首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Young zircons from crystal-poor volcanic rocks provide the best samples for the investigations of pre-eruption magmatic processes and for testing a possible relationship between zircon Eu anomalies and crustal thickness. We report trace element chemistry and Hf-O isotope compositions of young zircons from 3 Holocene volcanoes in the Tengchong volcanic field, SE Tibet, in order to provide insights into magma evolution processes and conditions for high-K calc-alkaline volcanic rocks in a post-collisional setting. As decreasing zircon Ti content and falling temperature, zircon Hf content and Yb/Sm increase whereas zircon Eu anomaly and Th/U decrease, indicating fractional crystallization of plagioclase and zircon during magma cooling. More importantly, zircon Hf isotope ratio (εHf values) increases with decreasing zircon Ti content and falling temperature (T), suggesting gradually increasing incorporation of relatively high εHf juvenile materials in the crystallizing zircons during magma evolution. Negative correlations between zircon εHf and zircon δ18O also support open-system magma evolution. Our data suggest fractional crystallization of a magma with simultaneous contamination by high εHf and low δ 18O juvenile (immature) crustal materials during monotonic cooling after zircon saturation. The low-T, high-εHf and low- δ 18O zircons may indicate the involvement of the early Cretaceous juvenile granitic country rocks during shallow magma evolution. Average Eu anomalies in zircons from young Tengchong lavas yield crustal thickness of 40.7 ± 6.8 km, consistent with present crustal thickness (42.5 km) determined by geophysical methods.  相似文献   

2.
This study used new and published U-Pb geochronological, chemical, and Sr-Nd-Hf-O isotopic data (n > 2500) from Jurassic granite-granodiorite-diorite-monzonite-gabbro plutons in the southern part of the Korean Peninsula to assess the spatiotemporal evolution of a flare-up magmatism, its tectonic connection, and specific contributions of mantle and crustal reservoirs to the magmas generated. After a ~15 m.y. magmatic gap in the Late Triassic, calc-alkaline granitoids intruded into the outboard Yeongnam Massif, then magmatic activity migrated systematically toward the inboard Gyeonggi Massif. The early phase of the Jurassic magmatism is represented by relatively sodic plutons showing distinctly primitive isotopic signatures. The crustal signature of the plutons became increasingly prominent with decreasing age. Voluminous inboard plutons in the Gyeonggi Massif and the intervening Okcheon Belt are dominated by Middle Jurassic peraluminous granites that show isotopic compositions conspicuously shifted toward old crustal values. The Nd-Hf isotopic compositions of the inboard plutons are distinctly less radiogenic than those of Jurassic plutons in Southwest Japan and southeastern China, which corroborates the North China affinity of the Yeongnam and Gyeonggi massifs. The geochronological and geochemical data compiled in this study suggest a tectonomagmatic model consisting sequentially of (1) an extension-dominated arc system in the margin of the Yeongnam Massif (ca. 200–190 Ma); (2) low-angle subduction and the development of an advancing arc system (ca. 190–180 Ma); (3) continued low-angle subduction, extensive underthrusting of fertile crustal materials to the arc root, and consequent magmatic flare-up (ca. 180–170 Ma); and (4) flat subduction and the development of the Honam Shear Zone (ca. 170–160 Ma). The subsequent magmatic lull and previous dating results for synkinematic rocks and minerals indicate that the compressional arc system was maintained until the Early Cretaceous.  相似文献   

3.
The Qinling Orogen in Central China records the history of a complex geological evolution and tectonic transition from compression to extension during the Late Mesozoic,with concomitant voluminous granitoids formation.In this study,we present results from petrological,geochemical,zircon U-Pb-Lu-Hf isotopic studies on the Lengshui felsic dykes from Luanchuan region in the East Qinling Orogen.We also compile published geochronological,geochemical,and Hf isotopic data from Luanchuan region and present zircon Hf isotopic contour maps.The newly obtained age data yield two group of ages at~145 Ma and 140 Ma for two granite porphyries from the Lengshui felsic dykes,with the ~145 Ma interpreted as response to the peak of magmatism in the region,and the ~140 Ma as the timing of formation of the felsic dykes.The corresponding Hf isotopic data of the granite porphyries display negativeeHit)values of-16.67 to-4.61,and Hf crustal model ages(T_(DM~C_)of 2255-1490 Ma,indicating magma sourced from the melting of Paleo-to Mesoproterozoic crustal materials.The compiled age data display two major magmatic pulses at 160-130 Ma and 111-108 Ma with magmatic quiescence in between,and the zircon Hf isotopic data display/ε_(Hf)(t)values ranging from-41.9 to 2.1 and T_(DM)~c values of3387-1033 Ma,suggesting mixed crustal and mantle-derived components in the magma source,and correspond to multiple tectonic events during the Late Mesozoic.The Luanchuan granitoids are identified as 1-type granites and most of these are highly fractionated granites,involving magma mixing and mingling and crystal fractionation.The tectonic setting in the region transformed from the Late Jurassic syn-collision setting to Early Cretaceous within-plate setting,with E-W extension in the Early Cretaceous.This extension is correlated with the N-S trending post-collisional extension between the North China Craton and Yangtze Craton as well as the E-W trending back-arc extension triggered by the westward Paleo-Pacific Plate subduction,eventually leading to lithospheric thinning,asthenospheric upwelling,mafic magma underplating,and crustal melting in the East Qinling Orogen.  相似文献   

4.
The Xincheng deposit is the only large gold deposit with a proven reserve of >200 t gold hosted by the Early Cretaceous granitoids in northwest Jiaodong Peninsula, East China. The granitoids hosting this ore deposit comprise an inner medium- to fine-grained quartz monzonite and an outer medium- to coarse-grained monzogranite with distinctive K-feldspar megacrysts. LA–ICP–MS zircon dating yields U–Pb ages of 128 ± 1 to 132 ± 1 Ma and 127 ± 2 to 129 ± 1 Ma, for the quartz monzonite and the monzogranite, respectively. The Early Cretaceous ages obtained in our study are comparable with the 126–130 Ma age range reported for the Guojialing granitic suite. The monzogranites, typical high Ba–Sr granites, possess high SiO2 (70.89–73.35%), K2O (3.85–4.32%), total alkalis (K2O + Na2O = 8.08–8.68%), Sr (634–888 ppm), Ba (1395–2111 ppm) and LREE (59.43–145.88), with low HREE and HFSE contents and insignificant Eu anomalies. The rocks display markedly high Sr/Y (114–297) and (La/Yb)N (20–79) ratios. They have low MgO (0.23–0.62%), Cr (0.4–8.33 ppm) and Ni (0.47–2.92 ppm) contents. The typical high Ba–Sr signatures of the outer acidic monzogranites are also shared by the inner intermediate-acidic quartz monzonites, with a relatively higher abundance of these elements. The plagioclases in the quartz monzonites and monzogranites are oligoclase–andesine with An contents of 11.7–44.5%, and oligoclase with An contents of 12.9–29.3%, respectively, which both show the reverse zoning texture. The quartz monzonites have zircon εHf(t) values of −21.3 to −13.9 (average −18.7), which are less negative and show larger variations than those of the monzogranites (εHf(t) = −24.7 to −18.1, average −19.5). Detailed elemental, mineralogical and isotopic data suggest that the high Ba–Sr quartz monzonites and monzogranites were most likely generated by partial melting of the basement rocks of the Jiaobei terrane accompanied by crustal assimilation, with minor addition of the intermediate magma derived from the partial melting of juvenile mafic lower crust formed by the earlier underplating of mantle magma, and the quartz monzonites may represent the path of intermediate magma inputting into felsic magma. In combination with previous investigations, we suggest subduction of the paleo-Pacific slab beneath the North China Craton (NCC) and associated asthenosphere upwelling were most likely the mechanism associated with the generation of the high Ba–Sr granites.  相似文献   

5.
How the earth's crust formed and evolved during the Precambrian times is one of the key questions to decipher the evolution of the early Earth. As one of the few cratons containing well-preserved Eoarchean to Neoarchean basement on Earth, the North China Craton is an ideal natural laboratory to unravel the early crustal evolution. It is controversial whether the Archean tectonothermal events in this area represents reworking or growth of the continental crust. To solve this issue, we have compelled field-based mapping, zircon U–Pb dating by SHRIMP RG and LA–ICP–MS U–Pb, zircon SHRIMP SI oxygen and LA–MC–ICP–MS Hf isotope, and whole-rock Nd–O isotope analyses from the Archean granitoids in northern Liaoning, North China Craton. On the basis of zircon U–Pb isotopic dating and measured geological section investigation, two distinct magmatic suites as enclaves in the Jurassic granites are recognized, viz. a newly discovered 3.0 Ga crustal remnant and a 2.5 Ga granitoid. The Mesoarchean zircons from the 3.0 Ga granodioritic gneisses exhibit heterogeneous Hf isotopic compositions, with the most radiogenic analysis (εHf(t) = +3.8) following the depleted mantle evolution array and the most unradiogenic εHf(t) extending down to −3.4. This implies that both ancient continental crust at least as old as 3.4 Ga and depleted mantle contributed to the magma source of the protoliths of the Mesoarchean gneisses. The εHf(t) values of the Neoarchean zircons from these gneisses overlap the 3.4–3.0 Ga zircon evolution trend, indicating that the ancient crustal materials have been reworked during the late Neoarchean. The Neoarchean zircons from the 2.5 Ga granitoids have a relatively small variation in the Hf isotope and are mainly plotted in the 3.0–2.8 Ga zircon evolution field. However, taking all the εHf(t) values of the Neoarchean zircons into the consideration, we find that the Hf model age of the Neoarchean zircon does not represent the time of crustal growth or reworking but are artifacts of magma mixing. The interaction between the magmas derived from the ancient crustal materials and the depleted mantle is also supported by zircon O isotopic data and Hf–O isotopic modeling of the Neoarchean granitoids. Both Mesoarchean and late Neoarchean tectonothermal events involved synchronous crustal growth and reworking, which may be applicable to other parts of the world.  相似文献   

6.
《International Geology Review》2012,54(11):1413-1434
We present new zircon ages and Hf-in-zircon isotopic data for plutonic rocks and review the crustal evolution of the Chinese Central Tianshan (Xinjiang, northwest China) in the early to mid-Palaeozoic. The Early Ordovician (ca. 475–473 Ma) granitoid rocks have zircon εHf(t) values either positive (+0.3 to +9.5) or negative (?6.0 to ?12.9). This suggests significant addition of juvenile material to, and coeval crustal reworking of, the pre-existing continental crust that is fingerprinted by numerous Precambrian zircon xenocrysts. The Late Ordovician–Silurian (ca. 458–425 Ma) rocks can be assigned to two sub-episodes of magmatism: zircon from rocks of an earlier event (ca. 458–442 Ma) has negative zircon εHf(t) values (?6.3 to ?13.1), indicating a predominantly crustal source; zircon from later events (ca. 434–425 Ma) has positive zircon εHf(t) values (+2.6 to +8.9) that reveal a predominantly juvenile magma source. The Early Devonian (ca. 410–404 Ma) rocks have near-zero zircon εHf(t) values, either slightly negative or positive (?1.4 to +3.5), whereas the Mid-Devonian rocks (ca. 393 Ma) have negative values (?11.2 to ?14.8). The Late Devonian (ca. 368–361 Ma) granites are undeformed and are chemically similar to adakite but have relatively low negative whole-rock εNd(t)values (?2.4 to ?5.3). We interpret the Early Ordovician to Mid-Devonian magmatic event to reflect combined juvenile crustal growth and crustal reworking processes via episodic mafic underplating and mantle–crust interaction. The Late Devonian episode may signify delamination of the over-thickened Chinese Central Tianshan crust.  相似文献   

7.
The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U–Pb and Lu–Hf data on TTG (tonalite–trondhjemite–granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450–1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from −11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120–130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from −30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.  相似文献   

8.
《地学前缘(英文版)》2020,11(5):1711-1725
The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this paper,we present new zircon U-Pb ages,Hf-isotopic compositions and whole-rock geochemical data of four granitoids along the Zhusileng-Hangwula Tectonic Belt in the northern Alxa region that could provide critical information about the tectonic evolution of this region.The zircon U-Pb data could be grouped as two phases:Late Devonian granite and diorite(ca.373-360 Ma),and Late Carboniferous granodiorite(ca.318 Ma).The Late Devonian granites and diorites are metaluminous to slightly peraluminous,with A/CNK and A/NK ratios of 0.90-1.11 and0.95-2.19,respectively.The Late Devonian diorites are characterized by high MgO,Cr and Ni contents and MgO#values,together with variable ε_(Hf)(t) values from-1.0 to+1.3 and old T_(DM2) ages varied from 1283 Ma to 1426 Ma,indicating the primary magma was potentially derived from magma mixing of depleted mantle with Mesoproterozoic continental crust.Even though the Late Devonian granites yielded most positive and minor negative e_(Hf)(t) values between-1.1 to+5.7(three grains are negative) with two-stage model ages(T_(DM2)) of 1003-1438 Ma,they display low MgO,Cr and Ni contents and MgO#values,suggesting that they were mainly derived from juvenile crustal materials,mixed with a small amount of ancient crust.The Late Carboniferous granitoids are metaluminous and medium-K calc-alkaline series,with A/CNK and A/NK ratios ranging from 0.88 to 0.95 and1.75 to 1.90,respectively.These rocks were potentially derived from juvenile crustal materials mixed with depleted mantle,as evidenced by their high ε_(Hf)(t) values(+11.6 to+14.1) and young TDM2 ages(427 Ma to 586 Ma),as well as high Mg#values,and MgO,Ni and Cr contents.Our data,along with available sedimentary evidence and previous researches,indicate that the Late Devonian and Late Carboniferous rocks are arc-related granitoids under the subduction setting.The identification of arc-related granitoids in the northern Alxa region not only reveals the Late Paleozoic magmatic process in response to the subduction of Paleo Asian Ocean,but also provide significant constrains to the tectonic evolution of the Central Asian Orogenic Belt.  相似文献   

9.
《地学前缘(英文版)》2020,11(6):1975-1992
The early Paleozoic tectonic framework and evolutionary history of the eastern Central Asian Orogenic Belt (CAOB) is poorly understood. Here we present zircon U–Pb geochronology, whole rock geochemistry, and Sr-Nd-Hf isotope data of the early Paleozoic granitoids in eastern CAOB to investigate the petrogenesis and geodynamic implications.The early Paleozoic granitoids from the Songnen Block yield zircon U–Pb ages of 523–490 ​Ma, negative εNd(t) values of –6.7 to –0.8, and εHf(t) values of –8.6 to 7.1, indicating they were generated by partial melting of ancient crustal materials with various degrees of mantle contribution. They generally show affinities to A-type granites, implying their generation from an extensional environment after the collision between the Songnen and Jiamusi blocks. In comparison, the early Paleozoic granitoids from the Xing’an Block have zircon U–Pb ages of 480–465 ​Ma, εNd(t) values of –5.4 to 5.4, and εHf(t) values of –2.2 to 12.9, indicating a dominated juvenile crustal source with some input of ancient crustal components. They belong to I-type granites and were likely related to subduction of the Paleo-Asian Ocean. The statistics of TDM2 Hf model ages of the granitoids indicate that the Erguna and Jiamusi blocks contain a significant proportion of Mesoproterozoic crystalline basement, while the Xing’an Block is dominated by a Neoproterozoic basement.Based on these observations, the early Paleozoic evolutionary history of eastern CAOB can be divided into four stages: (1) before 540 ​Ma, the Erguna, Xing’an, Songnen, and Jiamusi blocks were discrete microcontinents separated by different branches of the Paleo-Asian Ocean; (2) 540–523 ​Ma, the Jiamusi Block collided with the Songnen Block along the Mudanjiang suture; (3) ca. 500 Ma, the Erguna Block accreted onto the Xing’an Block along the Xinlin–Xiguitu suture; (4) ca. 480 Ma, the Paleo-Asian Ocean started a double-side subduction beneath the united Erguna–Xing’an and Songnen–Jiamusi blocks.  相似文献   

10.
Geodynamic drivers for the supercontinent cycle are generally attributed to either top-down(subduction-related)or bottom-up(mantle-related)processes.Compiled geochemical data and U-Pb ages and Hf isotopic signatures for magmatic and detrital zircons from the Tarim Craton reveal a distinct change in subduction style during the Neoproterozoic.The subduction cycle is recorded in increasing and decreasing intensity of subduction-related magmatic rocks and time-equivalent sedimentary successions,and converse trends ofεHf(t)values and corresponding changes in crustal incubation time.These trends are consistent with a switch from advancing to retreating subduction.The switch likely occurred at ca.760 Ma when zirconεHf(t)values increase and crustal incubation times decrease following a transitional shift between 800 Ma and 760 Ma.A switch at this time is consistent with Rodinia breakup and may have resulted in the late Neoproterozoic Tarim rift basin.The long-lived(ca.500 Ma)subduction recorded in the Tarim Craton suggests the predominance of a top-down process for Rodinia breakup on this part of its margin.  相似文献   

11.
Multi-stage igneous rocks developed in the recently discovered Huoluotai Cu-(Mo) deposit provide new insights into the controversial late Mesozoic geodynamic evolution of the northern segment of the Great Xing’an Range (NSGXR). Zircon U-Pb dating suggests that the monzogranite, ore-bearing granodiorite porphyry, diorite porphyry, and granite porphyry in the deposit were emplaced at 179.5 ± 1.6, 148.9 ± 0.9, 146.1 ± 1.3, and 142.2 ± 1.5 Ma, respectively. The Re-Os dating of molybdenite yielded an isochron age of 146.9 ± 2.3 Ma (MSWD = 0.27). The Jurassic adakitic monzogranite and granodiorite porphyry are characterized by high SiO2 and Na2O contents, low K2O/Na2O ratios, low MgO, Cr, and Ni contents, low zircon εHf(t) values relative to depleted mantle, and relatively high Th contents. They were produced by partial melting of a subducted oceanic slab, with involvement of marine sediments in the magma source and limited interaction with mantle peridotites during magma ascent. The Late Jurassic diorite porphyry is characterized by moderate SiO2 contents, high MgO, Cr, and Ni contents, and positive dominated εHf(t) values, indicating it was produced by partial melting of a subduction-modified lithospheric mantle wedge and underwent limited crustal contamination during magma ascent. The early Early Cretaceous adakitic granite porphyry shows high SiO2 and K2O contents and K2O/Na2O ratios, low MgO, Cr, and Ni contents, enriched Sr–Nd isotopic compositions, and slightly positive zircon εHf(t) values, suggesting it was produced by partial melting of thickened mafic lower crust. The NSGXR experienced a tectonic history that involved flat-slab subduction (200–160 Ma), and tearing and collapse (150–145 Ma) of the Mongol–Okhotsk oceanic lithosphere. The period of magmatic quiescence from ca. 160 to 150 Ma was a response to flat-slab subduction of the Mongol–Okhotsk oceanic lithosphere. Crustal thickening in the NSGXR (145–133 Ma) was due to the collision between the Amuria Block and the Siberian Craton.  相似文献   

12.
《地学前缘(英文版)》2018,9(6):1921-1936
The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous (99 Ma) to Neoarchean (2750 Ma), separated from massive chromitite bodies hosted in the mantle section of the supra-subduction (SSZ)-type Mayarí-Baracoa Ophiolitic Belt in eastern Cuba. Most analyzed zircon grains (n = 20, 287 ± 3 Ma to 2750 ± 60 Ma) are older than the early Cretaceous age of the ophiolite body, show negative εHf(t) (−26 to −0.6) and occasional inclusions of quartz, K-feldspar, biotite, and apatite that indicate derivation from a granitic continental crust. In contrast, 5 mainly rounded zircon grains (297 ± 5 Ma to 2126 ± 27 Ma) show positive εHf(t) (+0.7 to +13.5) and occasional apatite inclusions, suggesting their possible crystallization from melts derived from juvenile (mantle) sources. Interestingly, younger zircon grains are mainly euhedral to subhedral crystals, whereas older zircon grains are predominantly rounded grains. A comparison of the ages and Hf isotopic compositions of the zircon grains with those of nearby exposed crustal terranes suggest that chromitite zircon grains are similar to those reported from terranes of Mexico and northern South America. Hence, chromitite zircon grains are interpreted as sedimentary-derived xenocrystic grains that were delivered into the mantle wedge beneath the Greater Antilles intra-oceanic volcanic arc by metasomatic fluids/melts during subduction processes. Thus, continental crust recycling by subduction could explain all populations of old xenocrystic zircon in Cretaceous mantle-hosted chromitites from eastern Cuba ophiolite. We integrate the results of this study with petrological-thermomechanical modeling and existing geodynamic models to propose that ancient zircon xenocrysts, with a wide spectrum of ages and Hf isotopic compositions, can be transferred to the mantle wedge above subducting slabs by cold plumes.  相似文献   

13.
In this paper, we present zircon U–Pb age and Hf isotope data to document the significance of magma mixing in the formation of Late Jurassic granitoid intrusions in the eastern Qinling Orogen, China. The Muhuguan granitoid pluton from this orogen consists of monzogranite and lesser biotite granite and granodiorite, all containing abundant hornblende-rich cumulates, dioritic xenoliths, and mafic magmatic enclaves (MMEs). The monzogranite and granodiorite are intruded by a number of lamprophyre dykes. Both a cumulate and a dioritic xenolith samples have concordant zircon U–Pb ages of ca. 161 ± 1 Ma, but possess contrasting Hf isotopic compositions. The cumulate has more radiogenic zircon Hf isotopes with negative ε Hf(t) values (?7.9 to ?2.5) and T DM1 ages of 0.9–1.1 Ga, indicating its derivation likely from basaltic rocks of the Neoproterozoic to early Paleozoic Kuanping Group in the area. The dioritic xenolith has much lower zircon ε Hf(t) values of ?19.5 to ?8.8 and T DM2 ages of 2.4–1.7 Ga, consistent with a juvenile Paleoproterozoic crust source presumably represented by the metabasic rocks of the Qinling Group in the area. Individual samples of the monzogranite, MME, and a lamprophyre dyke have U–Pb ages of 150 ± 1, 152 ± 1, and 152 ± 1 Ma, respectively, demonstrating coeval mafic and felsic magmatism in the Late Jurassic. The lamprophyre dyke has homogeneous, highly negative zircon ε Hf(t) values (?29.8 to ?24.8) and Archean T DM2 ages (3.0–2.7 Ga), and its genesis is interpreted as partial melting of an ancient enriched subcontinental mantle source. Zircons from the fine-grained MME show a large range of ε Hf(t) between ?29.1 and ?9.8, overlapping values of the monzogranite and lamprophyre dyke samples. Zircon U–Pb age and Hf isotopes of the MMEs are consistent with their formation by mixing of crustal- and enriched mantle-derived magmas. The main group of zircons from the monzogranite has ε Hf(t) values (?17.9 to ?9.3) and T DM2 ages (2.3–1.8 Ga) that are compatible with the dioritic xenoliths, indicating that the former was produced by partial melting of Paleoproterozoic crustal source with involvement of mantle-derived magmas. Mafic magmatism revealed from the Muhuguan pluton indicates that the eastern Qinling Orogen was dominated by lithospheric extension during the Late Jurassic. Compilation of existing geological and geochronological data suggests that this extensional event started in Late Jurassic (ca. 160 Ma) and persisted into the Early Cretaceous until ca. 110 Ma. The Jura-Cretaceous extension may have resulted from the late Mesozoic westward subduction of the Pacific plate beneath the East Asian continental margin.  相似文献   

14.
Inherited zircons from S-type granites provide exceptionally good insight into the isotopic heterogeneity of their sources. Zircons from four samples (one granite, two granodiorites, one granodioritic enclave) of Pan-African S-type granite of the Cape Granite Suite (c. 540 Ma) have been the subject of a laser LA-ICP-MS zircon U/Pb study to determine emplacement ages and inheritance. Zircons from three of these samples (2 granodiorites and 1 granodioritic enclave) were also analysed for Hf isotopes by LA-MC-ICP-MS. Ages of inherited cores range from 1,200 to 570 Ma and show Hafnium isotope values (εHf,t ) for the crystallisation age (t) of the different cores that range from −14.1 to +9.1. Magmatic zircons and magmatic overgrowth with concordant spot ages between ca. 525 and ca. 555 Ma show a similar range of εHf,t , between −8.6 and +1.5, whilst εHf values calculated at 540 Ma (εHf,540) for inherited cores range from −15.2 to +1.7. Thus, our results show that the time evolved εHf arrays of the inherited cores overlap closely with the εHf range displayed by the magmatic rims at the time of crystallisation of the pluton. These similarities imply a genetic relationship between magmatic and inherited zircons. Within the inherited cores, four main peak ages can be identified. This, coupled with their large Hf isotopic range, emphasises that the source of the granite is highly heterogeneous. The combination of the U/Pb zircon ages ranges and Hf isotope data implies that: (1) The source of S-type granite consists of crustal material recording several regional events between 1,200 and 600 Ma. This material records the recycling of a much older crust derived from depleted mantle between 1.14 and 2.02 Ga. (2) The homogenisation of Hf isotopic variation in the magma acquired through dissolution of the entrained zircon, via mechanical mixing and/or diffusion between within the granite was particularly inefficient. (3) This evidence argues for the assembly of the pluton through many relatively small magma batches that undergo rapid cooling from their intrusion temperature (ca. 850°C) to background magma chamber temperature that is low enough to ensure that much of the magmatic zircon crystallised rapidly (>80% by 700°C). (4) There is no evidence for the addition of mantle-derived material in the genesis of S-type Cape Granite Suite, where the most mafic granodiorites are strongly peraluminous, relatively low in CaO and K2O rich. Interpreted more widely, these findings imply that S-type granites inherit their isotopic characteristic from the source. Source heterogeneity transfers to the granite magma via the genesis of discrete magma batches. The information documented from the S-type CGS zircons has been recorded because the individual batches of magma crystallised the bulk of their magmatic zircon prior to mechanical or diffusional magma homogenisation. This is favoured by zirconium saturation in the magma shortly after emplacement, by partial dissolution of the entrained zircon fraction, as well as by the intrusion of volumetrically subordinate magma batches into a relatively cool pluton. Consequently, evidence recorded within inherited cores will most likely be best preserved in S-type granite plutons intruded at shallow depths. Other studies that have documented similar εHf arrays in magmatic zircons have interpreted these to reflect mixing between crustal- and mantle-derived magmas. This study indicates that such arrays may be wholly source inherited, reflecting mixing of a range of crustal materials of different ages and original isotopic signatures.  相似文献   

15.
ABSTRACT

This paper presents geochronological, geochemical, and zircon Hf–O isotope data for late Mesozoic intrusive rocks from the northeastern North China Craton (NCC), with the aim of constraining the late Mesozoic tectonic nature of the NE Asian continental margin. U–Pb zircon data indicate that the Late Mesozoic magmatism in the northeastern NCC can be subdivided into two stages: Late Jurassic (161 ? 156 Ma) and Early Cretaceous (125 ? 120 Ma). Late Jurassic magmatism consists mainly of monzogranites. These monzogranites display high Sr/Y ratios and the tetrad effect in their REE, respectively, and have negative εHf(t) values (?22.6 to ?15.8). The former indicates that the primary magma was generated by partial melting of thickened NCC lower crust, the latter suggests that the monzogranites were crystallized from highly fractionated magma, with the primary magma derived from partial melting of lower continental crust. Combined with the spatial distribution and rock associations of the Late Jurassic granitoids, we conclude that the Late Jurassic magmatism in the eastern NCC formed in a compressional environment related to oblique subduction of the Paleo-Pacific Plate beneath the Eurasia. The Early Cretaceous magmatism consists mainly of granitoids and quartz diorites. The quartz diorites formed by mixing of melts derived from the mantle and lower crust. The coeval granitoids are classified as high-K calc-alkaline and metaluminous to weakly peraluminous series. Some of the granitoids are similar to A-type granites. The granitoid εHf(t) values and TDM2 range from ?14.3 to ?1.4 and 2089 to 1274 Ma, respectively. These values indicate that their primary magma was derived from partial melting of lower crustal material of the NCC, but with a contribution of mantle-derived material. We therefore conclude that Early Cretaceous magmatism in the northeastern NCC occurred in an extensional environment related to westward subduction of the Paleo-Pacific Plate beneath Eurasia.  相似文献   

16.
Extensive Late Mesozoic igneous rocks in SE China have been widely considered to be generated under the paleo-Pacific tectonic regime. Previous studies suggested a fundamental oceanward younging trend for the igneous rocks, further implying a NW-ward paleo-Pacific subduction model with gradual slab rollback. New LA–ICP–MS zircon U–Pb dating results show that early stage of the Late Mesozoic volcanic sequences (also known as the lower volcanic series) in Fujian Province was formed in three episodes: 160–148 Ma for the Changlin Formation, 145–130 Ma for the Nanyuan Formation, and 130–127 Ma for the Xiaoxi Formation, among which the second episode made the volcanism climax. Thus the entire lower volcanic series in Fujian were formed earlier than those in Zhejiang (140–118 Ma), displaying a NE-ward younging trend parallel to the potential subduction belt. Besides, in situ Hf isotope analyses on dated zircons yield an εHf(t) range of − 19.2 to + 1.7 for the lower volcanic series in Fujian. The majority of the studied volcanic rocks have more radiogenic Hf than that of the metamorphic basement, requiring the involvement of juvenile components in their origin. Moreover, the zircon εHf(t) value increases with time in each single area, as well as the igneous rocks elsewhere in SE China, except for the Changlin Formation which shows very opposite isotopic varying trend. Increasing zircon εHf(t) values imply an increasing material contribution of contemporaneous underplated mantle-derived magmas, which was plausibly induced by gradual crustal decompression. As well as the NE-ward younging trend of the lower volcanic series, it is also identified that the juvenile material contribution in the igneous petrogenesis gradually took place in the same direction along the coastal area. Thus here we propose an asynchronizing paleo-Pacific slab rollback model during 150–120 Ma to account for the episodic magmatism and crustal extension in SE China. On the contrary, decreasing zircon εHf(t) values of the Changlin Formation volcanics indicate that they were formed under enhanced crustal compression probably induced by slab advance. On the other hand, the upper volcanic series in Fujian were formed during 110–88 Ma coevally to those in Zhejiang, with more depleted zircon Hf isotopic compositions than the lower volcanic series as well, indicating that the entire coastal SE China was under the back-arc tectonic setting during that time.  相似文献   

17.
Paleogene igneous rocks from ~600?km Quchan-Sabzevar-Torud magmatic belt include a thick pile of volcanic and pyroclastic rocks which intruded by younger felsic-mafic plutons. Various types of mineralization including Iron Oxide-Copper-Gold (e.g., Firouzeh mine) and porphyry Cu-Au deposits (e.g., Jalambadan mine) are associated with the Quchan-Sabzevar magmatism. In this study, we describe new zircon U-Pb ages and geochemical-isotopic data of the subvolcanic rocks from near the Firouzeh mine. The Firouzeh subvolcanic rocks consist of (quartz-bearing) monzosyenites, monzodiorites and monzonites. These rocks have typical calc-alkaline signature and are mainly metaluminous in nature. Subvolcanic rocks display enrichment in Light Rare Earth Elements (LREEs) with negative Eu anomaly. Enrichment in Large Ion Lithophile Elements (LILEs) and depletion in High-Field Strength Elements (HFSEs) are geochemical characteristics of these rocks. The Firouzeh volcanic rocks also display calc-alkaline signature and are metaluminous to peraluminous. Volcanic rocks show both enrichment in LREEs and LILEs, associated with negative Eu anomaly. Zircon U-Pb indicates ages of 43.2?±?0.4, 42.1?±?0.4 and 41.8?±?0.4 Ma for monzosyenites, monzodiorites and monzonites respectively. Zircon epsilon Hf(t) shows average values of ?1.49 for monzonites, +9.07 for monzodiorites and ?1.06 for monzosyenites. The Hf model ages for these rocks are in the range of 850–730, 270–180 and 3150–450 Ma, respectively. Inherited zircons are abundant in monzonites and have variable Hf isotope values. The wide range of zircon εHf(t) values and abundance of inherited/xenocrystic zircons suggest a multiple source(s) for the generation of the Firouzeh subvolcanic rocks, including a mantle melt and an old crustal component. Xenocrystic zircons indicate complex crustal components. We suggest the NE Iran subvolcanic rocks including the Firouzeh igneous rocks, generated above the Sabzevar subduction zone. This subduction zone was active since Late Cretaceous time.  相似文献   

18.
The transition from oceanic subduction to continental collision is a key stage in the evolution of ancient orogens. We present new data for Early Cretaceous diorite and granite porphyry from north–central Tibet to constrain the evolution of the Bangong–Nujiang Tethyan Ocean (BNTO). The diorites have moderate SiO2 and high MgO contents, similar to high-Mg andesites. Zircon grains yield U–Pb ages of 128–124 Ma and positive εHf(t) values between +13.2 and + 16.3, corresponding to Hf depleted-mantle model ages (TDM) of 281–131 Ma. The high-Mg diorite was probably formed by partial melting of hydrous mantle wedge fluxed by slab-derived fluids in an oceanic subduction setting. The granite porphyries yield zircon U–Pb ages of 117–115 Ma and zircon εHf(t) values ranging from +0.1 to +4.5. Most samples have high SiO2 and Fe2O3T contents, variable FeOT/MgO and Ga/Al ratios, and are depleted in Ba, Sr, P, and Ti, similar to I- and A-type granites. The granite porphyries were most likely derived from partial melting of juvenile dioritic or granodioritic crust due to break-off of the BNTO lithosphere following collision between the Lhasa and Qiangtang blocks. The Early Cretaceous high-Mg diorite and A-type granite porphyry thus record the Early Cretaceous transition from oceanic subduction to continental collision along the Bangong–Nujiang suture zone (BNSZ).  相似文献   

19.
New zircon U–Pb data, along with the data reported in the literature, reveal five phases of magmatic activity in the Tengchong Terrane since the Early Paleozoic with spatial and temporal variations summarized as Cambrian–Ordovician (500–460 Ma) to the east, minor Triassic (245–206 Ma) in the east and west, abundant Early Cretaceous (131–114 Ma) in the east, extensive Late Cretaceous (77–65 Ma) in the central region, and Paleocene–Eocene (65–49 Ma) in the central and western Tengchong Terrane, in which the Cretaceous–Eocene magmatism migrated from east to west. The increased zircon εHf(t) of the Early Cretaceous granitoids from − 12.3 to − 1.4 at ca. 131–122 Ma to − 4.6 to + 7.1 at ca. 122–114 Ma, identified for the first time in this study, and the magmatic flare-up at ca. 53 Ma in the central and western Tengchong Terrane indicate increased contributions from mantle- or juvenile crust-derived components. The spatial and temporal variations and changing magmatic compositions over time in the Tengchong Terrane closely resemble those of the Lhasa Terrane in southern Tibet. Such similarities, together with the data of stratigraphy and paleobiogeography, enable us to propose that the Tengchong Terrane in SW Yunnan is most likely linked with the Lhasa Terrane in southern Tibet, both of which experienced similar tectonomagmatic histories since the Early Paleozoic.  相似文献   

20.
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province (ELIP), southwestern China. Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection, and crustal magmas have rarely been studied. Here we investigate a suite of mafic dykes and I-type granites that yield zircon U-Pb emplacement ages of 259.9 ± 1.2 Ma and 259.3 ± 1.3 Ma, respectively. The εHf(t) values of zircon from the DZ mafic dyke are –0.3 to 9.4, and their corresponding TDM1 values are in the range of 919–523 Ma. The εHf(t) values of zircon from the DSC I-type granite are between –1 and 3, with TDM1 values showing a range of 938–782 Ma. We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time. The δ18O values of zircon from the DSC I-type granite ranges from 4.87‰ to 7.5‰. The field, petrologic, geochemical and isotopic data from our study lead to the following salient findings. (i) The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar. (ii) The DZ mafic dyke and high-Ti basalts have the same source, i.e., the Emeishan mantle plume. The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite, with low degree partial melting (<10%). (iii) The Hf-O isotope data suggest that the DSC I-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material. (iv) The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume, which partially melted the overlying crust, generating the felsic magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号