx + Pl + Ru + Qtz in metagabbro, and Grt ± Ky + Qtz + Pl ± Kfs + Bt + Ru in host paragneiss. M3 conditions are estimated to 650-700d? C and 8-10 kbar. The substantial pressure increase related to the M2 → M3 transition is interpreted to be a result of (early?) Caledonian overthrusting. Chemical zoning in cordierite and biotite suggest rapid cooling following the M3 event. The proposed P-T-t evolution implies that the tectonic evolution of the Seiland Igneous Province was long (at least 330 Ma) and complex and involved initial rifting and extension followed by crustal thickening and compression.  相似文献   

4.
Highly anhydrous granulites from Río Santa Rosa in the eastern Sierras Pampeanas of Argentina occur as a thick lens surrounded by melt-depleted migmatites. Grt–Crd granulite composed of Qtz+Pl+Grt+Crd+Ilm±Spl±Ath±Phl is the dominant rock, whereas Opx–Grt granulite appears as discontinuous lenses in the center of the granulite body. Grt–Crd granulite includes blocks of metabasite that are relics of refractory lithologic beds interlayered in the supracrustal sequence. A distinct assemblage composed of Qtz, Pl, Grt, Crd, Opx, Spl, Crn, Sil, Bt, Phl, Ath, and Fe–Ti oxides in different combinations was generated in a reaction zone between Grt–Crd granulites and metabasites at peak metamorphism (850–900 °C and 7.6±0.5 kbar). The PT trajectory of Grt–Crd granulites suggests an early prograde garnet-forming stage followed by nearly isothermal decompression that caused garnet breakdown. Melting and melt draining accompanying garnet growth was active during heating (to 900 °C) at intermediate pressures (∼7.6 kbar). Peak PT estimates for Opx–Grt granulites are similar to those obtained with Grt–Crd granulites, which indicates that both granulites passed through the highest thermal stage. These results constrain the late evolution of Opx–Grt granulite to a garnet-consuming stage. Furthermore, they imply that garnet formation in Opx–Grt granulite happened at an early prograde PT trajectory. Garnet growth in Opx–Grt granulite cannot result from heating at high pressure, which would lead to an apparent contradiction in the prograde PT paths of the two granulites. This discrepancy may be solved by demonstrating that Opx–Grt granulite is the product of synmetamorphic mafic magmatism that was contaminated while cooling. The Río Santa Rosa granulites are inferred to have formed in a thickened crust in which mafic magmatic activity providing a local heat input.  相似文献   

5.
Sapphirine granulites from a new locality in the Palni Hill Ranges, southern India, occur in a small enclave of migmatitic, highly magnesian metapelites (mg=85–72) within massive enderbitic orthogneiss. They show a variety of multiphase reaction textures that partially overprint a coarse-grained high-pressure assemblage of Bt+Opx+Ky+Grt+Pl+Qtz. The sequence of reactions as deduced from the corona and symplectite assemblages, together with petrogenetic grid considerations, records a clockwise P–T evolution with four distinct stages. (1) Equilibration of the initial high-P assemblage in deep overthickened crust (12 kbar/800–900 °C) was followed by a stage of near-isobaric heating, presumably as a consequence of input of extra heat provided by the voluminous enderbitic intrusives. During heating, kyanite was converted to sillimanite, and biotite was involved in a series of vapour-phase-absent melting reactions, which resulted in the ultra-high-temperature assemblage Opx+Crd+Kfs+Spr±Sil, Grt, Qtz, Bt, coexisting with melt (equilibration at c. 950–1000° C/11–10 kbar). (2) Subsequently, as a result of decompression of the order of 4 kbar at ultra-high temperature, a sequence of symplectite assemblages (Opx+Sil+Spr/Spr+Crd→Opx+Spr+Crd→Opx+Crd→Opx+Crd+Spl/Crd+Spl) developed at the expense of garnet, orthopyroxene and sillimanite. This stage of near-isothermal decompression implies rapid ascent of the granulites into mid-crustal levels, possibly due to extensional collapse and erosion of the overthickened crust. (3) Development of late biotite through back-reaction of melt with residual garnet indicates a stage of near-isobaric cooling to c. 875 °C at 7–8 kbar, i.e. relaxation of the rapidly ascended crust to the stable geotherm. (4) A second period of near-isothermal exhumation up to c. 6–5 kbar/850 °C is indicated by the partial breakdown of late biotite through volatile phase-absent melting reactions. Available isotope data suggest that the early part of the evolutionary history (stages 1–3) is presumably coeval with the early Proterozoic metamorphism in the extended granulite terrane of the Nilgiri, Biligirirangan and Shevaroy Hills to the north, while the exhumation of the granulites from mid-crustal levels (stage 4) occurred only during the Pan-African thermotectonic event, which led to the accretion of the Kerala Khondalite Belt to the south.  相似文献   

6.
Mafic garnet-bearing granulites from Sostrene Island, 150 km southwest of Davis Station on the coast of Prydz Bay, East Antarctica, exhibit two-stage symplectic coronas on garnet, formed after peak metamorphic conditions (M1). An outer corona of Opx (Mg66) + Pl (An94–97) + minor Hbl mantles a finer-grained inner corona of Opx (Mg67) + Pl (An95–96) + Spl (Mg36). Both symplectites contain minor ilmenite–magnetite intergrowths. The finer-grained symplectite also occurs along a fracture cleavage in the garnet. The outer corona originated during a second metamorphic event (M2) via the reaction Grt + Cpx (Hbl) + SiO2= Opx + Pl (1), whereas the inner corona formed later in response to decompression and minor deformation, resulting in the fracture cleavage in the garnet, according to the reaction Grt = Opx + Pl + Spl (2). The grossular content of the garent (XGrs= 0.168) is almost exactly that which is required for the stoichiometric breakdown by reaction (2) (calculated XGrs= 0.167). The mafic rocks are silica undersaturated, and the SiO2 for reaction (1) was most probably derived externally from the surrounding felsic gneisses. Preferred P–T estimates for M1 based on garnet core (Prp40Alm42Grs17Sps1)–matrix Opx–Cpx–Hbl pairs are c. 10 kbar at 980°C. The fine-grained symplectite formed post-peak M2 at c. 7 kbar and 850°C. The enclosing felsic gneisses yield pressure estimates of between 5 and 7 kbar, which compare with conditions of c. 6 kbar and 775°C in the nearby Bolingen Islands. These lower P–T estimates are considered to be representative of the widespread 1100-Ma metamorphic event recognized in outcrops along the Prydz Bay coast. The high-P, high-T estimates derived from the garnet relics provide evidence for an earlier, possibly Archaean, high-grade metamorphic event.  相似文献   

7.
In mafic granulites, garnet can form by reactions such as Opx + Pl = Cpx + Grt + Qtz; Opx + Pl = Grt + Qtz. As a result of isothermal decompression (ITD), garnet can then break down to a characteristic orthopyroxene-plagioclase symplectite. Mafic, iron-rich garnet-pyroxene granulite from the Guaxupé Massif has symplectite that formed by near-isothermal decompression, as a consequence of uplift of the granulite facies terrane. This symplectite was found to consist of vermicular clinopyroxene-orthopyroxene-plagioclase, with clinopyroxene clearly growing from the garnet that is breaking down, modal amounts of clinopyroxene being less than orthopyroxene. Electron probe analyses show clear differences between core (Cpx1), rim, and symplectite clinopyroxene (Cpx2). Considering also the presence of magnetite in the symplectite texture, garnet breakdown is thought to be better represented by a reaction such as Cpx1 + Grt + O2 = Cpx2 + Opx + Pl +Mt + Qtz.  相似文献   

8.
胶北莱西古元古代的高压基性麻粒岩和钙硅酸盐岩的基本矿物组合分别为以铁铝榴石为主的石榴石-普通辉石-铁紫苏辉石和钙铝榴石-黝帘石-葡萄石-钠长石.矿物岩石学研究表明钙硅酸盐岩是由含石榴石高压基性麻粒岩经退变质和钙质交代作用形成.南山口高压基性麻粒岩记录了麻粒岩相变质作用前、麻粒岩相变质作用、退变质和钙硅酸盐岩化共同作用以及完全钙硅酸盐岩化的四个阶段的地质作用,其矿物组合分别为Cpx+ Pl+ Qtz(M1),Grt+ Cpx+ Rt+ Qtz(M2),Cpx+Pl+ Opx+ Ilm+ Mgt+ Ep(M3)和Grs+ Zo+ Prh+ Ab+ Cal(M4).微量元素研究表明,高压基性麻粒岩中大离子亲石元素Ba、Rb、K、Rb、Th富集,而高场强元素Nb、Zr、Ti、Y亏损,具有轻稀土富集的右倾型稀土配分曲线.稀土元素和微量元素配分图解显示了岛孤拉斑玄武岩的特征.主元素、微量元素的构造判别图解进一步分析表明高压基性麻粒岩及其钙硅酸盐岩的原岩形成于大陆边缘的岛弧环境.综合高压基性麻粒岩岩石学、元素地球化学特征认为,莱西高压基性麻粒岩的原岩是拉斑玄武岩质岩石,可能是形成于孤后扩张背景下基性的侵入岩或喷出岩.岩石形成以后,在胶-辽-吉带碰撞闭合过程中,经历了麻粒岩相变质作用,又在后来的抬升过程中经历退变质和钙硅酸盐岩化作用.  相似文献   

9.
Abstract Dehydration-melting reactions, in which water from a hydrous phase enters the melt, leaving an anhydrous solid assemblage, are the dominant mechanism of partial melting of high-grade rocks in the absence of externally derived vapour. Equilibria involving melt and solid phases are effective buffers of aH2,o. The element-partitioning observed in natural rocks suggests that dehydration melting occurs over a temperature interval during which, for most cases, aH2o is driven to lower values. The mass balance of dehydration melting in typical biotite gneiss and metapelite shows that the proportion of melt in the product assemblage at T± 850°C is relatively small (10–20%), and probably insufficient to mobilize a partially melted rock body. Granulite facies metapelite, biotite gneiss and metabasic gneiss in Namaqualand contain coarse-grained, discordant, unfoliated, anhydrous segregations, surrounded by a finer grained, foliated matrix that commonly includes hydrous minerals. The segregations have modes consistent with the hypothesis that they are the solid and liquid products of the dehydration-melting reactions: Bt + Sil + Qtz + PI = Grt ° Crd + Kfs + L (metapelite), Bt + Qtz + Pl = Opx + Kfs + L (biotite gneiss), and Hbl + Qtz = Opx + Cpx + Pl + L (metabasic gneiss). The size, shape, distribution and modes of segregations suggest only limited migration and extraction of melt. Growth of anhydrous poikiloblasts in matrix regions, development of anhydrous haloes around segregations and formation of dehydrated margins on metabasic layers enclosed in migmatitic metapelites all imply local gradients in water activity. Also, they suggest that individual segregations and bodies of partially melted rock acted as sinks for soluble volatiles. The preservation of anhydrous assemblages and the restricted distribution of late hydrous minerals suggest that retrograde reaction between hydrous melt and solids did not occur and that H2O in the melt was released as vapour on crystallization. This model, combined with the natural observations, suggests that it is possible to form granulite facies assemblages without participation of external fluid and without major extraction of silicate melt.  相似文献   

10.
Quartz Al–Mg granulites exposed at In Hihaou, In Ouzzal (NW Hoggar), preserve an unusual high-grade mineral association stable at temperatures up to 1050°C, involving the parageneses orthopyroxene–sillimanite–garnet–quartz, sapphirine–quartz and spinel–quartz. The phase relationships within the FMAS system show that a continuum exists between the earlier prograde reaction textures and those of the later decompressive event. The following mineral reactions involving sillimanite are deduced: (1) Grt+Qtz→Opx+Sil, (2) Opx+Sil→Grt+Spr+Qtz, (3) Grt+Sil+Qtz→Crd, (4) Grt+Sil→Crd+Spr, (5) Grt+Sil+Spr→Crd+Spl, (6) Grt+Sil→Crd+Spl, (7) Grt+Crd+Sil→Spl+Qtz and (8) Grt+Sil→Spl+Qtz. Minerals in quartz Al–Mg granulites display compositional variations consistent with the observed reactions. The Mg/(Mg+Fe2+) range of the main minerals is as follows: cordierite (0.81–0.97), sapphirine (0.77–0.88), orthopyroxene (0.65–0.81), garnet (0.33–0.64) and spinel (0.23–0.56). The reaction textures and the evolution of the mineral assemblages in the quartz Al–Mg granulites indicate a clockwise P–T trajectory characterized by peak conditions of at least 10 kbar and 1050°C, followed by decompression from 10 to 6 kbar at a temperature of at least 900°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号