首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
The paper presents original authors’ data on aluminous schists in the Tsogt tectonic plate in the Southern Altai Metamorphic Belt. The nappe includes a medium-temperature/medium-pressure zonal metamorphic complex, whose metamorphic grade varies from the greenschist to epidote-amphibolite facies. The garnet and garnet–staurolite schists contain three garnet generations of different composition and morphology. The P–T metamorphic parameters estimated by mineralogical geothermometers and geobarometers and by numerical modeling with the PERPLEX 668 software provide evidence of two successive metamorphic episodes: high-gradient (of the andalusite–sillimanite type, geothermal gradient approximately 40–50°/km) and low-gradient (kyanite–sillimanite type, geothermal gradient approximately 27°/km). The P-T parameters of the older episode are T = 545–575°C and P = 3.1–3.7 kbar. Metamorphism during the younger episode was zonal, and its peak parameters were T = 560–565°C, P = 6.4–7.2 kbar for the garnet zone and T = 585–615°C, P = 7.1–7.8 kbar for the staurolite zone. The metamorphism evolved according to a clockwise P–T path: the pressure increased during the first episode at a practically constant temperature, and then during the second episode, the temperature increased at a nearly constant pressure. Such trends are typical of metamorphism related to collisional tectonic settings and may be explained by crustal thickening due to overthrusting. The regional crustal thickening reached at least 15–18 km.  相似文献   

3.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   

4.
AIA/SDO data in the 193 Å channel preceding a coronal mass ejection observed at the solar limb on June 13, 2010 are used to simultaneously identify and examine two different shock fronts. The angular size of each front relative to the CME center was about 20°, and their propagation directions differed by ≈25° (≈4° in position angle). The faster front, called the blast shock, advanced the other front, called the piston shock, by R ≈ (0.02-0.03)R⊙ (R⊙ is the solar radius) and had a maximum initial speed of VB ≈ 850 km/s (with VP ≈ 700 km/s for the piston shock). The appearance and motion of these shocks were accompanied by a Type II radio burst observed at the fundamental frequency F and second harmonic H. Each frequency was split into two close frequencies f1 and f2 separated by Δf = f2 - f1 ? F, H. It is concluded that the observed frequency splitting Δf of the F and H components of the Type II burst could result from the simultaneous propagation of piston and blast shocks moving with different speeds in somewhat different directions displaying different coronal-plasma densities.  相似文献   

5.
Pyroxenes of general stoichiometry Mg(Ge x Si1?x )O3 were encountered in attempts to synthesise Ge-substituted talcs at 0.2 GPa, 650–700 °C. Orthopyroxenes (Pbca) of compositions x = 0.21, 0.30, and 0.34 were identified, and also a P21/c clinopyroxene of composition x = 0.63, and C2/c clinopyroxenes of compositions x = 0.91 and 1. End-member clinoenstatite MgSiO3-P21/c synthesised at 16 GPa, 1300 °C and transformed from C2/c was also included in the study. Crystal structure refinements using single-crystal XRD data showed that unit-cell parameters vary linearly with Si–Ge for the Pbca and P21/c pyroxenes, both of which have two symmetrically non-equivalent tetrahedral chains. Refinement of Si–Ge occupancies at tetrahedral sites showed that the two chains of all primitive pyroxenes have very different compositions, with XGe(TB) ? XGe(TA). This difference arises from the greater flexibility of the B-chain to rotate in response to tetrahedral expansion due to increasing Ge content. The TA-M2 shared polyhedral edge imposes significant constraints on the flexibility of the A-chain, which can accommodate much less Ge than the B-chain. Linear trends of cell parameters, site occupancies, and structural parameters for the primitive pyroxenes, when extrapolated to published data for MgGeO3Pbca, extend across the entire Si–Ge join.  相似文献   

6.
Longitudinal wave velocities (V P ) in rocks were measured experimentally in dunite (olivinite) and serpentinite at a water pressure of 300 MPa and temperatures of 20–850°C. It is shown that the strong decrease in V P in dunite (by ~3 km/s) observed within the range of 400–800°C results from penetration of water into rock along microfractures and from the formation of hydrous minerals (mostly serpentine) along the boundaries of mineral grains as a result of water–olivine interaction. It is suggested that serpentinization or the formation of similar hydrous minerals in olivine-rich mantle rocks under the influence of deep fluids may result in the formation of zones of low-velocity elastic waves in the upper mantle at great depths (~100 km).  相似文献   

7.
Garnet in metapelites from the Wölz Complex of the Austroalpine crystalline basement east of the Tauern Window characteristically consists of two growth phases, which preserve a comprehensive record of the geothermal history during polymetamorphism. From numerical modelling of garnet formation, detailed information on the pressure–temperature–time (P–T–t) evolution during prograde metamorphism is obtained. In that respect, the combined influences of chemical fractionation associated with garnet growth, modification of the original growth zoning through intragranular diffusion and the nucleation history on the chemical zoning of garnet as P and T change during growth are considered. The concentric chemical zoning observed in garnet and the homogenous rock matrix, which is devoid of chemical segregation, render the simulation of garnet growth through successive equilibrium states reliable. Whereas the first growth phase of garnet was formed at isobaric conditions of ~3.8 kbar at low heating/cooling rates, the second growth phase grew along a Barrovian P–T path marked with a thermal peak of ~625°C at ~10 kbar and a maximum in P of ~10.4 kbar at ~610°C. For the heating rate during the growth of the second phase of garnet, average rates faster than 50°C Ma?1 are obtained. From geochronological investigations the first growth phase of garnet from the Wölz Complex pertains to the Permian metamorphic event. The second growth phase grew in the course of Eo-Alpine metamorphism during the Cretaceous.  相似文献   

8.
Petrologic examination of coronites from the Bergen Arcs Complex in Norway revealed that garnet crowns formed due to clinopyroxene interaction with matrix plagioclase and spinel during the Grenville granulite-facies metamorphism (at T ~ 960°C and P = 1.3 GPa). Along with this, the rocks show evidence of reactions related to superimposed Caledonian eclogite-facies metamorphism. These are microscopic coronas consisting of omphacite, kyanite, corundum, amphibole, and biotite. The rims formed under aqueous conditions with potassium introduction ata T ~ 710–730°C and P ~ 1.3–1.5 GPa. Local occurrence of eclogite metamorphism found at a great distance (>100 m) from shear zones of the eclogite metamorphic stage indicates that the whole eclogite succession and not only its local sites (shear zones) were heated to the eclogite-metamorphism temperature.  相似文献   

9.
The low-angle dip schistosity zones of the Belomorian mobile belt of northern Karelia are zones of plastic flow of thrust origin. They were formed from 1.85 to 1.90 Ga: 1879 ± 21 Ma according to 40Ar/39Ar for amphibole from amphibolites and 1857 ± 13 Ma according to the Sm–Nd isochron in amphibolites. The PT parameters of rock metamorphism in low-angle dip schistosity zones correspond to the boundary of amphibolite and granulite facies of metamorphism: T = 640–765°C, rarely rising to 826°C; P = 8.0–11.7 kbar. The hypothesis of the two-stage Paleoproterozoic metamorphism of rocks of the Belomorian mobile belt was introduced.  相似文献   

10.
A pyroxene with composition LiNiSi2O6 was synthesized at T = 1,473 K and P = 2.0 GPa; the cell parameters at T = 298 K are a = 9.4169(6) Å, b = 8.4465(7) Å, c = 5.2464(3) Å, β = 110.534(6)°, V = 390.78(3) Å3. TEM examination of the LiNiSi2O6 pyroxene showed the presence of h + k odd reflections indicative of a primitive lattice, and of antiphase domains obtained by dark field imaging of the h + k odd reflections. A HT in situ investigation was performed by examining TEM selected area diffraction patterns collected at high temperature and synchrotron radiation powder diffraction. In HTTEM the LiNiSi2O6 was examined together with LiCrSi2O6 pyroxene. In LiCrSi2O6 the h + k odd critical reflections disappear at about 340 K; they are sharp up to the transition temperature and do not change their shape until they disappear. In LiNiSi2O6 the h + k odd reflections are present up to sample deterioration at 650 K. A high temperature synchrotron radiation powder diffraction investigation was performed on LiNiSi2O6 between 298 and 773 K. The analysis of critical reflections and of changes in cell parameters shows that the space group is P-centred up to the highest temperature. The comparative analysis of the thermal and spontaneous strain contributions in P21/c and C2/c pyroxenes indicates that the high temperature strain in P-LiNiSi2O6 is very similar to that due to thermal strain only in C2/c spodumene and that a spontaneous strain contribution related to pre-transition features is not apparent in LiNiSi2O6. A different high-temperature behaviour in LiNiSi2O6 with respect to other pyroxenes is suggested, possibly in relation with the presence of Jahn–Teller distortion of the M1 polyhedron centred by low-spin Ni3+.  相似文献   

11.
Optically homogeneous augite xenocrysts, closely associated with spinel–peridotite nodules, occur in alkali basalts from Hannuoba (Hebei province, China). They were studied by electron and X-ray diffraction to define the occurrence and significance of pigeonite exsolution microtextures. Sub-calcic augite (Wo34) exsolved into En62–62Fs25–21Wo13–17 pigeonite and En46–45Fs14–14Wo40–42 augite, as revealed by TEM through diffuse coarser (001) lamellae (100–300 Å) and only incipient (100) thinner ones (<70 Å). C2/c augite and P21/c pigeonite lattices, measured by CCD-XRD, relate through a(Aug)?a(Pgt), b(Aug)?b(Pgt), c(Aug)≠c(Pgt) [5.278(1) vs 5.189(1)Å] and β(Aug)≠β(Pgt) [106.55(1) vs 108.55(2)°]. Cell and site volumes strongly support the hypothesis that the augite xenocrysts crystallised at mantle depth from alkaline melts. After the augite xenocrysts entered the magma, (001) lamellae first formed by spinodal decomposition at a Tmin of about 1,100 °C, and coarsened during very rapid transport to the surface; in a later phase, possibly on cooling, incipient (100) lamellae then formed.  相似文献   

12.
An analysis of monitoring observations for the pulsar PSR B0655+64, which is located in a binary system, at 111 MHz during 2002–2015 are presented. The Keplerian parameters of the pulsar have been refived: the longitude of periastron ω = 276.°5785 ± 0.°0005 and the orbital semi-major axis is ap sin i = 4.124976± 0.000003 s. The parameters of the perturbed motion have been determined: the motion of periastron ω = 0.°315 ± 0.°005/ year, and the derivative of the period of the binary system ? = (-1.66 ± 0.11) × 10-14 s/s = (-0.524 ± 0.038) µs/year. The estimated time scale for the decay of the PSR 0655+64 system is (1.7 ± 0.1) × 1011 yrs.  相似文献   

13.
Garnet–spinel lherzolites from Antarctica and peridotites from Mongolia were fluid saturated, which is indicated by the presence of fluid inclusions in their minerals. Flows of reactive fluids caused extensive metasomatic alteration of mantle materials. The cryometric and Raman spectroscopic investigation of the Antarctic xenoliths showed that their fluid was a complex mixture of CO2, N2, H2S, and H2O with a density of up to 1.23 g/cm3. The entrapment of fluids was accompanied by the formation of clusters of numerous sulfide inclusions. The compositions of these inclusions correspond to a Ni-rich sulfide melt and a monosulfide solid solution. The partition coefficient of Ni between them (DNi mss/melt) ranges from 0.99 to 3.23, which suggests that the two-phase sulfide assemblages in the partly decrepitated inclusions equilibrated at 920–1060°C. In order to refine the initial P-T conditions of the development of the Antarctic peridotites, the results of our investigation were evaluated in the light of experimental data on (1) the stability field of the two-phase assemblage mss + sulfide melt, (2) the solidus of peridotite + 0.9CO2 + 0.1 H2O, and (3) isochores of 0.8CO2 + 0.2N2 fluid. The obtained parameters are close to 1270–1280°C and 2.2 GPa and lie near the SpGar boundary. The temperature of the existence of sulfide melt at a pressure of 2.2 GPa must be near 1300°C and corresponds to the boundary between the occurrence of carbon as CO2 fluid and carbonate (carbonate melt).  相似文献   

14.
We have modeled the magnetic fields of the slowly rotating stars HD 116458 and HD 126515 using the “magnetic charge” technique. HD 116458 has a small angle between its rotation axis and dipole axis (β = 12°), whereas this angle is large for HD 126515 (β = 86°). Both stars can be described with a decentered-dipole model, with the respective displacements being r = 0.07 and r = 0.24 in units of the stellar radius. The decentered-dipole model is able to satisfactorily explain the phase relations for the effective field, Be(P), and the mean surface field, Bs(P), for both stars, along with the fact that the Be(P) phase relation for HD 126515 is anharmonic. We discuss the role of systematic measurement errors possibly resulting from instrumental or methodical effects in one or both of the phase relations. The displacement of the dipole probably reflects real asymmetry of the stellar field structure, and is not due to measurement errors. Using both phase relations, Be(P) and Bs(P), in the modeling considerably reduces the influence of the nonuniform distribution of chemical elements on the stellar surface.  相似文献   

15.
The Belomorian Mobile Belt (BMB) in northern Karelia mostly consists of gently sloping shear zones, whose gneisses and migmatized amphibolites and blastomylonites are typically thinly banded, with their banding consistently dipping north- and northeastward. These gently sloping shear zones were not affected by folding after they were produced and are not cut by Paleoproterozoic metabasite dikes. Intrusive metabasites in the gently sloping shear zones make up relatively small (usually <5 m) equant or elongate bodies and occur as fragments of larger bodies. These fragments are often concentrated in stripes. Metabasites in the gently sloping shear zone are sometimes also found as lenses and tabular bodies of relatively small thickness, which are conformable with the foliation of the host rocks. The gently sloping shear zones cut across older domains of more complicated structure, which suggests that these zones are gently sloping ductile shear zones. Along these zones, the nappes were thrust south- and southwestward, and this process was the last in the origin of major structural features of BMB when the Paleoproterozoic Lapland–Kola orogen was formed. Practically identical age values were obtained for the gently sloping shear zone in the two widely separated Engonozero and Chupa segments of BMB: 1879 ± 21 Ma (40Ar/39Ar amphibole age of amphibolite whose protolith was mafic rock) and 1857 ± 13 Ma (Sm–Nd mineral isochron age of garnet amphibolites after gabbronorite). The PT metamorphic parameters in these gently sloping shear zones are remarkably different from the metamorphic parameters outside these zones: the pressure is 3–4 kbar lower and the temperature is 60–100°C lower. Thrusting-related decompression triggered the transition from the older high-pressure episode of Paleoproterozoic metamorphism to a younger syn-thrusting higher temperature metamorphic episode. The peak metamorphic parameters corresponding to the boundary between the amphibolite and granulite facies were reached only in the central portions of the shear zones: T= 680–760°C, P = 8.0–11.9 kbar. In areas of the most intense migmatization, temperature estimates in the central portions of the shear are as high as 810–830°C. The marginal portions of the shear zones were formed at lower temperatures of 610–630°C. The temperature heterogeneous and rock heating in the gently sloping shear zones may have resulted from flows of high-temperature metamorphic fluid that were focused to the central portions of the zones.  相似文献   

16.
The first high-accuracy CCD UBV RI(RI)C light curves for the recently discovered eclipsing binary V798 Cep (P = 16 d .08, V = 11 m . 8) are presented; this star is included in our program of eclipsing systems with considerable eccentricities. A photometric solution for the light curves and physical characteristics of the component stars are derived. The orbital eccentricity is quite high, e = 0.437. The longitude of periastron is close to 180°, making studies of the apsidal motion difficult. V798 Cep may be a hierarchical system.  相似文献   

17.
Thermochemical properties have been either measured or estimated for synthetic monazite, LaPO4, and dissakisite, CaLaMgAl2(SiO4)3OH, the Mg-equivalent of allanite. A dissakisite formation enthalpy of ?6,976.5 ± 10.0 kJ mol?1 was derived from high-temperature drop-solution measurements in lead borate at 975 K. A third-law entropy value of 104.9 ± 1.6 J mol?1 K?1 was retrieved from low-temperature heat capacity (C p) measured on synthetic LaPO4 with an adiabatic calorimeter in the 30–300 K range. The C p values of lanthanum phases were measured in the 143–723 K range by differential scanning calorimetry. In this study, La(OH)3 appeared as suitable for drop solution in lead borate and represents an attractive alternative to La2O3. Pseudo-sections were calculated with the THERIAK-DOMINO software using the thermochemical data retrieved here for a simplified metapelitic composition (La = ∑REE + Y) and considering monazite and Fe-free epidotes along the dissakisite-clinozoïsite join, as the only REE-bearing minerals. Calculation shows a stability window for dissakisite-clinozoïsite epidotes (T between 250 and 550°C and P between 1 and 16 kbar), included in a wide monazite field. The PT extension of this stability window depends on the bulk-rock Ca-content. Assuming that synthetic LaPO4 and dissakisite-(La) are good analogues of natural monazite and allanite, these results are consistent with the REE-mineralogy sequence observed in metapelites, where (1) monazite is found to be stable below 250°C, (2) around 250–450°C, depending on the pressure, allanite forms at the expense of monazite and (3) towards amphibolite conditions, monazite reappears at the expense of allanite.  相似文献   

18.
The results of thermobarometry yielded the PT parameters of formation and evolution of sapphirine- bearing granulites in the Anabar shield with peak values of UHT metamorphism in the range of T = 920–1000°C at P = 9–11 kbar. Isotope–geochronological data indicate a polymetamorphic evolution of these rocks. Detrital zircon cores in the center of crystals yielded ages of 3.36, 2.75, 2.6, and 2.5 Ga. Later, superimposed metamorphic transformations of the detrital zircon formed rims dated to 2.4, 2.3, 2.2, and 1.83 Ga. A potential provenance source of the detrital zircons could be hypersthene plagiogneisses and metabasics of the Daldyn Group with a premetamorphic age no less than 3.32 Ga and products of their metamorphism of about 2.7 Ga old.  相似文献   

19.
Nickeltalmessite, Ca2Ni(AsO4)2 · 2H2O, a new mineral species of the fairfieldite group, has been found in association with annabergite, nickelaustinite, pecoraite, calcite, and a mineral of the chromite-manganochromite series from the dump of the Aït Ahmane Mine, Bou Azzer ore district, Morocco. The new mineral occurs as spheroidal aggregates consisting of split crystals up to 10 × 10 × 20 μm in size. Nickeltalmessite is apple green, with white streak and vitreous luster. The density measured by the volumetric method is 3.72(3) g/cm3; calculated density is 3.74 g/cm3. The new mineral is colorless under a microscope, biaxial, positive: α = 1.715(3), β = 1.720(5), γ = 1.753(3), 2V meas = 80(10)°, 2V calc = 60.4. Dispersion is not observed. The infrared spectrum is given. As a result of heating of the mineral in vacuum from 24° up to 500°C, weight loss was 8.03 wt %. The chemical composition (electron microprobe, wt %) is as follows: 25.92 CaO, 1.23 MgO, 1.08 CoO, 13.01 NiO, 52.09 As2O5; 7.8 H2O (determined by the Penfield method); the total is 101.13. The empirical formula calculated on the basis of two AsO4 groups is Ca2.04(Ni0.77Mg0.13Co0.06)Σ0.96 (AsO4)2.00 · 1.91H2O. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %) (hkl)] are: 5.05 (27) (001) (100), 3.57 (43) (011), 3.358 (58) (110), 3.202 (100) (020), 3.099 (64) (0\(\bar 2\)1), 2.813 (60), (\(\bar 1\)21), 2.772 (68) (2\(\bar 1\)0), 1.714 (39) (\(\bar 3\)31). The unit-cell dimensions of the triclinic lattice (space group P1 or P) determined from the X-ray powder data are: a = 5.858(7), b = 7.082(12), c = 5.567(6) Å, α = 97.20(4), β = 109.11(5), γ = 109.78(5)°, V = 198.04 Å3, Z = 1. The mineral name emphasizes its chemical composition as a Ni-dominant analogue of talmessite. The type material of nickeltalmessite is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, registration number 3750/1.  相似文献   

20.
Avdoninite, a new mineral species, has been found together with euchlorite, paratacamite, atacamite, belloite, and langbeinite hosted in exhalation sediments of the Yadovitaya fumarole in the Second Cinder Cone at the Northern Breach of the Great Fissure Tolbachik Eruption, Tolbachik volcano, Kamchatka Peninsula, Russia. Avdoninite occurs as imperfect, short prismatic and thick tabular crystals up to 0.2 mm long, with (001) and (100) forms, crystal aggregates, and pseudomorphs (together with atacamite) after melanothallite observed. The new mineral is brittle, with the Mohs hardness 3 (for aggregates). Density is 3.03 g/cm3 (meas.) and 3.066 g/cm3 (calc.). Avdoninite is biaxial and optically neutral, with α = 1.669, β = 1.688, γ = 1.707, 2V = ?90°. Dispersion is not observed. Optical orientation: Y = c, X = b? Pleochroism is absent. The infrared spectrum suggests the presence of water molecules in avdoninite. Electron microprobe chemical analysis has given (wt %) K2O 11.94 (±0.4), CuO 51.43 (±0.7), Cl 37.07 (±0.6), H2O (determined by the Penfield method) 6.9, ?O=Cl2 ?8.37, total 98.97. The empirical formula is K1.96Cu5.00Cl8.09(OH)3.87. · 1.03H2O. Avdoninite is monoclinic, space group P2/m, P2, or Pm; a = 24.34(2) Å, b = 5.878(4) Å, c = 11.626(5) Å, β = 93.3(1)°, V = 1660.6(20) Å3, Z = 4. The compatibility index is good: 1 ? K p/K c = 0.056 for D calc and 0.044 for D meas. The strongest lines in the X-ray powder diffraction pattern (d, Å (I, %) (hkl)) are 11.63(100)(001), 5.88(20)(010), 5.80(27)(002), 5.73(17)(\(\overline 1 \)02), 2.518(19)(21\(\overline 4 \)), 2.321(17)(005). Avdoninite is identical to a technogenic analogue previously described from the Blyava volcanic-hosted massive sulfide deposit, Orenburg oblast, Russia. The new mineral is named after Vladimir Nikolaevich Avdonin (born 1925), a senior researcher of the Ural Geological Museum of the Ural State Mining University. The type material of avdoninite from Kamchatka is deposited in the Mineralogical Museum of the Department of Mineralogy, St. Petersburg State University, St. Petersburg, Russia. The registration number is 19175.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号