首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南大西洋中脊的26°S热液区广泛发育多金属硫化物、底泥、枕状熔岩、非活动性烟囱体和活动性烟囱体。为了有效探索硫、铜等成矿物质的来源以及成矿作用过程,分别以玄武岩、烟囱体残片及块状多金属硫化物为研究对象,开展了熔融包裹体、硫同位素和铜同位素研究。结果显示:区内玄武岩新鲜未蚀变且斑晶中产出大量熔融包裹体;熔融包裹体气泡壁附着黄铜矿、黄铁矿及磁铁矿等子矿物,说明在岩浆作用过程中可从熔浆中分离出成矿所需的金属元素和硫,这些成矿元素随着岩浆去气作用进入挥发分中,并随着脱气作用迁移出来。通过对烟囱体残片及块状多金属硫化物中黄铁矿的硫同位素组成进行比对分析,发现26°S热液区内硫化物的硫同位素与大西洋各热液区硫化物的硫同位素变化范围相一致,但δ34SV-CDT值略低(3.0‰~3.9‰)。低的δ34SV-CDT值指示硫以岩浆硫源为主,海水硫酸盐还原硫占比低。黄铜矿呈现略微富铜重同位素特征且分馏程度较低,其δ65Cu值(0.171‰~0.477‰)趋近于大洋中脊玄武岩的铜同位素值(0)。综合硫同位素及铜同位素特征,表明热液流体经历了岩浆和海水的混合过程,成矿物质主要来自于岩浆热液,成矿作用过程中可能有少量海水混入。  相似文献   

2.
大西洋中脊属于慢速扩张洋中脊,最北端到达87°N,距离北极仅333km,最南端延伸到54°S的布韦岛,占到全球洋中脊总长度的40%。随着北大西洋TAG(26°N)热液区的发现及较大硫化物资源量的证实,大西洋慢速扩张脊成为全球海底热液硫化物调查与研究的重点地区。俄罗斯、  相似文献   

3.
席振铢  李瑞雪  宋刚  周胜 《地球科学》2016,41(8):1395-1401
深海热液金属硫化物矿位于水深数千米的大洋洋底,其形态、规模及电性参数难为人知,迄今尚未有由实测数据推导其电性结构的研究.依托于“大洋一号”,在大西洋洋中脊、西南印度洋洋中脊实施了多次深海热液金属硫化物矿探测试验,实地采集热液金属硫化物矿瞬变电磁响应数据,并对试验数据进行反演分析.分析表明:大西洋TAG(trans-Atlantic geotraverse)热液区及西南印度洋49°4′E,37°5′S热液区内,深海热液金属硫化物矿形似生长于洋壳内的“蘑菇”,矿体呈透镜状或似层状结构,分布于热液喷口的卤水池内,电阻率约为0.1 Ω·m,规模为50~250 m,厚度范围为20~50 m;热液烟囱直径为10~50 m,周围岩石发生热液蚀变,蚀变岩石电阻率在0.2~0.5 Ω·m,以热液通道为中心呈圈层状变化.依据深海热液金属硫化物矿的形态特征及电性参数,矿体的电性结构模型可简化为T型异常体.   相似文献   

4.
冲绳海槽Jade热液活动区热液沉积物主要以块状硫化物和硫酸盐矿物为主。与其它热液活动区相比,本区的热液沉积物以富含Pb和Ag等元素为特征。电子探针和中子活化的分析结果表明,在块状硫化物矿石中,Ag主要以分散态富集在粗粒硫化物和细粒硫化物集合体中,在热液活动的早期和晚期均有Ag的富集。在以硬石膏为主的块状矿石中,Ag主要在细粒硫化物集合体中富集,其富集成矿的时间为热液活动的中后期,富集成矿温度在150℃以上。在重晶石为主的块状矿石中,Ag主要以颗粒状自然银的形式在热液活动后期富集成矿,其成矿温度低于160℃。  相似文献   

5.
2005年在西南印度洋脊49.6°E发现热液异常,并于2007年取得硫化物样品,这是首个在全球超慢速扩张洋脊发现活动的海底热液区。对该区硫化物开展了矿物学和矿物化学研究。结果表明,西南印度洋脊49.6°E热液区硫化物可划分出富Zn和富Fe两种矿石自然类型,矿石中广泛发育溶蚀孔洞构造、"黄铜矿疾病"结构、网格状固溶体分解结构、同质增生结构等结构构造。根据矿物化学成分变化,矿石矿物可划分出Fe-S系列、Zn-S系列、Cu-Fe-S系列、Cu-S系列及Au、Cu、W自然金属系列等。该区硫化物的沉积过程可划分为2个阶段:Ⅰ.富Zn硫化物沉积阶段,矿物组合以闪锌矿-黄铁矿-黄铜矿为主,成矿流体沉积温度相对较低;Ⅱ.富Fe硫化物阶段,矿物组合以黄铁矿-白铁矿-闪锌矿-等轴古巴矿为主,成矿流体沉积温度相对较高。后期沉积过程(阶段Ⅱ)对早期沉积过程(阶段Ⅰ)的硫化物进行了部分叠加改造。  相似文献   

6.
南大西洋中脊(SMAR)属于慢速扩张脊,26°S(SMAR 26°S)热液区是中国新近发现的以玄武岩为基岩的热液区。本次研究对热液区的玄武岩开展了岩相学和地球化学研究,揭示玄武岩的地球化学特征和岩浆源区性质,探讨其成矿潜力。结果表明,该热液区玄武岩地球化学特征和正常洋中脊玄武岩(N-MORB)相似,为钠质拉斑玄武岩;它们是由下伏亏损的尖晶石二辉橄榄岩地幔部分熔融而成。玄武岩所具有的低w(K_2O)(0.05%~0.25%)、低(Ce/Yb)_N比值(0.62~0.86),以及异常指数(Nb~*1,P~*1,Sr~*≤1,Zr~*1)特征,表明源区地幔性质不均一,且受到了不同程度的陆壳物质混染;w(MgO)为7.52%~8.81%,指示热液区岩浆结晶分异程度低,岩浆演化不彻底。轻微的Eu正异常(δEu值为1.03~1.15),指示玄武岩形成过程中受到一定程度高温热液流体的影响,并处于强还原环境。与其他热液区玄武岩相比,研究区玄武岩Ba,Rb等高度不相容元素含量较低,均显示正Eu异常,岩石-海水相互作用弱。研究区玄武岩的Zn和Cu的含量分别为72.0~148.0×10~(-6)和79.9~138.5×10~(-6),与MARK区和大西洋46°~32°S热液区玄武岩相比,研究区玄武岩可能具有更大的成矿潜力。  相似文献   

7.
位于中印度洋脊23°52’S的Edmond热液区发现于2000年,属于典型的以玄武岩为宿主的活动热液区。首次测得了Edmond热液区9件硫化物的铅同位素和6件样品的硫同位素组成,结果表明:硫化物矿石的206Pb/204Pb为17.879~17.970,207Pb/204Pb为15.433~15.550,208Pb/204Pb为37.743~38.130。Pb-Pb图解表明,Edmond热液区硫化物的铅同位素数据与中印度洋脊玄武岩的铅同位素组成较一致,与印度洋沉积物和锰结壳相比具较低放射性成因铅的特征,说明硫化物中的铅主要来源于地幔(玄武岩),海水的贡献微弱。硫化物的δ34S为5.7‰~7.2‰,明显高于玄武岩的硫同位素组成(δ34S≈0‰),认为Edmond热液区硫化物中的硫除地幔的贡献外,海水中硫酸盐还原作用产生的硫的贡献可能超过30%。中印度洋脊Edmond热液区存在非常活跃的浅循环系统,可能是造成硫化物中硫同位素组成偏重的主要原因。  相似文献   

8.
海底多金属硫化物矿床的主要特征   总被引:2,自引:0,他引:2  
陆峻  蔡剑辉 《矿床地质》1998,17(Z4):737-740
海底多金属硫化物由于含有贵金属而具有潜在的经济价值并,受到国际地质学家们的广泛关注。已经发现的矿点和矿床有一百多处,然而规模比较大的不足20处。相对于锰结核,多金属硫化物在海底产出的部位较浅,矿石中含有Cu、Zn、Ag和Au等,具有很高的经济价值。据粗略估计,已发现的大型矿床共含有一百万到五百万吨的块状硫化物。世界海底多金属硫化物矿床主要分布在东太平洋海隆、西太平洋构造活动带、西南太平洋以及大西洋中部的大洋中脊。海底多金属硫化物属于海底热液烟囱物,它是热液活动的产物,其成因机制涉及构造和岩浆活动与热液活动的关系,海水及水深以及沉积物与热液成矿的关系,岩水反应,热液地球化学,生物活动等。  相似文献   

9.
位于中印度洋中速扩张洋脊的Edmond热液区块状硫化物矿石样品主要分为以黄铁矿-黄铜矿为主的富Fe块状硫化物、热水沉积成因的富含硅质块状矿石和以硬石膏为主的硫酸盐矿石等3种不同类型.通过扫描电镜观察和X射线光电子能谱分析,在硫酸盐矿石和富Fe块状硫化物中首次发现了自然金,最大粒径可达20 μm左右,主要呈不规则粒状或板状与硬石膏、闪锌矿等硫化物颗粒紧密共生,少量以次显微金形式沉淀在自形黄铁矿晶体表面.电子探针分析结果显示,晚期形成于中低温条件下的贫Fe闪锌矿中Au富集程度普遍较高(平均含量约为6700×10-6);Ag主要以类质同象形式赋存于与闪锌矿、黄铜矿伴生的硫盐矿物中(5.0%~6.7% Ag),这表明贵金属元素的富集成矿作用与海底热液活动晚期的中低温成矿阶段有关.推断Au在该研究区以高温、酸性和氯度较高为特征的热液流体中主要呈AuCl2-或AuHS0形式迁移.而海水与热液流体混合、喷口流体发生相分离以及传导冷却作用,被认为是导致Au有效沉淀的重要控制因素.  相似文献   

10.
洋中脊超基性岩热液成矿系统通常与洋底核杂岩构造有关,多发育大型矿床,具有巨大的资源前景。然而,受大洋调查取样手段的限制,超基性岩蛇纹岩化对成矿的影响仍需进一步研究。德尔尼铜矿床是地质历史上该类矿床的典型案例,对于理解其成矿模式,以及大洋硫化物勘探具有指导意义。本文选取德尔尼铜矿床块状硫化物样品进行黄铁矿的S同位素分析,结果表明其δ34S值主要分布在-0.4‰~+6.3‰。结合前人研究发现,形成于深部网脉状、条带状矿石中的δ34S值为负值,而经历表层喷流和破碎作用的块状和角砾状矿石中的δ34S值为正值,二者呈对称分布,这主要是由于还原条件下岩浆排气产生的SO_2和H_2S动态平衡并逐渐沉淀S2-,表明蛇纹岩化提供的还原环境对热液系统演化产生了重要影响。然而,磁黄铁矿和矿床Ni的分布指示成矿物质中超基性岩的贡献较小,主要物质来源是洋中脊深部的基性岩浆,通过热液循环将物质运移至海底并喷流成矿。对比现今超基性岩赋矿的高温热液硫化物矿床,德尔尼铜矿床形成温度更低,代表了超基性岩赋矿热液硫化物中的中温端元,表明在距离拆离面一定距离(约2~4km)的位置也可能形成大型的热液硫化物矿床,这对于现今洋中脊热液硫化物勘探具有一定的指导意义。  相似文献   

11.
大西洋洋中脊TAG热液区硫化物铅和硫同位素研究   总被引:18,自引:3,他引:18  
位于大西洋洋中脊26.08°N的 TAG 热液区是目前己知的赋存在无沉积物覆盖的洋中脊区的一个最大的海底热液硫化物矿床。新测得来自 ODP-158航次钻孔的9件热液硫化物的铅、硫同位素组成;2件铁锰氧化物和1件底盘玄武岩的铅同位素组成。结果表明,矿石硫化物的铅同位素组成~(206)Pb/~(204)Pb 为18.2343~18.3181,~(207)pb/~(204)Ph 为15.4717~15.5061,~(208)Pb/~(204)Pb 为37.7371~37.8417;它们位于该区底盘玄武岩(~(206)Pb/~(204)Pb=18.1454,~(207)Pb/~(204)Pb=15.4572,~(208)Pb/~(204)Pb=37.6534)和近洋底铁锰氧化物(~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb,~(208)Pb/~(204)Pb 分别为18.6907~18.9264,15.5615~15.6279,38.1164~38.3687)的铅同位素组成之间。三者呈线性相关关系,说明硫化物中铅来源于地幔(玄武岩)与海水(铁锰氧化物)的两端元混合。硫化物的硫同位素组成δ~(34)S 为6.2‰~9.5‰,它明显高于地幔玄武岩的硫同位素组成(δ~(34)S=±0‰),也高于东太平洋海隆 EPR21°N(δ~(34)S=0.9‰~4.0‰)和大西洋洋中脊 MAR23°N(δ~(34)S=1.2‰~2.8‰)等热液活动区硫化物的硫同位素组成,这一特征反映了 TAG 热液体系中硫来源于地幔玄武岩硫与海水硫酸盐无机还原作用产生的硫的两端元混合。此,铅硫同位素研究为现代大洋底热液硫化物矿床形成过程中矿质来源及流体混合作用提供了十分有益的信息。  相似文献   

12.
<正>在全球洋中脊已经发现的200多个热液硫化物矿点中,产于南大西洋中脊的极为有限,因此南大西洋热液活动及其成矿的相关研究也一直是当前的大洋中脊热液活动研究的薄弱点。2011年,我国大洋22航次在南大西洋中脊开展了广泛的热液活动调查,并发现多处热液活动及其多金属硫化物矿点。这为我们认识南大西洋中脊热  相似文献   

13.
从现代块状硫化物矿床成矿特征对比角度,总结分析了世界现代海底喷流的块状硫化物成矿堆积,综述了现代海底块状硫化物成矿主要形成于洋壳和岛弧环境的实际观察结果,突出强调了洋壳环境和岛弧或陆壳环境两种成矿环境对成矿类型分类的意义。对上地幔部分熔融岩浆来源与地壳物质可能带人、火山喷发岩浆系列的演化和对热液成矿作用的控制进行了讨论,对比分析了岩浆流体对成矿的重要贡献和控制作用,以及成矿热液循环体系形成的条件和模式。  相似文献   

14.
<正>现代海底热液活动及海底"黑烟囱"的形成是海洋科学研究的前沿领域之一[1-2]。现代洋脊区是目前世界海底热水活动和金属硫化物矿床形成最多和最重要的环境[3]。印度洋洋脊区与太平洋,大西洋洋脊区相比,所发现的海底热液活动相对较少,研究程度相对较低[4]。Edmond是中印度洋脊的典型的热液活动区域,在此发现有大量硫化物堆积体和块状硫化物碎块。其中,不同的矿物组合及其演化规律记录了海底热液作用的大量信息。对其进行研究,可反演成矿的物理化学条件和宏观过程,对深刻认识该区成矿物质聚集过  相似文献   

15.
利用气相色谱(GC)、气相色谱-质谱联用仪(GC-MS)测定了西南印度洋中脊49.6°E热液区热液产物中的可溶有机质,结合生物标志物和单体同位素分析,对烃类有机质的组成、来源及成因意义进行了探讨。硫化物烟囱体以正构烷烃(3.437~3.962μg/g)为主要烃类,L/H1,C22以上烷烃具有轻微奇碳数优势(CPI=1.140~1.209),NAR接近0;生物标志物类型丰富(Sq、IS40、烷基环己烷),C31藿烷22S/(R+S)高达0.77,且缺少17β(H),21β(H)构型藿烷;低碳数饱和脂肪酸为主要脂肪酸类型,异构/反异构脂肪酸含量显著,缺少单不饱和脂肪酸。热液蚀变岩以异构烷烃(2.094μg/g)为主要烃类,正构烷烃以低碳数(L/H=1.33)、偶碳优势(CPI=0.377)为特征;脂肪酸以单不饱和脂肪酸为主。结果表明,海洋原生生物体是49.6°E热液区主要的烃类有机质输入源,热液流体温度及化学条件是控制热液喷口区原生生物群落分布及热液产物中烃类有机质组成的主要因素。生物标志物类型显示硫化物烟囱体中具有产甲烷古菌与硫酸盐还原菌共存的现象,反映出热液流体中富含H2,表明49.6°E热液区具有非生物合成烃类的可能。  相似文献   

16.
Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征   总被引:4,自引:0,他引:4  
用 ICP-MS对取自 Juan de Fuca洋脊 Endeavour段 5块热液硫化物样品的 13个分析样进行了稀土元素(REE)测试.结果显示该区硫化物样品的 REE含量较低(0.35~ 14.8 μ g/g),所有样品的 REE球粒陨石标准化分布模式均表现出 Eu正异常和 LREE富集的特征,表明硫化物中的 REE来自热液.不同喷口硫化物的 REE含量变化较大,同一块状硫化物不同部位的含量也有较大差异,主要是由于硫化物形成过程中,热液和海水的混合不均一性以及不同矿物沉淀和 (或 )溶解的结果.硫化物 REE的分布特征主要受热液的影响,烟囱内外层 Eu正异常的变化主要受矿物组成和物理化学条件的控制.  相似文献   

17.
<正>2015年中国大洋33航次第一航段对西北印度洋卡尔斯伯格脊开展了地质、地球物理、生物和环境等多学科综合科学考察。在63°50′E/3°41′N发现了一处新的热液区,并命名为天休热液区。天休热液区位于西北印度洋卡尔斯伯格脊中央裂谷南侧山坡,离中轴距离约为5 km,基底为超铁镁质围岩。热液区内有大量的活动烟囱群、死亡烟囱体、硫化物、热液沉积物与热液生物和显著的热液异常等(Han et al.,2015)。在天休热液区附近进行了两个站位的CTD调查并采样。其中,CTD01(63°51′E/3°42′N)  相似文献   

18.
大洋中脊热液硫化物矿床分布及矿物组成   总被引:9,自引:0,他引:9  
海底热液硫化物是继大洋多金属结核、富钴结壳外的又一种新型海底多金属矿物资源,富含Cu,Zn,Fe,Mn,Pb,Ba,Ag,Au,Co,Mo等金属和稀有金属。多金属硫化物矿床是热液活动的产物,主要分布在大洋中脊、年轻和成熟的弧后盆地、岛弧以及海山等。本文总结了热液硫化物矿床在大洋中脊的分布特征及矿物组成,探讨不同扩张速度条件下的热液硫化物矿床的差异,有助于我们今后在大洋中脊环境中勘查和寻找新的大型热液硫化物矿床。  相似文献   

19.
海底热液成矿是近年来地质学家关注的热点问题。现代海底热液成矿作用的研究推动了古块状硫化物矿床成矿过程的认识。结合现今研究成果综合分析表明:海底热液成矿作用主要分布在张性活动板块边界,与大地构造活动紧密相连;成矿金属物质来源具有多元性,金属矿化的类型受基底类型(洋壳-陆壳)和岩性组合(基性岩石-中酸性岩石)的控制,岩浆来源的物质也可能对一些块状硫化物矿床有贡献;主导海底热液成矿作用的核心为对流热循环系统,对流循环具有单循环和双扩散对流模式;海底块状硫化物的堆积过程是烟囱的生长、倒塌堆积和热液流体充填与交代的过程,成矿热液流体的温度和密度在这个过程中起关键作用。基于海底热水矿床的重要性,建立完整的热水喷流成矿理论意义重大。  相似文献   

20.
<正>现代海底黑烟囱及其生物群落的发现,是人类20世纪以来最伟大的发现之一。随着对黑烟囱及块状硫化物的矿物学研究,在很多热液区的金属硫化物中均发现有生物遗迹,如在大西洋中脊的TAG热液区(Rona et al.,1993)、Broken Spur热液区(Butler et al.,1998)、Menez Gwen热液区  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号