首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 594 毫秒
1.
北极Svalbard地区冰川物质平衡研究进展   总被引:6,自引:1,他引:5  
回顾了Svalbard地区冰川物质平衡观测研究的历史,总结了该区域自1950年代以来冰川物质平衡的主要特征.结果表明:1)冰川净平衡、冬季积累和夏季消融没有明显长期变化趋势,净平衡一般为负值,导致冰体不断地缩减;2)冰川冬季积累年际波动较小,基本保持稳定状态;夏季消融年际波动较大,但没有融化增加的迹象;3)面积/海拔高度分布的不同导致了各冰川物质平衡的差异,面积较小(<10 km2)、海拔较低(<500 m)的冰川持续退缩;而具有更高海拔高度、更大面积的冰川则处于平衡或略微增长状态;4)净平衡与冰川平衡线高度(ELA)具有良好的负相关性,平均物质平衡梯度无明显变化,物质平衡对平衡线高度变化(气候变化)的敏感性保持稳定;5)Svalbard地区冰川物质平衡与该区夏季各月正积温和冬季降水具有密切的相关性.最后提出了加强Svalbard地区冰川物质平衡内补给过程研究以及与我国天山冰川物质平衡的对比研究,以求更加准确地认识Svalbard地区冰川物质平衡特征.  相似文献   

2.
利用SRTM DEM和ASTER立体像对数据获取的DEM分析了2000—2020年兴都库什东部的冰川物质平衡,并结合CRU TS 4.04气象数据探讨了气温、降水、地形和冰湖对南、北冰川区物质平衡空间差异的影响。结果表明:2000—2020年兴都库什东部冰川区物质平衡为(-0.02±0.04) m w.e.·a-1,冰川整体呈现微弱的负物质平衡状态。从坡向来看,南坡以正物质平衡冰川居多,北坡以负物质平衡冰川居多。从南、北两个子区域来看,北部冰川区物质平衡为(0.07±0.04) m w.e.·a-1,南部冰川区物质平衡为(-0.32±0.04) m w.e.·a-1。北部冰川面积规模大,所处海拔区间高,南部则相反。北部冰川区处于较高的海拔区间且冬季气温较低,导致夏季升温所产生的冰川消融的影响被削弱,冰川物质平衡的分布与降水分布在空间上具有一致性。南部冰川区出现的强烈物质亏损主要是由于夏季气温的急剧升高和冰川处于较低的海拔区间。南、北区域冰前湖和冰面湖面积不断扩大的空间差异性,也在一定程度上加剧了该地区冰川物质平衡的空间差异。  相似文献   

3.
在气候变暖背景下,全球大多数冰川加速退缩,冰川物质亏损严重,呈负平衡增长趋势。利用世界冰川监测服务处(WGMS)最新刊布的物质平衡资料,对全球重点监测冰川的物质平衡现状及结果进行扼要的总结和比较,分析了1980-2011年全球不同地区冰川物质平衡的区域特征、变化过程及总体变化趋势,评估了冰川物质平衡对海平面变化的贡献。结果表明:1980-2011年,全球冰川物质亏损严重,加速退缩,平均减薄了14 m,其中阿尔卑斯山脉及太平洋海岸山脉的退缩尤为明显,平均减薄了30 m左右;各地区冰川的平均物质平衡变化趋势与全球平均趋势基本保持一致,具有典型的纬度地带性分布特征;物质平衡变化过程分为正平衡波动型、负平衡波动型及负平衡持续增长型三类,但总体上处于负平衡持续增长趋势;在全球继续增温的未来,冰川将会继续退缩,物质亏损强度不断增大,负平衡趋势不断增强。冰川物质平衡对海平面上升的贡献呈增大趋势,且与全球气温上升基本上是同步的。  相似文献   

4.
喀喇昆仑山西北部冰川运动速度地形控制特征   总被引:2,自引:2,他引:0  
为了探讨地形和海拔对冰川季节和年平均运动速度的影响程度,利用2013-2018年GoLive数据与ASTER GDEM V2数据对喀喇昆仑山西北部3 389条冰川的地形(坡度、坡向、海拔)和冰川运动速度进行了综合分析。结果表明:冰川表面运动速度在物质平衡线处(3 970~4 770 m)达到最快,是冰川积极维持物质平衡的一种体现。坡度平缓地区在不同海拔下的冰川运动速度有明显的差别,但是不同坡度地区的冰川运动速度随海拔变化的趋势基本一致,均呈现先增大后减小。北坡冰川运动速度较平稳,南坡和西南坡的冰川运动速度(均为0.25 m·d-1)最快并且变化幅度较大,最小值与最大值相差近4倍。冰川运动速度不是呈现单一的季节性变化,同时还会受到地形的控制。低海拔区域冰川运动速度在消融期(3-6月)较快,中海拔区域在消融前(11月至次年2月)较快。  相似文献   

5.
一种基于MODIS积雪产品的雪线高度提取方法   总被引:3,自引:2,他引:1  
冰川雪线高度的遥感提取对冰川物质平衡研究具有重要意义。提出一种基于晴空环境下积雪覆盖频率的雪线高度提取方法。使用MOD10A1积雪产品中的像元积雪面积比例数据,提取了2000/2001-2014/2015年间高亚洲地区冰川消融期末雪线高度。使用实测的冰川年物质平衡资料和气象格网数据对提取的雪线高度变化的可信度进行分析。研究表明:近15 a高亚洲雪线高度变化及趋势具有明显的东西差异,雪线高度变化幅度自青藏高原内部地区向四周呈增加趋势,西部大于东部。提取的冰川雪线高度变化与观测的年物质平衡序列具有很高的相关性,对物质平衡波动的平均解释率可高达75%;与气象要素(气温、降水)的年际变化的相关性也较高,约61.58%的格网冰川雪线高度变化可以由夏季气温和季节降水解释。而高亚洲各分区冰川雪线高度的波动规律也与大气环流背景分布一致。因此提取的雪线高度变化具有冰川学意义,可以进一步应用于冰川物质平衡估算及模拟研究中。  相似文献   

6.
基于冰川物质平衡和平衡线高度数据,对北极斯瓦尔巴、高亚洲和阿尔卑斯山的冰川物质平衡变化和平衡线高度空间分布特征进行了对比分析,得出以下结论:(1)阿尔卑斯山冰川年均负物质平衡值最大,为-907 mm;斯瓦尔巴为-431 mm;高亚洲最小,为-264 mm。(2)高亚洲和斯瓦尔巴冰川物质平衡年振幅较小,年际变化较小;阿尔卑斯山冰川物质平衡年振幅较大,年际变化较大。斯瓦尔巴冰川物质平衡趋向正平衡,阿尔卑斯山和高亚洲冰川物质平衡趋向负平衡。(3)斯瓦尔巴内陆的冰川平衡线高度高于沿海地区,高亚洲冰川平衡线高度呈纬向地带性、经向地带性和区域地带性的分布规律,阿尔卑斯山的冰川平衡线高度主要受冰川所处海拔的影响。  相似文献   

7.
冰川物质平衡线的估算方法   总被引:9,自引:8,他引:1  
崔航  王杰 《冰川冻土》2013,35(2):345-354
冰川物质平衡线高度(ELA)与气候变化, 特别是与气温和降水的变化关系密切, 是重建古气候和反映冰川积累和消融变化的重要代用指标.直接观测方法可以获得较为精准的ELA, 但不能大范围展开.因此, ELA的间接估算方法, 如赫斯法(Hess)、 积累区面积比率法(AAR)、 面积–高程平衡率法(AABR)、 末端至冰斗后壁比率法(THAR)、 终碛到最高峰高差比率法(TSAM)、 侧碛最大高度法(MELM)、 冰斗底部高程法(CF)、 冰川作用阈值法(GT)等, 得到了广泛的发展与应用.然而, 由于受到雪崩或风吹雪补给、 表碛覆盖、 冰川类型和形态等因素的影响, 单一使用某种方法易受到算法本身的限制, 误差较大, 需综合考虑各种算法的适用性和选取参数的差异, 以提高计算的精度, 同时也要考虑到后期构造抬升等的影响.  相似文献   

8.
冰川零平衡线处的物质平衡及其应用   总被引:5,自引:11,他引:5  
论证了在稳定状态时的冰川平衡线即零平衡线ELA0)处的比净平衡大致等于整个冰川的平均净平衡。提出了ELA0的直接测定方法、误差范围以及利用冰川中值高度计算ELA0的公式。认为可以利用ELA0的特征简化冰川物质平衡的观测及计算,以及利用冰川编目资料大面积估算冰川物质平衡状况的可能性。  相似文献   

9.
聂宁  张智杰  张万昌  邓财 《冰川冻土》2013,35(3):541-552
综合运用RS和GIS手段, 利用卫星遥感影像, 结合中国第一次冰川编目数据及数字高程模型(DEM), 获取了雅鲁藏布江流域不同朝向上冰川面积分布、 冰川面积随高度带分布状况统计结果, 及3个冰川聚集区21条大型海洋性冰川在1976、 1988、 2005年的冰川面积、 厚度、 冰储量及物质平衡线等基本参数, 丰富了该研究区相关冰川信息, 并统计分析了21条大型冰川面积变化状况及与气候变化的响应关系. 研究表明: 3个区域冰川在1976-1988年和1988-2005年时间段内随着气温、 降水的变化出现了相应的波动, 但总的来说在1976-2005年间, 这21条大型海洋性冰川并没有出现明显的前进或退缩现象, 这可能是由于降水的增加抵消了气温升高给冰川积累带来的不利影响, 也可能是由于大型冰川在高海拔地区有较大的积累区补给造成的, 进一步的研究亦在进展中.  相似文献   

10.
北半球冰川物质平衡变化的若干特征及其气候意义   总被引:6,自引:0,他引:6  
根据北半球连续观测的40多条冰川物质平衡资料,分析了目前冰川物质平衡状态及影响它们的地形因互。冰川物质平衡的变化在区域间存在着一定的联系:斯堪的纳维亚、落基山和天山地 区冰川物质平衡的变化在大多数时间内存在着对应联 系,而与阿尔卑斯山冰川物质平衡的变化具有不同程度的反向波动特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号