首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
本文以中国大陆科学钻探主孔0~2000m岩芯中的榴辉岩为对象,运用EMPA和LA-ICP-MS技术,系统测定了榴辉岩中石榴石和绿辉石的主量与微量元素组成,并据此讨论了它们的成岩成矿意义.研究结果表明,CCSD主孔榴辉岩中石榴石富重稀土和Sc、Y、Co,而绿辉石则富中稀土和Pb、Sr、V,石榴石和绿辉石的高场强元素(特别是Nb、Ta)含量均很低.石榴石存在不同程度的Ce负异常,指示榴辉岩的形成过程中卷入有地表氧化条件下形成的风化沉积物.石榴石具有低的Zr/Y比值,绿辉石普遍具有高的Sr含量,这些特征说明榴辉岩(特别是高钛榴辉岩)的原岩可能为遭受过壳源物质混染与交代的富集地幔部分熔融的产物.高钛与低钛榴辉岩中石榴石和绿辉石在主量及微量元素组成上存在一定差别,总体而言,高钛榴辉岩中石榴石具高的MgO含量和较高的MgO/TFeO比值,以及较高的稀土和Sc含量,而绿辉石则相对富TFeO、MnO,并具有较高的Sr、Zr、Hf含量.高钛榴辉岩中石榴石和绿辉石常出现不同程度的Eu正异常,Cr含量均显著低于低钛榴辉岩.综合分析表明,高钛榴辉岩的原岩最可能为富斜长石的辉长质侵入岩,原岩组成的差异应是导致二类榴辉岩中石榴石和绿辉石矿物化学组成存在差异的主要原因.  相似文献   

2.
中国大陆科学钻探工程主孔位于江苏东海县,即大别-苏鲁超高压变质带的东部.该钻孔100至2050m井段钻遇的岩石主要是超高压变质的榴辉岩、副片麻岩、正片麻岩、石榴石橄榄岩,以及少量的石英岩和片岩,其中榴辉岩的总厚度达1200m.这些榴辉岩具不同矿物组成和不同的全岩化学成分,据此可划分为高硅型、高铝型、高钛型、高钛铁型、高镁型和正常型榴辉岩.正常型榴辉岩SiO2=55%~43%,TiO2<2%,Al2O3<18%,MgO<11%,Na2O+K2O=1.5%~8.2%,CaO=4.2%~13.1%和FeOT=5.3%~18.1%,多呈LREE富集的REE型式;高Si榴辉岩具较高SiO2(55%~63%)和Na2O+K2O(2.9%~7.8%)含量,REE配分型式为LREE富集的正Eu异常型;高Mg榴辉岩与石榴石橄榄岩共生,特征是富MgO(12.2%~17.1%),贫Na2O和K2O,具有较低的REE含量;高Al榴辉岩的Al2O3含量大于18%,REE配分型式为LREE富集型,且多具有正Eu异常;高Ti榴辉岩具有较低的SiO2(<45%),较高的TiO2(3%~6%)含量;高Ti-Fe型榴辉岩具异常的化学成分,具有最低的SiO2含量和最高的TiO2和FeOT含量,以及很低的REE总量,并呈LREE和HREE亏损,MREE富集的配分型式.研究显示,榴辉岩的原岩是多成因的,很可能是起源于不均匀的地幔源区,而且强烈的结晶分异作用又使其成分发生明显的变化.同时,很可能存在的变质分异和变质交代作用也对部分榴辉岩的成分再次进行了改造.大多数榴辉岩总体上具有大陆玄武岩的构造亲缘性.  相似文献   

3.
榴辉岩型金红石矿床是我国原生金红石矿床的最重要类型。本文以中国大陆科学钻探主孔0~2000m范围内揭露的榴辉岩为对象,通过对榴辉岩中TiO2与其它元素协变关系的全面分析,同时结合我国原生榴辉岩型金红石矿床TiO2的平均品位,将榴辉岩区分为高钛榴辉岩(TiO2〉2%)和低钛榴辉岩(TiO2〈2%),并据此系统对比了二类榴辉岩地球化学组成的差异。研究结果表明,高钛榴辉岩相对贫硅、贫钾、富铁,Al2O3/TiO2比值和全碱(K2O+Na2O)含量总体偏低,Cs、Rb、Ba等大离子亲石元素和Zr、Hf等高场强元素不同程度亏损,而放射性元素Th、U则相对富集,并总体具有较低的轻重稀土比值。榴辉岩型金红石矿床的形成主要受原岩因素制约,原岩的源区组成、产出环境、起源深度、部分熔融程度和随后的结晶分异过程对Ti的初始富集均具重要影响,富钛基性原岩是榴辉岩型金红石矿床形成的物质基础,高压区域变质作用是这类矿床形成的必要条件。  相似文献   

4.
利用XRF和HR-ICP-MS对中国大陆科学钻探工程(CCSD)主孔<700m深度高Ti榴辉岩进行了准确分析研究。结果表明高Ti榴辉岩以TFeO和Eu异常之间的相关性及非耦合的高TiO2(2.4-5.7%)、低Nb(<5.5μg/g)和Zr(<98μg/g)为特征。而且,这些榴辉岩的TiO2、V和TFeO之间正相关。高场强元素(Ti、Nb、Zr等)在不同矿物和玄武岩/安山岩熔体之间的分配系数研究表明,高Ti和低Nb、Zr之间的非耦合变化必须有磁铁矿结晶作用的参与才能够出现。斜长石的密度(p=2.61-2.76g/cm3)低于正常玄武岩熔体(p=2.8-3.0g/cm3),因此玄武岩岩浆房中结晶出的斜长石在岩浆演化早期不会和熔体分离而形成堆晶岩。磁铁矿的密度(p=5.1-5.2g/cm3)远远高于玄武岩熔体。磁铁矿的结晶分离会显著降低玄武岩熔体的局部密度而诱发斜长石晶体分离下沉并形成富集斜长石的高Fe堆晶岩。这种机制很好地解释了高Ti榴辉岩所具有的TFeO和Eu异常之间的相关性及非耦合的高TiO2(2.4-5.7%)、低Nb(<5.5μg/g)和Zr(<98μg/g)特征。本文研究表明在CCSD中的高Ti榴辉岩原岩应是由同一玄武岩岩浆房中富磁铁矿结晶作用形成的堆晶岩。高Ti榴辉岩的Ti矿化本质上源于磁铁矿结晶作用,而与其经历的超高压变质作用无关。  相似文献   

5.
金红石是TiO2的高温高压相变体,在工业上具广泛用途.我国钛资源丰富,储量居世界首位,但其中98.9%是钛铁矿,金红石仅占1%左右(王立平等,2004),因此,金红石资源在我国十分紧缺.上世纪80年代后期以来,在江苏北部新沂-东海一带的榴辉岩中陆续发现了重要的金红石矿床,资源总量达数千万吨(黄建平等,2003),最近实施的中国大陆科学钻探工程(Chinese Continental Scientific Drilling,简写为CCSD)进一步揭示东海地区金红石矿床具有层位多、厚度大、品位高等特点(徐珏等,2004),因此,苏北新沂-东海一带有望成为我国原生金红石矿床的又一重要产地.本文以CCSD主孔0~2000m岩芯中的榴辉岩为对象,通过对榴辉岩中主要造岩矿物(石榴石和绿辉石)、以及榴辉岩全岩化学组成的全面分析,系统对比了高钛(TiO2>2%)与低钛(TiO2<2%)榴辉岩元素组成特征的差异,并据此探讨了该区榴辉岩型金红石矿床成矿的地球化学制约因素.  相似文献   

6.
东准噶尔卡拉麦里SSZ型蛇绿岩地球化学及其构造意义   总被引:2,自引:0,他引:2  
卡拉麦里蛇绿岩带受控于卡拉麦里深大断裂,主要由超镁铁质岩体、镁铁质岩脉和火山熔岩组成.超镁铁质岩体主要由地幔方辉橄榄岩组成,并有纯橄岩和铬铁矿矿石产出.超镁铁质岩石具有低SiO2、高MgO、LREE富集的"V"字形和LREE略富集型稀土元素分布模式,具有SSZ(supra subduction zone)型的地幔橄榄岩特征.玄武岩、堆晶辉长岩以及辉长闪长岩岩脉具有低Al2O3、TiO2、K2O+Na2O含量,且K2O<Na2O,具相对高的MgO和极低的P2O5含量,具低Ti/V比值(10~20)、低的稀土元素丰度和LREE弱亏损型稀土元素配分模式,显示与洋内板块俯冲作用有关的SSZ型蛇绿岩地球化学特征.碱性玄武岩则具有洋岛玄武岩特征,具有高Al2O3、TiO2(2.50%~3.43%,平均3.16%)、K2O+Na2O(7.36%~9.40%)、P2O5(0.509%~1.579%,平均0.80%)和Ti/V(>50),相对低MgO(1.84%~2.81%,平均2.60%)的特征,富集不相容元素并具高的稀土元素总量和轻稀土元素明显富集的稀土元素配分模式,显示洋岛玄武岩特征,代表了洋盆早期洋内热点作用.卡拉麦里蛇绿岩带反映了哈萨克斯坦-准噶尔联合陆块与西伯利亚板块的古洋盆经历了洋内热点作用和大洋板块洋内俯冲消减的演化过程.  相似文献   

7.
位于江达-维西火山弧铁-铜-铅-锌多金属成矿带的德钦县红坡牛场铜金矿床,是与果腊复式侵入体有关的矽卡岩型-热液型多金属矿床。LA-ICP-MS锆石U-Pb数据表明,复式岩体核部(石英二长岩)侵位年龄为226.4±2.0Ma,边部(石英闪长玢岩)为36.59±0.22 Ma,显示为印支期和喜马拉雅期2期岩浆活动的产物。核部石英二长岩具高SiO_2(65.8%~68.5%)和低MgO(1.40%~2.17%)含量,属高钾钙碱性系列;高Sr,低Yb与Y含量证实其埃达克岩属性。地球化学特征及对比表明其很可能起源于加厚的陆壳底部,源区物质相当于榴辉岩的组成,而非俯冲洋壳熔融的产物。边部石英闪长玢岩具低SiO_2(55.8%~56.6%),高MgO(6.45%~7.50%;Mg#=52.4~62)、Cr(228×10~(-6)~353×10~(-6))和Ni(72.3×10-6~90.0×10~(-6)),为典型的高镁闪长岩。地球化学特征显示其为下地壳物质在地幔深部发生熔融的产物。研究成果为金沙江古特提斯洋演化提供了新的年代学约束,在江达-维西火山弧带发现喜马拉雅期岩浆活动,对于重新认识该矿床成因及后续江达-维西带成矿规律总结和找矿方向具有重要的指导意义。  相似文献   

8.
中国大陆科学钻探主孔中的超镁铁岩主要产在603.20~683.53m深度之间。超镁铁岩的上部直接围岩为高Ti-Fe型榴辉岩;内部夹有薄层状含柯石英高镁榴辉岩和厚层状多硅白云母榴辉岩;下部直接围岩为石英榴辉岩和普通榴辉岩。超镁铁岩的主体岩性为石榴石单辉橄榄岩,主要由橄榄石(60%~70%),石榴石(10%~25%),单斜辉石(5%~15%),斜方辉石(1%~5%)和少量金云母和钛铁矿或钛斜硅镁石组成。橄榄石Fo 79~89,其中一些以包裹体形式出现的高MgO橄榄石可能形成较早,主体橄榄石属变质重结晶阶段形成;石榴石以低CaO、高MgO和Cr_2O_3含量高(达3%)为特征,保留较好的进变质成分环带;单斜辉石Na_2O含量达到4%~5%,分为绿辉石和普通辉石类,属变质成因,结合矿物对的温压估算,岩石已经经历超高压变质作用。岩石成分研究表明,石榴石单辉橄榄岩与其顶、底板榴辉岩及其中的榴辉岩夹层有一较大的成分间断,其中MgO含量约相差10%左右,认为超镁铁岩与榴辉岩的原岩不属同一岩浆演化产物。锆石SHRIMP定年表明石榴石单辉橄榄岩原岩时代为古生代346~461Ma,超高压变质作用时代为早中生代220~240Ma。认为CCSD主孔石榴石橄榄岩为古生代的超镁铁质侵入体,在印支期的中国南北板块俯冲折返过程中经历了超高压变质作用。  相似文献   

9.
西秦岭天水地区的早古生代李子园群为一套中浅变质的沉积-火山岩系。沉积岩系主要由变质碎屑岩和碳酸盐岩组成,火山岩系主要由变玄武岩、变玄武安山岩和变安山岩组成,包括岛弧型火山岩和玻安岩。岛弧型火山岩SiO2含量介于48.79%~54.64%之间,TiO2含量较低(0.29%~0.88%);稀土元素分布型式呈LREE略富集型,富集大离子亲石元素(LILE)Cs、Sr、Th、U,相对亏损Rb、K和高场强元素(HFSE)Nb、P、Sm、Ti和Y,具Nb负异常,类似于低钾岛弧拉斑玄武岩和钙碱性玄武岩特征。玻安岩具有中等的SiO2含量(53.59%~59.28%),低的TiO2含量(0.24%~0.48%);相对中等的MgO含量(4.90%~4.96%)、较低的CaO/Al2O3比值(0.39~0.54)和较高的Mg#值(0.54~0.58)、Al2O3/TiO2比值(33.88~64.29);同时具有较低的Ti/Zr比值(15~83)、V/Zr比值(2.18~8.35)和较高的Zr/Y比值(3.82~12.08),相对富集大离子亲石元素(LILE),特别是Rb、Ba、Th,而亏损高场强元素(HFSE),如Nb、Ta、P、Ti、Y、Yb,显示为亏损MREE的U型稀土元素分布型式。岛弧型火山岩和玻安岩的存在表明,李子园群及其中的中基性火山岩系形成于俯冲带之上的岛弧或弧前环境。  相似文献   

10.
新疆北准噶尔乔夏哈拉-老山口苦橄岩建造及其构造意义   总被引:3,自引:0,他引:3  
近年在新疆北准噶尔构造带的乔夏哈拉-老山口地区发现有苦橄岩存在.苦橄岩与苦橄质玄武岩、玄武玢岩、辉绿岩、安粗岩、粗面岩以及凝灰岩、碳酸盐岩组成洋底苦橄岩建造,总厚大于1780 m,为新的岩层,建议采用"乔夏哈拉组"组名.苦橄岩有橄榄石苦橄岩、橄榄石-辉石苦橄岩和辉石苦橄岩3种.苦橄岩ω(SiO2)39.9%~46.78%;ω(MgO)16.4%~36.67%;ω(Na2O+K2O)0.17%~1.47%,多数小于0.5%;ω(TiO2)0.28%~0.62%,个别1.05%.总体具低硅、低铝、低钛、低碱、高镁特征.稀土元素总量<45×10-6,轻稀土略富集,Eu低正异常.微量元素Li、Be、U、Rb、Sr、Ba、V、F、Bi、Pb等元素明显富集,而Ni、Cr、Co和S明显亏损.表明经过一定程度的分异作用,并有上地壳成分的污染,铂族元素含量接近世界其它地区苦橄岩,具有Pt/Pd<1和贫Os、Ir的特征.  相似文献   

11.
华南板块西南缘、越北地块以北桂西那坡县城以西及西南一带发育一套晚二叠世基性岩,由层状、似层状次火山岩相辉绿岩、辉绿玢岩及球状岩组成。根据岩石地球化学特征,那坡基性岩可划分为高Ti(TiO_22.8%和Ti/Y500)和低Ti两部分。高Ti基性岩为碱性玄武岩,而低Ti基性岩为拉斑玄武岩。与低Ti基性岩相比,高Ti基性岩整体具有相对较低的SiO_2、MgO和较高的FeO_t、P_2O_5,轻、重稀土分馏明显,富集大离子亲石元素(LILE)和高场强元素(HFSE),显示出似OIB地球化学特征,与峨眉山高Ti玄武岩具高度亲缘性;低Ti基性岩具有相对较高的SiO_2、MgO和较低的FeO_t、P_2O_5,稀土配分曲线较平坦,富集LILE,严重亏损HFSE(Nb、Ta),与岛弧玄武岩地球化学特征类似。从微量元素比值及相关图解对岩浆源区和构造环境判别,那坡高Ti基性岩来自富集OIB地幔源区,而低Ti基性岩兼具OIB和岛弧岩浆源区的过渡特征。结合岩石地球化学特征及区域地质背景,认为那坡高Ti基性岩可能为峨眉山地幔柱岩浆作用的产物,低Ti基性岩为古特提斯俯冲与峨眉山地幔柱共同作用的产物,揭示了那坡地区晚二叠世同时受到峨眉山地幔柱和古特提斯俯冲相互作用的影响。  相似文献   

12.
A Paleozoic ultrahigh-pressure metamorphic (UHPM) belt extends along the northern margin of the Qaidam Basin, North Tibetan Plateau. Eclogites in the Yuka eclogite terrane, northwest part of this UHPM belt, occur as blocks or layers of varying size intercalated with granitic and pelitic gneisses. These eclogites have protoliths geochemically similar to enriched-type mid-ocean ridge basalts (E-MORB) and oceanic island basalts (OIB). On the basis of Ti/Y ratios, they can be divided into low-Ti and high-Ti groups. The low-Ti group (LTG) eclogites exhibit relatively low TiO2 (most <2.5 wt%) and Ti/Y (<500) but comparatively high Mg# (48–55), whereas the high-Ti group (HTG) eclogites have high TiO2 (most >2.5 wt%) and Ti/Y (>500) but lower Mg# (46–52). Zircons from two eclogite samples gave a magmatic crystallization (protolith) age of ∼850 Ma and a UHPM age of ∼433 Ma. The occurrence, geochemical features and age data of the Yuka eclogites suggest that their protoliths are segments of continental flood basalts (CFBs) with a mantle plume origin, similar to most typical CFBs. Our observation, together with the tectonic history and regional geologic context, lend support for the large scale onset of mantle plume within the Rodinia supercontinent at ∼850 Ma. The Qaidam block is probably one of the fragments of the Rodinia supercontinent with a volcanic-rifted passive margin. The latter may have been dragged to mantle depths by its subducting leading edge of the oceanic lithosphere in the Early Paleozoic.  相似文献   

13.
The Xitieshan terrane, located in the central part of the North Qaidam ultrahigh pressure (UHP) metamorphic belt, China, is mainly composed of orthogneiss and paragneiss and a few intercalated eclogite layers and boudins. Based on their bulk-rock TiO2-contents, the eclogites can be subdivided into a high-Ti group (TiO2 > 2%) and a low-Ti group (TiO2 < 2%). Whole-rock major and trace element analyses revealed that the protoliths of the low-Ti eclogites are normal-type mid-ocean ridge basalts (N-MORB), whereas those of the high-Ti eclogites are either enriched-type mid-ocean ridge basalts (E-MORB) or near ridge seamount basalts, respectively. The Sr–Nd isotopes of eclogites of both groups are similar to those of MORB. Those of the low-Ti eclogites are characterized by positive εNd(T) and restricted ISr values and therefore provide further evidence for the formation of the protoliths of the eclogites in an oceanic environment. On the other hand, the Sr–Nd isotopes of high-Ti eclogites show mainly positive but also some negative εNd(T) values and relatively broadly distributed ISr values, indicating minor crustal contamination of the ocean floor basalts. Considering available 750–877 Ma protolith ages preserved in zircon cores, it is inferred that some of the eclogites derived from Neoproterozoic protoliths were emplaced onto the crust far ahead of the Paleozoic deep subduction, while the other eclogites originate from a different oceanic crust, e.g., the Paleo-Qilian ocean, indicating multiple orogenies in the geological history of the Xitieshan terrane, China.Whole-rock and in-situ LA-ICP-MS mineral trace element analyses of eclogites revealed two stages of fluid behavior during retrogression that correspond to the two exhumation stages uncovered by phase equilibrium calculations. The mineral scale trace element distributions and trace element inheritance of newly formed amphibole from its precursors indicate that, at the peak metamorphic stage (M1) and at the earlier (eclogite facies) overprint (M2), the fluid was internally controlled by the rock itself. Within a mafic lens, the amount of water-soluble elements (e.g., Rb, Sr, Ba, U, Pb and LREE), observed in the whole-rock compositions as well as in amphiboles, increases from the core (phengite-bearing eclogite) to the rim (amphibolite) and implies an external fluid source for the amphibolite facies retrogression (M3) which should be helpful for the final exhumation of UHP eclogite.  相似文献   

14.
对信阳地区商丹断裂带南侧龟山岩组新元古代变质玄武岩进行了岩石学、地球化学及Sr-Nd同位素研究,分析结果显示该套玄武岩为亚碱性拉斑玄武系列,分为低Ti及高Ti两种类型:低Ti型较富Mg,不相容元素富集程度及稀土分馏程度较低,具有E-MORB的微量元素地球化学特征,Sr-Nd同位素组成相对富集,可能来自地幔柱引发的岩石圈地幔的部分熔融,并受到一定程度的地壳混染;高Ti型较富Fe,强烈富集不相容元素,具有OIB的地球化学特征,Sr-Nd同位素组成较为亏损,可能来自地幔柱的部分熔融,并较少受到地壳物质的影响。综合构造判别显示该套玄武岩可能为地幔柱伸展背景下的岩浆活动产物,可能为区域上沿商丹断裂带分布的中—新元古代局部伸展背景岩浆活动产物的组成部分。  相似文献   

15.
Mafic-layered intrusions and sills and spatially associated andesitic basalts are well preserved in the Funing area, SW China. The 258±3 Ma-layered intrusions are composed of fine-grained gabbro, gabbro and diorite. The 260±3 Ma sills consist of undifferentiated diabases. Both the layered intrusions and volcanic rocks belong to a low-Ti group, whereas the diabases belong to a high-Ti group. Rocks of the high-Ti group have FeO, TiO2 and P2O5 higher but MgO and Th/Nb ratios lower than those of the low-Ti group. They have initial 87Sr/86Sr ratios (0.706–0.707) lower and ɛNd (−1.5 to −0.6) higher than the low-Ti equivalents (0.710–0.715 and −9.6 to −4.0, respectively). The high-Ti group was formed from relatively primitive, high-Ti magmas generated by low degrees (7.3 –9.5%) of partial melting of an enriched, OIB-type asthenospheric mantle source. The low-Ti group may have formed from melts derived from an EM2-like, lithospheric mantle source. The mafic rocks at Funing are part of the Emeishan large igneous province formed by a mantle plume at ∼260 Ma.  相似文献   

16.
峨眉山大火成岩省:地幔柱活动的证据及其熔融条件   总被引:138,自引:5,他引:138  
对苦橄岩中橄榄石斑晶及其中熔体包裹体的电子探针分析表明,峨眉山大火山岩省的原始岩浆具高镁( MgO > 16%)特征。玄武岩的 REE反演计算揭示,参与峨眉山玄武岩岩浆作用的地幔具有异常高的潜能温度( 1 550℃)。这些特征以及峨眉山玄武岩的大面积分布和一些熔岩所显示的类似于洋岛玄武岩 (OIB)的微量元素和 Sr- Nd同位素特征均为地幔热柱在能量和物质上参与峨眉山溢流玄武岩的形成提供了确凿证据。峨眉山两个主要岩类(高钛和低钛玄武岩)可能是不同地幔源区物质在不同条件下的熔融产物。低钛玄武岩形成于温度最高、岩石圈最薄的地幔柱轴部。地幔( ISr≈ 0.705,ε Nd(t)≈+ 2)熔融始于 140 km,并一直延续到较浅的深度( 60 km,尖晶石稳定区 ),部分熔融程度为 16%,这类岩石可能代表了峨眉山玄武岩的主体。而高钛玄武岩的母岩浆的形成基本局限在石榴子石稳定区( > 70 km),其源区特征为 : ISr≈ 0.704,ε Nd(t)≈+ 5,可能代表了热柱边部或消亡期地幔小程度部分熔融( 1.5%)的产物。  相似文献   

17.
周美付 《地球学报》1988,10(1):139-148
托里蛇绿岩中分布着高Ti玄武岩与低Ti玄武岩,在地球化学特征上存在明显的差异;表明二者之间不存在过渡关系,有着不同的形成条件。它们分别代表岛弧拉张不同阶段之产物,本文讨论了玄武岩的地球化学特征,从而揭示了蛇绿岩形成于弧后盆地的微扩张环境。  相似文献   

18.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号