首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Durkan Complex is a key tectonic element of the Makran accretionary prism (SE Iran) and it has been interpreted as representing a continental margin succession. We present here a multidisciplinary study of the western Durkan Complex, which is based on new geological, stratigraphic, biostratigraphic data, as well as geochemical data of the volcanic and meta-volcanic rocks forming this complex. Our data show that this complex consists of distinct tectonic slices showing both non-metamorphic and very low-grade metamorphic deformed successions. Stratigraphic and biostratigraphic data allow us to recognize three types of successions. Type-I is composed by a Coniacian – early Campanian pelagic succession with intercalation of pillow lavas and minor volcaniclastic rocks. Type-II succession includes a volcanic sequence passing to a volcano-sedimentary sequence with Cenomanian pelagic limestones, followed by a hemipelagic sequence. This succession is characterized by abundant mass-transport deposits. Type-III succession includes volcanic and volcano-sedimentary sequences, which are stratigraphically covered by a Cenomanian platform succession. The latter is locally followed by a hemipelagic sequence. The volcanic rocks in the different successions show alkaline geochemical affinity, suggesting an origin from an oceanic within-plate setting. Our new results indicate that the western Durkan Complex represents fragments of seamounts tectonically incorporated in the Makran accretionary wedge during the latest Late Cretaceous–Paleocene. We propose that incorporation of seamounts in the frontal prism caused a shortening of the whole convergent margin and possibly contributed to controlling the deformation style in the Makran Accretionary Wedge during Late Cretaceous–Paleocene times.  相似文献   

2.
The petrography, heavy mineral analysis, major element geochemical compositions and mineral chemistry of Early Cretaceous to Miocene–Pliocene rocks, and recent sediments of the Tarfaya basin, SW Morocco, have been studied to reveal their depositional tectonic setting, weathering history, and provenance. Bulk sediment compositional and mineral chemical data suggest that these rocks were derived from heterogeneous sources in the Reguibat Shield (West African Craton) including the Mauritanides and the western Anti-Atlas, which likely form the basement in this area. The Early Cretaceous sandstones are subarkosic in composition, while the Miocene–Pliocene sandstones and the recent sediments from Wadis are generally carbonate-rich feldspathic or lithic arenites, which is also reflected in their major element geochemical compositions. The studied samples are characterized by moderate SiO2 contents and variable abundances of Al2O3, K2O, Na2O, and ferromagnesian elements. Binary tectonic discrimination diagrams demonstrate that most samples can be characterized as passive continental marginal deposits. Al2O3/Na2O ratios indicate more intense chemical weathering during the Early Cretaceous and a variable intensity of weathering during the Late Cretaceous, Early Eocene, Oligocene–Early Miocene, Miocene–Pliocene and recent times. Moreover, weathered marls of the Late Cretaceous and Miocene–Pliocene horizons also exhibit relatively low but variable intensity of chemical weathering. Our results indicate that siliciclastics of the Early Cretaceous were primarily derived from the Reguibat Shield and the Mauritanides, in the SW of the basin, whereas those of the Miocene–Pliocene had varying sources that probably included western Anti-Atlas (NE part of the basin) in addition to the Reguibat Shield and the Mauritanides.  相似文献   

3.
A Late Palaeozoic accretionary prism, formed at the southwestern margin of Gondwana from Early Carboniferous to Late Triassic, comprises the Coastal Accretionary Complex of central Chile (34–41°S). This fossil accretionary system is made up of two parallel contemporaneous metamorphic belts: a high‐pressure/low temperature belt (HP/LT – Western Series) and a low pressure/high temperature belt (LP/HT – Eastern Series). However, the timing of deformation events associated with the growth of the accretionary prism (successive frontal accretion and basal underplating) and the development of the LP/HT metamorphism in the shallower levels of the wedge are not continuously observed along this paired metamorphic belt, suggesting the former existence of local perturbations in the subduction regime. In the Pichilemu region, a well‐preserved segment of the paired metamorphic belt allows a first order correlation between the metamorphic and deformational evolution of the deep accreted slices of oceanic crust (blueschists and HP greenschists from the Western Series) and deformation at the shallower levels of the wedge (the Eastern Series). LP/HT mineral assemblages grew in response to arc‐related granitic intrusions, and porphyroblasts constitute time markers recording the evolution of deformation within shallow wedge material. Integrated P–T–t–d analysis reveals that the LP/HT belt is formed between the stages of frontal accretion (D1) and basal underplating of basic rocks (D2) forming blueschists at c. 300 Ma. A timeline evolution relating the formation of blueschists and the formation and deformation of LP/HT mineral assemblages at shallower levels, combined with published geochronological/thermobarometric/geochemistry data suggests a cause–effect relation between the basal accretion of basic rocks and the deformation of the shallower LP/HT belt. The S2 foliation that formed during basal accretion initiated near the base of the accretionary wedge at ~30 km depth at c. 308 Ma. Later, the S2 foliation developed at c. 300 Ma and ~15 km depth shortly after the emplacement of the granitoids and formation of the (LP/HT) peak metamorphic mineral assemblages. This shallow deformation may reflect a perturbation in the long‐term subduction dynamics (e.g. entrance of a seamount), which would in turn have contributed to the coeval exhumation of the nearby blueschists at c. 300 Ma. Finally, 40Ar–39Ar cooling ages reveal that foliated LP/HT rocks were already at ~350 °C at c. 292 Ma, indicating a rapid cooling for this metamorphic system.  相似文献   

4.
The Palaeozoic to Mesozoic accretionary complexes of southwest Japan include various types of mélange. Most mélanges are polygenetic in origin, being sedimentary or diapiric mélanges that were overprinted by tectonic deformation during subduction. Sedimentary mélanges, without a tectonic overprint, are present in the Permian accretionary complexes of the Akiyoshi and Kurosegawa belts and in the Early Cretaceous accretionary complex of the Chichibu Belt. These mélanges are characterized by dominant basalt and limestone clasts, within a mudstone matrix. The basalt and limestone clasts within the sedimentary mélanges were derived from ancient seamounts. Subduction of a seamount results in deformation of the pre-existing accretionary wedge, and it is difficult to incorporate a seamount into an accretionary wedge; therefore, preservation of seamount fragments requires a special tectonic setting. Oceanic plateau accretion might play an important role in interrupting the processes of subduction and accretion during the formation of accretionary complexes. Especially the Mikabu oceanic plateau might have caused the cessation of accretion during the Early Cretaceous. The subduction and accretion of volcanic arcs and oceanic plateaux helps to preserve sedimentary mélanges from tectonic overprinting by preventing further subduction.  相似文献   

5.
Al Jabal Al Akhdar is a NE/SW- to ENE/WSW-trending mobile part in Northern Cyrenaica province and is considered a large sedimentary belt in northeast Libya. Ras Al Hilal-Al Athrun area is situated in the northern part of this belt and is covered by Upper Cretaceous–Tertiary sedimentary successions with small outcrops of Quaternary deposits. Unmappable and very restricted thin layers of Palaeocene rocks are also encountered, but still under debate whether they are formed in situ or represent allochthonous remnants of Palaeocene age. The Upper Cretaceous rocks form low-lying to unmappable exposures and occupy the core of a major WSW-plunging anticline. To the west, south, and southeast, they are flanked by high-relief Eocene, Oligocene, and Lower Miocene rocks. Detailed structural analyses indicated structural inversion during Late Cretaceous–Miocene times in response to a right lateral compressional shear. The structural pattern is themed by the development of an E–W major shear zone that confines inside a system of wrench tectonics proceeded elsewhere by transpression. The deformation within this system revealed three phases of consistent ductile and brittle structures (D1, D2, and D3) conformable with three main tectonic stages during Late Cretaceous, Eocene, and Oligocene–Early Miocene times. Quaternary deposits, however, showed at a local scale some of brittle structures accommodated with such deformation and thus reflect the continuity of wrenching post-the Miocene. D1 deformation is manifested, in Late Cretaceous, via pure wrenching to convergent wrenching and formation of common E- to ENE-plunging folds. These folds are minor, tight, overturned, upright, and recumbent. They are accompanied with WNW–ESE to E–W dextral and N–S sinistral strike-slip faults, reverse to thrust faults and pop-up or flower structures. D2 deformation initiated at the end of Lutetian (Middle Eocene) by wrenching and elsewhere transpression then enhanced by the development of minor ENE–WSW to E–W asymmetric, close, and, rarely, recumbent folds as well as rejuvenation of the Late Cretaceous strike-slip faults and formation of minor NNW–SSE normal faults. At the end of Eocene, D2 led to localization of the movement within E–W major shear zone, formation of the early stage of the WSW-plunging Ras Al Hilal major anticline, preservation of the contemporaneity (at a major scale) between the synthetic WNW–ESE to E–W and ENE–WSW strike-slip faults and antithetic N–S strike-slip faults, and continuity of the NW–SE normal faults. D3 deformation is continued, during the Oligocene-Early Miocene, with the appearance of a spectacular feature of the major anticline and reactivation along the E–W shear zone and the preexisting faults. Estimating stress directions assumed an acted principal horizontal stress from the NNW (N33°W) direction.  相似文献   

6.
《Gondwana Research》2011,19(4):611-631
The Trans-North China Orogen separates the North China Craton into two small continental blocks: the Eastern and Western Blocks. As one of the largest exposure in the central part of the orogen, the Hengshan–Wutai–Fuping Complexes consist of four lithotectonic units: the Wutai, Hengshan and Fuping Complexes and the Hutuo Group. The Hengshan Complex contains high pressure mafic granulites and retrograded eclogites. Structural analysis indicates that most of the rocks in these complexes underwent three distinct episodes of folding (D1 to D3) and two stages of ductile thrust shearing (STZ1 between D1 and D2 and STZ2 after D3). The D1 deformation formed penetrative axial planar foliations (S1), mineral stretching lineations (L1), and rarely-preserved small isoclinal folds (F1) in the Hengshan and Fuping Complexes. In the Wutai Complex, however, large-scale F1 recumbent folds with SW-vergence are displayed by sedimentary compositional layers. Penetrative transposition resulted in stacking of thrust sheets which are separated by ductile shear zones (STZ1). The kinematic indicators of STZ1 in the Hengshan and Wutai Complexes show top-to-the-S230°W thrusting likely related to northeastward, oblique pre-collisional subduction. D1 resulted in crustal thickening with resultant prograde peak metamorphism. The Hutuo Group did not undergo the D1 deformation, either because sedimentation was coeval with the D1 deformation or because it was at a high structural level and was not influenced directly by the early deformation. The D2 deformation produced NW-verging asymmetric and recumbent folds. The D2 deformation is interpreted to have resulted from collision between the Eastern and Western Blocks of the North China Craton. In the Hutuo Group and the Fuping Complex, the development of ESE-verging asymmetric tight folds is associated with D2. The structural pattern resulting from superimposition of D1 and D2 is a composite synform in the Hengshan–Wutai–Fuping Complexes. All four lithotectonic units were superposed during the later D3 deformation. The D3 deformation developed NW-trending open upright folds. Ongoing collision led to development of transpressional ductile shearing (STZ2), forming the transpressional Zhujiafang dextral ductile shear zone between the northern Hengshan Complex and the southern Hengshan Complex, and generating the sinistral Longquanguan ductile shear zone between the Fuping Complex and the Wutai Complex, respectively. The STZ1 and D2 deformation were possibly responsible for fast syn-collisional exhumation of the high pressure mafic granulites and retrograded eclogites. The structural patterns and elucidation of the deformation history of the Hengshan–Wutai–Fuping Complexes places important constraints on the tectonic model suggesting that an oceanic lithosphere between the Eastern and Western Blocks underwent northeastward-directed oblique subduction beneath the western margin of the Eastern Block, and that the final closure of this ocean led to collision between the two blocks to form the coherent basement of the North China Craton.  相似文献   

7.
In this study, we address the late Miocene to Recent tectonic evolution of the North Caribbean (Oriente) Transform Wrench Corridor in the southern Sierra Maestra mountain range, SE Cuba. The region has been affected by historical earthquakes and shows many features of brittle deformation in late Miocene to Pleistocene reef and other shallow water deposits as well as in pre-Neogene, late Cretaceous to Eocene basement rocks. These late Miocene to Quaternary rocks are faulted, fractured, and contain calcite- and karst-filled extension gashes. Type and orientation of the principal normal palaeostress vary along strike in accordance with observations of large-scale submarine structures at the south-eastern Cuban margin. Initial N–S extension is correlated with a transtensional regime associated with the fault, later reactivated by sinistral and/or dextral shear, mainly along E–W-oriented strike-slip faults. Sinistral shear predominated and recorded similar kinematics as historical earthquakes in the Santiago region. We correlate palaeostress changes with the kinematic evolution along the boundary between the North American and Caribbean plates. Three different tectonic regimes were distinguished for the Oriente transform wrench corridor (OTWC): compression from late Eocene–Oligocene, transtension from late Oligocene to Miocene (?) (D1), and transpression from Pliocene to Present (D2–D4), when this fault became a transform system. Furthermore, present-day structures vary along strike of the Oriente transform wrench corridor (OTWC) on the south-eastern Cuban coast, with dominantly transpressional/compressional and strike-slip structures in the east and transtension in the west. The focal mechanisms of historical earthquakes are in agreement with the dominant ENE–WSW transpressional structures found on land.  相似文献   

8.
The Chinese Altai, a key component of the western Central Asian Orogenic Belt, is considered to be formed through multiple accretions of different terranes. However, the deformational histories of each terrane (tectonic domain), i.e. structural records before and after the accretion, are rarely studied, which has hindered our understanding of the accretionary processes. To fill the gap, a systematic macro- and microscopic structural analysis was carried out on two contrasting litho-tectonic units, i.e. the early Paleozoic low-grade Alegedayi Ophiolitic Complex (AOC) juxtaposed to the high grade Tarlang Granitic Massif (TGM). Selected rock samples were analyzed using zircon U–Pb isotopic dating to constrain the timing of polyphase deformation. Our structural and geochronological data suggest that the two litho-tectonic units were initially detached and located in different crustal levels and experienced distinct phases of deformation under contrasting P-T conditions. They were mutually accreted with each other in the early Devonian and jointly underwent a WNW-ESE-directed shortening deformational event (D1) at ∼390 Ma. The change of tectonic regime was further enhanced by a subsequent NNE-SSW-directed shortening deformation (D2) after ∼ 380 Ma. The shortening process ended before the crustal-scale sinistral strike-slip shearing deformation along the Erqis fault zone at 290 - 240 Ma. Results of this study provide solid field-based evidence for a model that the Chinese Altai initially underwent a nearly E–W-oriented subduction-accretional event in the middle Paleozoic, before it was reoriented to a nearly N–S-oriented convergence.  相似文献   

9.
《International Geology Review》2012,54(15):1842-1863
ABSTRACT

The late Mesozoic magmatic record within the Erguna Block is critical to evaluate the tectonic history and geodynamic evolution of the Great Xing’an Range, NE China. Here, we provide geochronological and geochemical data on Late Jurassic–Early Cretaceous plutonic-volcanic rocks in the northern Erguna Block and discuss their origin within a regional tectonic framework. Late Mesozoic magmatism in the Erguna Block can be divided into two major periods: Late Jurassic (162–150 Ma) and Early Cretaceous (140–125 Ma). Late Jurassic quartz monzonite and dacite show adakite characteristics such as high Al2O3, high Sr, and steeply fractionated REE patterns. Contemporary granitoids and rhyolites are also characterized by strong enrichment of light rare earth elements (LREE) and significant depletion in heavy rare earth elements (HREE), but with more pronounced negative Eu anomalies. Early Cretaceous trachytes and monzoporphyries exhibit moderate LREE enrichment and relatively flat HREE distributions. Coeval granites and rhyolites have transitional signatures between A-type and fractionated I-type felsic rocks. Both Late Jurassic and Early Cretaceous rocks have distinctive negative Nb, Ta, and Ti anomalies, and positive zircon εHf(t) values, suggesting that these magmas were derived from partial melting of Meso-Neoproterozoic accreted lower crust, although melting occurred at a variety of crustal levels. The transition from adakite to non-adakite magmatism reflects continued crustal thinning from Late Jurassic to Early Cretaceous. Our data, together with recently reported isotopic data for plutonic and volcanic rocks, as well as geochemical data, in NE China, suggest that Late Jurassic–Early Cretaceous magmatism in the Erguna Block was possibly induced by post-collisional extension after closure of the Mongol-Okhotsk Ocean.  相似文献   

10.
Under the constraint of an isochronous sequence stratigraphic framework, sediment infill of the Xiagou Formation reflects the overall control of dynamic tectonic movements and episodic sedimentations in the Qingxi Sag. Structure reactivity during post-depositional processes could cause stratigraphic variations in longitudinal time and lateral space. This study documents sediment infill features and their response to the tectonic evolutions of the Qingxi Sag. The data sets include comparison of cores, well drilling, 3D seismic, inter-well correlation, wave impedance inversion profiles, original strata recovery data, sedimentary facies spatial evolution and their superimposition with paleogeomorphology.The Jiuquan Basin is a Mesozoic-Cenozoic superposition basin comprising an early rifting graben phase and a later compression phase. Since the Early Cretaceous, the basin has undergone four major tectonic episodes: 1) extension during the Early Cretaceous, 2) tectonic inversion caused by northwest-southeast contraction from the Late Cretaceous to the Paleocene, 3) weak extension from the Eocene to the Miocene and 4) contraction from the Miocene to the present. Therefore, the Jiuquan Basin is the product of taphrogenic, collisional and shearing movements.Seismic interpretations of sequence and maximum flooding surface divide the Xiagou Formation into three third order sequences: SQK1g0, SQK1g1 and SQK1g2+3. Five sedimentary facies associations are identified: the shoreland plain, fan delta dominated sedimentary systems, turbidite deposits, shallow lakes and half-deep lake systems. From K1g0 to K1g2+3, decreased sandstone percentages in three fan delta areas indicate a continuously transgressive process, which shows the transition from proximal to distal sites in most statistic wells and an obvious decrease of fan delta scales. The northeast-southwest faults control the lakeward distributions of delta fronts and turbidite fans.The correspondence of sedimentary infill and its response to tectonic movements have been demonstrated in the Qingxi Sag. The more active eastern part of the northeastern boundary fault has an important influence on the northeastward migration of depocenters in the Xiagou Formation. The topography developed continuously from K1g0 to K1g2+3, but the diminished subsidence indicates the dominant geological process varying from intense fault rifting in an early period to relatively gentle and overall subsidence in a later period during the Early Cretaceous.  相似文献   

11.
《Geodinamica Acta》2013,26(1-2):71-97
Most of the tectonic units cropping out in Western Tuscany are fragments of the Jurassic oceanic crust, ophiolitic successions, overlaid diachronously by Upper Cretaceous-middle Eocene carbonate and siliciclastic flysch successions with their Cenomanian-lower Eocene shalycalcareous basal complexes. These units, so called Ligurian, have been emplaced during the closure of the Ligurian-Piedmont Ocean. Ophiolite bearing debris flows are common in the flysch basins and their relationship with ophiolitic tectonic slices points to a strong relation between tectonics and sedimentation from the early compressive events of the Late Cretaceous. The tectonic activity reflects in a rough morphology of the ocean floor. It progressively influences the distribution and sedimentology of the turbidites. During middle Eocene this relationship begun very important and a paleogeographic reconstruction with prominent linear ophiolitic reliefs that bounded some turbiditic basins can be done. In our reconstruction the sedimentary and structural evolution can be framed in the context of strain partitioning, developed during the ocean closure, between subduction processes and ancient weakness zones crosscutting both the ocean and the Adria continental margin and reactivated in compressive regime. These weakness zones can be interpreted as transform faults of the Ligurian-Piedmont Ocean with prolongations in the Adria passive margin.

The weakness zones crosscut the oceanic lithosphere and the Adria continental margin and interfered with the subduction processes. The activity of the weakness zones is reflected in the Ligurian Units architecture where two main structural strike trends of thrusts and folds axial planes occur. The first trend is WSW-ENE oriented and it is connected with the reactivation of the weaknesses zones. This first orientation developed progressively from Late Cretaceous to Pliocene, from oceanic to ensialic convergence (D1, D2, and D4 deformation phases). The second trend is NNE-SSW oriented and is related to the late Eocene continental collision and the subsequent translation to the NE of the oceanic units onto the Adria continental margin (D3 deformation phase).  相似文献   

12.
Zircon and apatite fission track data provide constraints on the exhumation history, fault activity, and thermal evolution of the South-Central Chilean active continental margin (36°S–42°S), which we use to assess the tectonic and geomorphic response of the margin to the Andean subduction regime. Several domains with different exhumation histories are identified. The Coastal Cordillera is characterized by uniform and coherent exhumation between Late Triassic (~200 Ma) and late Miocene times, with surprisingly slow average rates of 0.03–0.04 mm/a. Thermal anomalies, related to Late Cretaceous and early Miocene magmatism, have regionally modified fission track age patterns. The Upper Cretaceous thermal overprint is of previously unrecognized significance and extent in the Coastal Cordillera south of 39°S. With the exception of a local but distinct Pliocene to Recent exhumation period in the high-relief Cordillera Nahuelbuta segment between 37°S and 38°S, Cenozoic overall exhumation in the Coastal Cordillera was very slow. The sedimentary record shows that uplift and subsidence here was episodic, with low amplitudes and durations. This rules out large-scale, long-term, Cenozoic accretion, trench-parallel tilting, and tectonic erosion processes in the forearc. The Main Andean Cordillera shows markedly greater long-term exhumation rates than the Coastal Cordillera and, at ~39°S, a steep exhumation gradient. To the south, long-term average Pliocene to Recent exhumation rates of ~1 to ~2 mm/a in the Liquiñe area (39°45′S) are almost an order of magnitude more rapid than average Paleogene to Recent exhumation near Lonquimay (38°30′S) and farther north. While no imprint of the intra-arc Liquiñe-Ofqui Fault Zone on the exhumation pattern is evident, long-term exhumation rates decrease from the crest of the Andes toward the western foothills. Exhumation gradients correlate with climatic gradients, suggesting a causal link to the variable intensity of late Miocene to Pleistocene glacial erosion.  相似文献   

13.
A palaeomagnetic study is reported from the lavas of Eocene, Miocene and Pliocene age cropping out immediately to the north of the North Anatolian Fault Zone (NAFZ) in the Re?adiye–Mesudiye region of central-eastern Anatolia. Rock magnetic investigations identify a high percentage of multi-domained magnetite as the dominant ferromagnet in these rocks and this probably accounts for a relatively poor response to alternating field and thermal demagnetisation. Thirty of 37 units yielded acceptable groupings of characteristic magnetisation directions. An earlier study indicated small anticlockwise crustal block rotation in this region since Upper Cretaceous times (D/I?=?347/50°), and our study indicates that this was overtaken by clockwise rotation in Eocene times (D/I?=?40/47°), although sample size control from the Palaeogene is poor. Results from later Miocene (D/I?=?2/62°) and Pliocene (D/I?=?0/53°) volcanic rocks indicate that no significant tectonic rotation has occurred in the north of the NAFZ in Neogene times. This contrasts with rotations in the weaker crust comprising the Anatolian collage south of the NAFZ, where differential and sometimes large anticlockwise rotations occurred during the latter part of the Neogene.  相似文献   

14.
The synorogenic basins of central Cuba formed in a collision-related system. A tectono-stratigraphic analysis of these basins allows us to distinguish different structural styles along the Central Cuban Orogenic Belt. We recognize three distinct structural domains: (1) the Escambray Metamorphic Complex, (2) the Axial Zone, and (3) the Northern Deformation Belt. The structural evolution of the Escambray Metamorphic Complex includes a latest Cretaceous compressional phase followed by a Palaeogene extensional phase. Contraction created an antiformal stack in a subduction environment, and extension produced exhumation in an intra-arc setting. The Axial Zone was strongly deformed and shortened from the latest Cretaceous to Eocene. Compression occurred in an initial phase and subsequent transpressive deformation took place in the middle Eocene. The Northern Deformation Belt consists of a thin-skinned thrust fault system formed during the Palaeocene to middle Eocene; folding and faulting occurred in a piggyback sequence with tectonic transport towards the NNE. In the Central Cuban Orogenic Belt, some major SW–NE structures are coeval with the Cuban NW–SE striking folds and thrusts, and form tectonic corridors and/or transfer faults that facilitated strain-partitioning regime attending the collision. The shortening direction rotated clockwise during deformation from SSW–NNE to WSW–ENE. The synchronicity of compression in the north with extension in the south is consistent with the opening of the Yucatan Basin; the evolution from compression–extension to transpression is in keeping with the increase in obliquity in the collision between the Caribbean and North American plates.  相似文献   

15.
The eastern segment of Central Asian Orogenic Belt underwent not only a long evolution history related to the Paleo-Asian Ocean during Paleozoic but also the tectonic overprinting by the westward subduction of Paleo-Pacific Ocean crust during Mesozoic. When the subduction of Paleo-Pacific Ocean crust started has been long debated issue for understanding the tectonic evolution of the eastern Asian continental margin. The eastern margin of the Jimusi Block (Wandashan Terrane) preserved complete records for the accretionary process of the westward subduction of Paleo-Pacific Ocean crust. Comprising the Yuejinshan Complex and Raohe Accretionary Complex (RAC), the Wandashan Terrane is located in the eastern margin of Jiamusi Block, NE China, and is considered to be an accretionary wedge of the westward subducting oceanic crust. To reconstruct the marginal accretion processes of the Jiamusi Block, the structural deformation of the Wandashan Terrane was investigated in the field and the geochronology of the Dalingqiao and Yongfuqiao formations were studied, which were formed syn-and-post RAC accretion respectively. The Yuejinshan and Raohe complexes were discontinuously accreted to the eastern margin of the Jiamusi Block. Contrary to the previous consideration of the Late Triassic to Early Jurassic, this study suggests that the Yuejianshan Complex in southwest Wandashan Terrane probably accreted from Late Carboniferous to Middle Permian, which was driven by unknown oceanic crust subduction existing to the east (present position) of the Jiamusi Block at that time. The siltstones of the Dalingqiao Fm. yield the youngest zircon U-Pb age of 142 ± 2 Ma, indicating the emplacement of the RAC not earlier than the Late Jurassic. Thus, the RAC might start to accrete from the Jurassic and emplace during 142–131 Ma, resulted from the Paleo-Pacific subduction which started from the Late Triassic to Early Jurassic.  相似文献   

16.
《Geodinamica Acta》2001,14(1-3):177-195
The east Anatolian plateau and the Lesser Caucasus are characterised and shaped by three major structures: (1) NW- and NE-trending dextral to sinistral active strike-slip faults, (2) N-S to NNW-trending fissures and /or Plio-Quaternary volcanoes, and (3) a 5-km thick, undeformed Plio-Quaternary continental volcano-sedimentary sequence accumulated in various strike-slip basins. In contrast to the situation in the east Anatolian plateau and the Lesser Caucasus, the Transcaucasus and the Great Caucasus are characterised by WNW-trending active thrust to reverse faults, folds, and 6-km thick, undeformed (except for the fault-bounded basin margins) continuous Oligocene-Quaternary molassic sequence accumulated in actively developing ramp basins. Hence, the neotectonic regime in the Great Caucasus and the Transcaucasus is compressional–contractional, and Oligocene-Quaternary in age; whereas it is compressional–extensional, and Plio-Quaternary in age in the east Anatolian plateau and the Lesser Caucasus.Middle and Upper Miocene volcano-sedimentary sequences are folded and thrust-to-reverse-faulted as a result of compressional–contractional tectonic regime accompanied by mostly calc-alkaline volcanic activity, whereas Middle Pliocene-Quaternary sequences, which rest with angular unconformity on the pre-Middle Pliocene rocks, are nearly flat-lying and dominated by strike-slip faulting accompanied by mostly alkali volcanic activity implying an inversion in tectonic regime. The strike-slip faults cut and displace dykes, reverse to thrust faults and fold axes of Late Miocene age up to maximum 7 km: hence these faults are younger than Late Miocene, i.e., these formed after Late Miocene. Therefore, the time period between late Serravalian (∼ 12 Ma) continent–continent collision of Arabian and Eurasian plates and the late Early Pliocene inversion in both the tectonic regime, basin type and deformation pattern (from folding and thrusting to strike-slip faulting) is here termed as the Transitional period.Orientation patterns of various neotectonic structures and focal mechanism solutions of recent earthquakes that occurred in the east Anatolian plateau and the Caucasus fit well with the N–S directed intracontinental convergence between the Arabian plate in the south and the Eurasian plate in the north lasting since Late Miocene or Early Pliocene in places.  相似文献   

17.
The tectonic inversion of the Songliao Basin during the Oligo–Miocene may have played an important role in controlling the development of sandstone-type uranium deposits (SUDs). Here we investigate drill holes along a southeast to northwest section in this basin based on apatite fission-track (AFT) and zircon fission-track (ZFT) techniques. We present 50 data from 15 deep boreholes at different depths between 665 and 3956 m and different structural units including grabens and horsts formed in the Early Cretaceous beneath the basin. The results of the effective AFT ages are 100 ± 11 to 2.3 ± 0.4 Ma (P(x2) > 5%) and ZFT ages are 97.5–20.4 Ma (including binomial peak ages). These results reveal that the basin underwent two distinct stages of rapid cooling after Late Cretaceous. In the first stage, during the Late Cretaceous–Early Paleogene (~80–50 Ma), tectonic uplift occurred in all of the structural units including grabens and horsts, which was marked by an unconformity between the latest Cretaceous Mingshui and the Eocene Yi'an formations. In the second stage, during the Oligo–Miocene (~40–10 Ma), tectonic uplift occurred mainly in the grabens but not in the horsts, corresponding with a few sediments of the Neogene Da'an and Taikang formations. We propose that the folds and the thrust faults mostly characterize in the second stage indicating a major tectonic inversion in the basin. The shifting of the two stages was probably in response to differences in the subduction angles and directions of motion of the Paleo-Pacific Plate from the southeast. Combined with previous information, it was demonstrated that most of the U mineralization ages are younger than 40 Ma, with a peak in the Miocene or later (<20 Ma). We thus propose that the SUDs have been redistributed and redeposited locally in successive stages during and after the Oligo–Miocene tectonic inversion.  相似文献   

18.
During the Neogene, the sedimentary succession changed from marine shallow water formations during the Early and Middle Miocene to lagoonal and continental formations during the Late Miocene and the Pliocene. This succession is subdivided into three sedimentary major cycles that are mainly due to compressional tectonic events. Propagating folds above a detachment within the evaporitic Triassic strata caused the formation of the tectonics. To cite this article: M. Chikhaoui, C. R. Geoscience 336 (2004).  相似文献   

19.
In the central Aegean, the Cycladic island of Amorgos consists of two high‐pressure (HP) units, the marble‐rich Amorgos unit, which is correlated to the Mesozoic ‘cover’ sequence of the Menderes Massif, and the Cycladic Blueschist unit. New structural data show that the deformation history of the Amorgos HP‐rocks was principally governed by early Oligocene (or late Eocene)–early Miocene ductile to brittle thrusting (D1–D3) followed by middle–late Miocene oblique contractional movements (D4–D5). The D1 phase caused syn‐blueschist‐facies ductile thrusting of the Cycladic Blueschist unit over the Amorgos unit, with ambiguous kinematics. Progressive deformation under continuous NW–SE compression produced a sequence of imbricate NW‐directed thrusts (D2/3) characterized by a stratification of fault‐related rocks, with mylonitic zones (D2) giving way downwards to cataclastic zones (D3). Ductile D2 thrusting synchronous to greenschist‐facies retrogression, was accompanied by mega‐sheath folding during constrictional and general shear deformation. Brittle D3 thrusting was associated with NW‐verging F3 folds trending at a high‐angle to the transport direction. Orthogonal contraction gave way to transpression during which the compression orientation changed from NW–SE (D4) to NE–SW (D5). Back‐arc related NW–SE pure extension (D6) seems to have been established in post‐late Miocene times and related high‐angle normal faulting affected HP‐rocks only after they had already reached the uppermost crustal levels. Oligocene–early Miocene deformation history is interpreted to indicate syn‐compressional exhumation of HP‐rocks possibly in an extrusion wedge. In this case, Amorgos HP‐rocks should have occupied the base of the extrusion wedge. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In Cap Corse, progressive deformation during Late Cretaceous obduction of the ophiolitic Schistes Lustrés (sensu lato) as a pile of imbricate, lens-shaped units during blueschist facies metamorphism was non-coaxial. Two zones are recognized: a lower series emplaced towards the west is overlain by a series emplaced towards the south-southwest in Cap Corse. Equivalent structures (differing only in orientation) occur in both zones. The change in thrust direction was responsible for local refolding and reorientation of previously formed structures, parallel to the new stretching direction immediately below the thrust contact between the two zones, and within localized shear zones in the underlying series.Both zones are refolded about E-overturned F2 folds trending between 350 and 025°. Local minor E-directed thrusts occur associated with the F2 folds. This second deformation of Middle Eocene age is considered to be related to the backthrusting of an overlying klippe containing gneisses of South Alpine origin, and is followed by a third Late Eocene phase of upright 060°-trending F3 folds accompanied by greenschist facies metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号