首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of neodymium isotopes in Arctic Ocean basins   总被引:1,自引:0,他引:1  
Nd concentration and isotope data have been obtained for the Canada, Amundsen, and Makarov Basins of the Arctic Ocean. A pattern of high Nd concentrations (up to 58 pM) at shallow depths is seen throughout the Arctic, and is distinct from that generally seen in other oceans where surface waters are relatively depleted. A range of isotopic variations across the Arctic and within individual depth profiles reflects the different sources of waters. The dominant source of water, and so Nd, is the Atlantic Ocean, with lesser contributions from the Pacific and Arctic Rivers. Radiogenic isotope Nd signatures (up to εNd = −6.5) can be traced in Pacific water flowing into the Canada Basin. Waters from rivers draining older terrains provide very unradiogenic Nd (down to εNd = −14.2) that can be traced in surface waters across much of the Eurasian Basin. A distinct feature of the Arctic is the general influence of the shelves on the Nd concentrations of waters flowing into the basins, either from the Pacific across the Chukchi Sea, or from across the extensive Siberian shelves. Water-shelf interaction results in an increase in Nd concentration without significant changes in salinity in essentially all waters in the Arctic, through processes that are not yet well understood. In estuarine regions other processes modify the Nd signal of freshwater components supplied into the Arctic Basin, and possibly also contribute to sedimentary Nd that may be subsequently involved in sediment-water interactions. Mixing relationships indicate that in estuaries, Nd is removed from major river waters to different degrees. Deep waters in the Arctic are higher in Nd than the inflowing Atlantic waters, apparently through enrichments of waters on the shelves that are involved in ventilating the deep basins. These enrichments generally have not resulted in major shifts in the isotopic compositions of the deep waters in the Makarov Basin (εNd ∼ −10.5), but have created distinctive Nd isotope signatures that were found near the margin of the Canada Basin (with εNd ∼ −9.0). The deep waters of the Amundsen Basin are also distinct from the Atlantic waters (with εNd = −12.3), indicating that there has been limited inflow from the adjacent Makarov Basin through the Lomonosov Ridge.  相似文献   

2.
Three vertical profiles of seawater concentration and isotopic composition of Nd were determined for the western to central North Pacific Ocean.In the subarctic oceanic region, at depths greater than 500 m, one vertical profile of Nd isotopic composition was indistinguishable from most previously reported profiles from here. The data indicate a rather homogeneous Nd isotopic composition in the subarctic oceanic region at middle to deep depths (>500 m). Two stations in the subtropical oceanic region exhibited similar Nd isotopic composition profiles to those previously reported. The maxima εNd values at depths of 800-1000 m (εNd = −3.4 to −2.7), which correspond to the North Pacific Intermediate Water (NPIW), are found at both subtropical stations. This implies a ubiquitous distribution of NPIW showing a radiogenic εNd value in the North Pacific. The subsurface minimum at a depth of ∼200 m, which indicates the penetration of the North Pacific Tropical Water (NPTW) with an unradiogenic Nd isotopic signal, was observed at one station in the western Pacific. This station had much lower εNd than the central station at depths around 5000 m, suggesting the greater prominence of Antarctic Bottom Water (AABW) in the western subtropical Pacific than in the central to eastern subtropical Pacific.Results of a model calculation assuming boundary exchange indicate that the Hawaiian Islands play an important role in supplying radiogenic Nd to the central Pacific, similar to some continental margins.We show that Nd isotopic composition is a versatile tracer for ocean circulation and the geochemical cycle of Nd in the North Pacific. Further studies on the distribution of Nd isotopic composition in the Pacific Ocean, including the Southern Pacific, will better elucidate the circulation and geochemical cycle of Nd in the Pacific.  相似文献   

3.
Hafnium isotopes in Arctic Ocean water   总被引:1,自引:0,他引:1  
The first isotopic compositions of dissolved hafnium in seawater from across the Arctic Ocean are reported. Most samples from the four sub-basins of the Arctic Ocean have values within error of an average of εHf = +0.8. Combined Hf-Nd isotope compositions do not fall on the well-established positive correlation for mantle and crustal rocks. Instead, Arctic waters have Hf that is more radiogenic than that typically found in rocks with similar Nd isotope compositions, a feature previously found in ferromanganese crusts and waters from the Pacific Ocean. Arctic seawater samples generally fall on the lower part of the ferromanganese crust array, reflecting influences of inputs from Arctic rivers and interactions of shelf waters with underlying sediments. Arctic rivers have much higher Hf concentrations (7-30 pM) than Arctic seawater (0.36-4.2 pM). Water from the Mackenzie River has the least radiogenic Hf, with εHf = −7.1 ± 1.7, and plots furthest away from the ferromanganese crust array, while waters from the Ob, Yenisey, and Lena Rivers have values that are indistinguishable from most Arctic waters. In the Amundsen, Makarov, and Canada basins, Hf concentrations are highest at the surface and lowest in the deeper waters, reflecting the influences of riverine inputs and of waters that have flowed over the extensive Siberian continental shelves and have Nd and Hf characteristics that reflect water-sediment interactions. This is in contrast to the relatively low near surface Hf concentrations reported for locations elsewhere. The Pacific water layer in the Canada Basin exhibits the highest value of εHf = +6.8 ± 1.8, reflecting the Hf isotopic composition of waters entering the Arctic from the Pacific Ocean. Mixing relationships indicate that a substantial fraction of the Hf in the Mackenzie River is lost during estuarine mixing; the behaviour of Hf from other rivers is less constrained.  相似文献   

4.
We present hafnium (Hf) and neodymium (Nd) isotopic compositions and concentrations in surface waters of the eastern Atlantic Ocean between the coast of Spain and South-Africa. These data are complemented by Hf and Nd isotopic and concentration data, as well as rare earth element (REE) concentrations, in Saharan dust.Hafnium concentrations range between a maximum of 0.52 pmol/kg in the area of the Canary Islands and a minimum value of 0.08 pmol/kg in the southern Angola Basin. Neodymium concentrations also show a local maximum in the area of the Canary Islands (26 pmol/kg) but are even higher between ∼20°N and ∼4°N reaching maximum concentrations of 35 pmol/kg. These elevated concentrations provide evidence of inputs from weathering of the Canary Islands and from the partial dissolution of dust from the Sahara/Sahel region. The inputs from ocean island weathering are also reflected in radiogenic Hf and Nd isotopes.The Hf isotopic compositions of dust samples themselves are highly variable, ranging between εHf = −20 and −0.6. The combined Hf and Nd isotopic compositions of dust plot close to the “terrestrial array” during periods of appreciable dust load in the atmosphere. During low atmospheric dust loading combined Hf and Nd isotopic compositions similar to seawater are observed. Most of the variability can be explained in terms of variable degrees of zircon loss from the dust samples, which in turn is linked to sorting during atmospheric transport to the eastern Atlantic Ocean and possibly presorting by sedimentary redistribution on the continent. In addition, increasing relative proportions of radiogenic clay minerals with decreasing grain size may contribute to the radiogenic Hf isotopic compositions observed.While the Nd isotopic composition in the surface ocean reflects the Nd isotopic composition of the Saharan dust adjacent to the Sahara/Sahel region, the release of Hf from that dust appears to be incongruent and results in surface ocean Hf isotopic compositions which are ∼10 εHf more radiogenic than the bulk dust. Radiogenic Hf appears to be released from clays and possibly from trace apatite. Rare earth element patterns of dust samples indicate the presence of apatite but provide no evidence for ferromanganese grain coatings, suggesting that such coatings are insignificant in the release of Hf and Nd from Saharan dust to the surface ocean.The Nd isotopic composition of the surface waters becomes less radiogenic south of the equator, most likely reflecting the release of Nd from Congo river sediments. The release of Hf from Saharan dust and the Congo river sediments, however, does not produce distinct Hf isotopic signatures in the surface ocean, implying that the mobile fraction of Hf integrated over large continental areas is isotopically uniform. The Hf isotopic uniformity in the surface ocean means that the limited variability in deep water isotopic compositions is consistent with a short deep water residence time and reflects homogenous continental inputs rather than efficient deep water homogenization.  相似文献   

5.
We have carried out a comparative Rb-Sr, Sm-Nd and Lu-Hf isotopic study of a progressively deformed hercynian leucogranite from the French Massif Central, belonging to the La Marche ductile shear zone, in order to investigate the respective perturbation of these geochronometers with fluid induced deformation. The one-meter wide outcrop presents a strongly deformed and mylonitized zone at the center, and an asymmetric deformation pattern with a higher deformation gradient on the northern side of the zone. Ten samples have been carefully collected every 10 cm North and South away from the strongest deformed mylonitic zone. They have been analyzed for a complete major, trace element data set, oxygen isotopes, Rb-Sr, Sm-Nd and Lu-Hf isotopic systematics.We show that most of major and trace elements except SiO2, alkaline elements (K2O, Rb), and some metal transition elements (Cu), are progressively depleted with increasing deformation. This depletion includes REE + Y, but also HFS elements (Ti, Hf, Zr, Nb) which are commonly considered as immobile elements during upper level processes. Variations in elemental ratios with deformation, e.g. decrease in LREE/MREE- HREE, Nd/Hf, Th/Sr, increase in Rb/Sr, U/Th and constant Sr/Nd, lead to propose the following order of element mobility: U ? Th > Sr = Nd ? Hf + HREE. We conclude in agreement with previous tectonic and metallogenic studies that trace element patterns across the shear zone result from circulation of oxidizing F-rich hydrothermal fluids associated with deformation. A temperature of the fluid of 470-480 °C can be deduced from the δ18O equilibrium between quartz-muscovite pairs.Elemental fractionation induces perturbation of the Rb-Sr geochronometer. The well-defined 87Rb/86Sr-87Sr/86Sr correlation gives an apparent age of 294 ± 19 Ma, slightly younger than the 323 ± 4 Ma age of leucogranites in this area. This apparent age is interpreted as dating event of intense deformation and fluid circulation associated with mass transfer, and exhumation of the ductile crust shortly after the leucogranite emplacement. Sm-Nd and Lu-Hf isochron-type diagrams do not define any correlation, because of the low fractionated Sm/Nd and Lu/Hf ratios. Isotopic data demonstrate that only the Lu-Hf geochronometer system is not affected by fluid circulation and gives reliable TDM age (1.29 ± 0.03 Ga) and εHf signatures. By contrast, the Sm-Nd geochronometer system gives erroneous old TDM ages of 2.84-4 Ga. There is no positive εNd-εHf correlation, because of decreasing εNd values with deformation at constant εHf values. However, εNd-εHf values remain in the broad εNd-εHf terrestrial array, which strongly indicates that fluid-induced fractionation can contribute to the width of the terrestrial array. The strong εHf negative values of the leucogranite are similar to metasedimentary granulitic xenoliths from the French Massif Central and confirm the generation of the leucogranite by several episodes of reworking of the lower crust.  相似文献   

6.
We present the first comprehensive set of dissolved 10Be and 9Be concentrations in surface waters and vertical profiles of all major sub-basins of the Arctic Ocean, which are complemented by data from the major Arctic rivers Mackenzie, Lena, Yenisey and Ob. The results show that 10Be and 9Be concentrations in waters below 150 m depth are low and only vary within a factor of 2 throughout the Arctic Basin (350-750 atoms/g and 9-15 pmol/kg, respectively). In marked contrast, Be isotope compositions in the upper 150 m are highly variable and show systematic variations. Cosmogenic 10Be concentrations range from 150 to 1000 atoms/g and concentrations of terrigenous 9Be range from 7 to 65 pmol/kg, resulting in 10Be/9Be ratios (atom/atom) between 0.5 and 14 × 10−8. Inflowing Atlantic water masses in the Eurasian Basin are characterized by a 10Be/9Be signature of 7 × 10−8. The inflow of Pacific water masses across the Bering Strait is characterized by lower ratios of 2-3 × 10−8, which can be traced into the central Arctic Ocean, possibly as far as the Fram Strait. A comparison of the high dissolved surface 10Be and 9Be concentrations (corresponding to low 10Be/9Be signatures of ∼2 × 10−8) in the Eurasian Basin with hydrographic parameters and river data documents efficient and rapid transport of Be with Siberian river waters across the Siberian Arctic shelves into the central Arctic Basin, although significant loss and exchange of Be on the shelves occurs. In contrast, fresh surface waters from the Canada Basin also show high cosmogenic 10Be contents, but are not enriched in terrigenous 9Be (resulting in high 10Be/9Be signatures of up to 14 × 10−8). This is explained by a combination of efficient scavenging of Be in the Mackenzie River estuary and the shelves and additional supply of cosmogenic 10Be via atmospheric fallout and melting of old sea ice. The residence time of Be in the deep Arctic Ocean estimated from our data is 800 years and thus similar to the average Be residence time in the global ocean.  相似文献   

7.
This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world’s major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them.Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, εHf = 1.55 × εNd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (εHf = 1.36 × εNd + 2.89; Vervoort et al., 1999) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array.In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.  相似文献   

8.
Neodymium (Nd) isotope profiles were analyzed on two Baltic Mn/Fe precipitates (99/2 and TL1) from shallow water (20 m) of the Mecklenburg Bay. The age range of these Mn/Fe precipitates determined by 226Raex/Ba dating reaches from recent growth back to ∼4300 and 1000 yr BP, respectively. Over this time range, the Nd isotope composition varies from εNd (0) = −13.1 to −17.5 in the selected Baltic precipitates indicating substantial changes in the Nd isotope composition of the Baltic Sea. The lowest εNd values were recorded during the time interval of the Little Ice Age (LIA, AD ∼1350 to 1850). These minimum values indicate either an increase of the input of less radiogenic Nd from Scandinavian Archean-Proterozoic sources (εNd about −22) to the Baltic Sea or a decrease of the input of more radiogenic Nd from continental European sources (εNd about −12) and/or North Sea water (εNd about −10). Variations of both, erosive continental input and North Sea inflow may indicate a direct response of the Nd isotope signal in the Baltic Sea to climate changes during the LIA and be related to cyclic shifts in the atmospheric circulation triggered by the North Atlantic Oscillation (NAO). Another aspect that possibly influenced the input of trace elements and Nd isotopes into the Baltic Sea is the population development in the circum Baltic area during the LIA. The lowest εNd values also correspond to the medieval demographic crises that led to a significant decrease of agricultural activity and farmland. The reduction of soil erosion and enhanced regrowth of natural vegetation may have changed the amount and proportions of dissolved and suspended particulate matter transported into the Baltic Sea by rivers which in turn may have resulted in a change of the Nd isotope composition of Baltic Sea water.  相似文献   

9.
We propose that prior to the Younger Dryas period, the Arctic Ocean supported extremely thick multi-year fast ice overlain by superimposed ice and firn. We re-introduce the historical term paleocrystic ice to describe this. The ice was independent of continental (glacier) ice and formed a massive floating body trapped within the almost closed Arctic Basin, when sea-level was lower during the last glacial maximum. As sea-level rose and the Barents Sea Shelf became deglaciated, the volume of warm Atlantic water entering the Arctic Ocean increased, as did the corresponding egress, driving the paleocrystic ice towards Fram Strait. New evidence shows that Bering Strait was resubmerged around the same time, providing further dynamical forcing of the ice as the Transpolar Drift became established. Additional freshwater entered the Arctic Basin from Siberia and North America, from proglacial lakes and meltwater derived from the Laurentide Ice Sheet. Collectively, these forces drove large volumes of thick paleocrystic ice and relatively fresh water from the Arctic Ocean into the Greenland Sea, shutting down deepwater formation and creating conditions conducive for extensive sea-ice to form and persist as far south as 60°N. We propose that the forcing responsible for the Younger Dryas cold episode was thus the result of extremely thick sea-ice being driven from the Arctic Ocean, dampening or shutting off the thermohaline circulation, as sea-level rose and Atlantic and Pacific waters entered the Arctic Basin. This hypothesis focuses attention on the potential role of Arctic sea-ice in causing the Younger Dryas episode, but does not preclude other factors that may also have played a role.  相似文献   

10.
It is summarized based on previous studies that warm and salty Atlantic Water (AW) brings huge amount of heat into Arctic Ocean and influences oceanic heat distribution and climate. Both heat transportation and heat release of AW are key factors affecting the thermal process in Eurasian Basin. The Arctic circumpolar boundary current is the carrier of AW, whose flow velocity varies to influence the efficiency of the warm advection. Because the depth of AW in Eurasian Basin is much shallower than that in Canadian Basin, the upward heat release of AW is an important heat source to supply sea ice melting. Turbulent mixing, winter convention and double-diffusion convention constitute the main physical mechanism for AW upward heat release, which results in the decrease of the Atlantic water core temperature during its spreading along the boundary current. St. Anna Trough, a relatively narrow and long trough in northern continental shelf of Kara Sea, plays a key role in remodeling temperature and salinity characteristics of AW, in which the AW from Fram Strait enters the trough and mixes with the AW from Barents Sea. Since the 21st Century, AW in the Arctic Ocean has experienced obvious warming and had the influence on the physical processes in downstream Canada Basin, which is attributed to the anomalous warming events of AW inflowing from the Fram Strait. It is inferred that the warming AW is dominated by a long-term warming trend superimposed on low frequency oscillation occurring in the Nordic Seas and North Atlantic Ocean. As the Arctic Ocean is experiencing sea ice decline and Arctic amplification, the role of AW heat release in response to the rapid change needs further investigation.  相似文献   

11.
The Sr–Nd–Hf isotopic compositions of both saprolites and parent rocks of a profile of intensively weathered Neogene basalt in Hainan, South China are reported in this paper to investigate changes of isotopic systematics with high masses. The results indicate that all these isotopic systematics show significant changes in saprolites compared to those in corresponding parent rocks. The 87Sr/86Sr system was more seriously affected by weathering processes than other isotope systems, with εSr drifts 30 to 70 away from those of the parent rocks. In the upper profile (> 2.2 m), the Sr isotopes of the saprolites show an upward increasing trend with εSr changing from ~ 50 at 2.2 m to ~ 70 at 0.5 m, accompanying a upward increasing of Sr concentrations, from ~ 10 μg/g to ~ 25 μg/g. As nearly all the Sr of the parent rock has been removed during intensive weathering in this profile, the upward increasing of Sr concentrations in the upper profile suggests import of extraneous Sr. Rainwater in this region, which enriches in Sr (up to 139 μg/L) from seawater, may be the important extraneous source. Thus, the Sr isotopes of the saprolites in the upper profile may be mainly influenced by import of extraneous materials, and the Sr isotopic characteristics may not be retained. In contrast, the εNd and εHf of the saprolites drift only 0–2.6 and 0–3.7 away from the parent rocks, respectively. The negative drifts of the εNd and εHf are coupled with Nd and Hf losses in the saprolites; i.e., larger proportions of Nd and Hf loss correspond to lower εNd and εHf. Compared with the relative high Nd and Hf concentrations of the saprolites, the contributions of extraneous Nd and Hf both from wet and dry deposits of aeolian input are negligible. Thus, the εNd and εHf changes in the profile are mainly resulted from consecutive removal of the Nd and Hf. Calculation indicates that the 143Nd/144Nd and 176Hf/177Hf ratios in saprolites are all significantly lower than their initial values in the parent rock. Simply removing part of the Nd and Hf by incongruent decomposing some of the minerals may not account for this. Fractionation should be happen, which 143Nd and 176Hf may be preferentially removed from the profile relative to 144Nd and 177Hf during intensive chemical weathering, resulting in lower 143Nd/144Nd and 176Hf/177Hf ratios in saprolites relative to the parent rock, even though details for this process is not known. A positive correlation is observed between the εNd and εHf of the saprolites. Interestingly, the saprolites with a net loss of Nd and Hf in the upper profile show good positive correlation, and the regression line parallels the terrestrial array. By contrast, saprolites with a net gain of Nd and Hf in the lower profile generally show higher εHf values at a given εNd value, and the regression line between these εNd and εHf appears to parallel the seawater array. This supports the hypothesis that the contribution of continental Hf from chemical weathering release is the key to the obliquity of the seawater array away from the terrestrial array of the global εNd and εHf correlation. Our results also indicate that caution is needed when using εSr, εNd, and εHf to trace provenances for sediments and soils.  相似文献   

12.
《Gondwana Research》2013,23(3-4):1102-1109
Conodonts collected from sections near the small towns of Thong Pha Phum and Mae Sariang in the westernmost part of Thailand are used to reconstruct the neodymium (Nd) isotopic composition of seawater during the Late Devonian. The study provides the first Devonian seawater signatures recognized within the Australian shelf of northeastern Gondwana and the adjacent Paleotethys Ocean. At Thong Pha Phum site, the seawater was characterized by very low εNd values (from − 13.1 to − 18.2) and very high Sm/Nd ratios (between 0.36 and 0.66). In contrast, the seawater at the Mae Sariang site was characterized by much more radiogenic signatures (εNd values from − 8.7 to − 11.1) and uniform, low Sm/Nd ratios (between 0.20 and 0.23). Extremely low εNd values recognized at Thong Pha Phum attest to a passive margin continental setting and a paleogeographic position very close to a continental area where Paleoproterozoic and Neoarchean rocks were eroded. Thus, the isotopic data provide strong evidence that during Late Devonian time the Sibumasu terrane was situated in the proximity to the Archean cratons of Western Australia, presumably adjacent to the Carnarvon intracratonic basin. Moreover, Sibumasu may not have been situated in an outboard position on the shelf, as previously suggested, but could have been directly attached to the Australian continental crust. By contrast, low and uniform Sm/Nd ratios of seawater at Mae Sariang resemble those of the Variscan and the present-day oceanic seawaters. Therefore, a pelagic setting within the Paleotethys Ocean is postulated for the Mae Sariang succession. This conclusion is also constrained by minor temporal changes in εNd values and suggests that the Paleozoic of Mae Sariang is not part of the Sibumasu terrane but belongs to the Inthanon Zone.  相似文献   

13.
Silicate Nd-Sr isotopes of the fine-grained fractions of the 10 major deserts and sandy lands in North China and the loess in Chinese Loess Plateau were systematically investigated. Wide ranges in Nd-Sr isotopic compositions have been observed. The results of the <75 μm silicate fractions show that the Nd-Sr isotopic compositions of each desert are quite homogeneous and unique. According to the geographic distribution of the deserts and their Nd-Sr isotopes of both the <75 and <5 μm silicate fractions, three isotopic regions of Chinese deserts can be identified: (A) the deserts on the northern boundary of China, with the highest εNd(0) > −7.0; (B) the deserts on the northern margin of Tibetan Plateau, with εNd(0) ranging from −11.9 to −7.4; and (C) the deserts on the Ordos Plateau, with the lowest εNd(0) < −11.5. The distribution of the threes isotopic regions is controlled by the tectonic setting in North China, which implies that the materials of the deserts are derived from the locally eroded rocks from the surrounding mountains and the Nd-Sr isotopic signatures of these deserts could be quit stable over the past million years on the sub-tectonic time scales if there is any desert at those times. The Nd-Sr isotopic compositions of the loess are mostly close to those of the deserts in isotopic region B, suggesting that the main source regions of the last glacial loess in the Chinese Loess Plateau are Badain Jaran Desert, Tengger Desert, and Qaidam Desert. Also, the comparison between the Nd-Sr isotopes of the <5 μm silicate fractions of the deserts and the ancient dust falls in the North Pacific and Greenland show that the Asian end members of these dust falls are derived most from the deserts in the isotopic region B and less from those in the isotopic region C.  相似文献   

14.
The hafnium isotope composition of Pacific Ocean water   总被引:1,自引:0,他引:1  
The first Hf isotope data for seawater are reported for a series of stations in the Northwestern Pacific and define a range from εHf = 3.5 ± 1.4 to 8.6 ± 1.6. Most samples have values within error of the average of εHf = 5.9, but significant variations are found in intermediate waters at a depth of 600 m, as well as in deep waters. The Nd and Hf isotope compositions of the deep waters fall within the range of values found for surfaces of hydrogenetic ferromanganese crusts in the region, confirming that Hf in the Fe-Mn crusts has been derived from the overlying water column, which thus provide an archive of past seawater compositions. Although the seawater samples are generally close to the global εNd-εHf correlation obtained from ferromanganese crusts, there are significant deviations from this correlation indicating that there is some additional decoupling between Nd and Hf isotope signals, most likely caused by local water mass mixing and differences in residence times. This is not resolved in the crust samples, which integrate seawater signals over 104 years. The combined use of these two isotope systems in seawater therefore provides an additional dimension for tracing water masses in the oceans. Studies of the distribution of oceanic Hf isotope compositions that have been confined to deep water and boundary waters, as recorded in seafloor ferromanganese crusts, can now be extended and aimed at characterising the entire present-day water column. Average Hf concentrations measured in this study are somewhat lower than previously reported, suggesting a shorter residence time for Hf in the global oceans, although the uncertainty in the extent of Hf removal from the water column during estuarine mixing as well as a lack of data on hydrothermal and dust inputs remains a limit on how well the residence time can be defined.  相似文献   

15.
Provenances for the lithogenic part of the sandy fraction of sediments on the Yermak Plateau are located in northern Eurasia. Based on the study of heavy minerals, new indicators are proposed for the ice-rafted material and main systems of surficial water circulation (gyres of the Beaufort Sea and Polar and Siberian currents of the Transpolar drift). Interpretation of the grain size distribution of sediments of warm and cold stages is based on difference in mechanisms of sedimentary material introduction into sea ice. Episodes of the influx of Atlantic warm and saline waters via the Fram Strait into the Arctic Ocean are reconstructed based on CaCO3 content. The relationship between sedimentary materials transported by icebergs and sea ice during the last 190 ka is given. Hypotheses of the history of surficial circulation in the Arctic Ocean and discharges of Siberian rivers during this period are presented.  相似文献   

16.
The areal outflow of ice through Fram Strait during the period 1953–1984 is estimated on a monthly basis from the geostrophic wind and the ice concentration. Summer ice coverage in various sectors of the Arctic is then compared with the computed outflow through Fram Strait in various antecedent periods. Lag correlations indicate that interannual variations of summer ice severity in the Pacific side of the Arctic Basin are consistent with fluctuations of Fram Strait outflow during the previous 3–9 months. The findlings suggest that above-normal outflow of multiyear ice during the winter/spring months may precondition the large-scale pack ice to respond more directly to offshore flow events during the ensuing months.The areas of highest correlation with Fram Strait outflow undergo a pronounced shift in the early 1970's. Coincident changes in the large-scale circulation pattern imply that the source region of the Transpolar Drift Stream shifted westward from the Alaskan to the Siberian waters during this period.  相似文献   

17.
Nine depth-profiles of dissolved Nd concentrations and isotopic ratios (εNd) were obtained in the Levantine Basin, the Ionian, the Aegean, the Alboran Seas and the Strait of Gibraltar. Thirteen core-top sediments and Nile River particle samples were also analyzed (leached with 1 N HCl, acetic acid or hydroxylamine hydrochloride). The seawater εNd values become more radiogenic during the eastward circulation in the Mediterranean Sea. The relationship between salinity and the seawater εNd shows that the Nd isotopic signature is more conservative than salinity in the Mediterranean Sea. The water mass with the highest εNd (−4.8) is found at about 200 m in the easternmost Levantine basin. The average εNd value for deep waters is −7.0 in the eastern basin, 2.5 ε-units higher than in the western basin. By examining the sensitivity of seawater εNd to Nd inputs from the Nile, we conclude that the most significant radiogenic Nd source is partially dissolved Nile River particles. The Nd flux from the Nile River water has a minor influence on the Mediterranean seawater εNd. Except for the easternmost Levantine Basin, the leachate εNd values are consistent with the seawater values. In the easternmost Levantine Basin, the leachate εNd values obtained with HCl leaching are systematically higher than the seawater values. The relationship between leachate and residual εNd values indicates that the HCl leaching partially dissolves lithogenic Nd, so the dissolution of Nile River particles is the cause of the observed shift. Some εNd values obtained with hydroxylamine hydrochloride leaching are higher than those obtained with HCl leaching. Although the reason for this shift is not clear, 87Sr/86Sr successfully detects the presence of a nonmarine component in the leachate. Our results suggest that leaching performance may vary with the mineralogy of marine sediments, at least in the case of the Mediterranean Sea.  相似文献   

18.
The Saurashtra region in the northwestern Deccan continental flood basalt province (India) is notable for compositionally diverse volcano-plutonic complexes and abundant rhyolites and granophyres. A lava flow sequence of rhyolite-pitchstone-basaltic andesite is exposed in Osham Hill in western Saurashtra. The Osham silicic lavas are Ba-poor and with intermediate Zr contents compared to other Deccan rhyolites. The Osham silicic lavas are enriched in the light rare earth elements, and have εNd (t = 65 Ma) values between −3.1 and −6.5 and initial 87Sr/86Sr ratios of 0.70709-0.70927. The Osham basaltic andesites have initial εNd values between +2.2 and −1.3, and initial 87Sr/86Sr ratios of 0.70729-0.70887. Large-ion-lithophile element concentrations and Sr isotopic ratios may have been affected somewhat by weathering; notably, the Sr isotopic ratios of the silicic and mafic rocks overlap. However, the Nd isotopic data indicate that the silicic lavas are significantly more contaminated by continental lithosphere than the mafic lavas. We suggest that the Osham basaltic andesites were derived by olivine gabbro fractionation from low-Ti picritic rocks of the type found throughout Saurashtra. The isotopic compositions, and the similar Al2O3 contents of the Osham silicic and mafic lavas, rule out an origin of the silicic lavas by fractional crystallization of mafic liquids, with or without crustal assimilation. As previously proposed for some Icelandic rhyolites, and supported here by MELTS modelling, the Osham silicic lavas may have been derived by partial melting of hot mafic intrusions emplaced at various crustal depths, due to heating by repetitively injected basalts. The absence of mixing or mingling between the rhyolitic and basaltic andesite lavas of Osham Hill suggests that they reached the surface via separate pathways.  相似文献   

19.
Here we first present samarium (Sm)–neodymium (Nd) isotopic data for the ∼2.5 Ga Wangjiazhuang BIF and associated lithologies from the Wutai greenstone belt (WGB) in the North China Craton. Previous geochemical data of the BIF indicate that there are three decoupled end members controlling REE compositions: high-T hydrothermal fluids, ambient seawater and terrigenous contaminants. Clastic meta-sediment samples were collected for major and trace elements studies in an attempt to well constrain the nature of detrital components of the BIF. Fractionated light rare earth elements patterns and mild negative Eu anomalies in the majority of these meta-sedimentary samples point toward felsic source rocks. Moreover, the relatively low Th/Sc ratios and positive εNd(t) values are similar to those of the ∼2.5 Ga granitoids, TTG gneisses and felsic volcanics in the WGB, further indicating that they are derived from less differentiated terranes. Low Chemical Index of Weathering (CIW) values and features in the A-CN-K diagrams for these meta-sediments imply a low degree of source weathering. Sm–Nd isotopes of the chemically pure BIF samples are characterized by negative εNd(t) values, whereas Al-rich BIF samples possess consistently positive εNd(t) features. Significantly, the associated supracrustal rocks in the study area have positive εNd(t) values. Taken together, these isotopic data also point to three REE sources controlling the back-arc basin depositional environment of the BIF, the first being seafloor-vented hydrothermal fluids (εNd(t) < −2.5) derived from interaction with the underlying old continental crust, the second being ambient seawater which reached its composition by erosion of parts of the depleted landmass (likely the arc) (εNd(t) > 0), the third being syndepositional detritus that received their features by weathering of a nearby depleted source (likely the arc) (εNd(t) > 0).  相似文献   

20.
Cadmium isotopic composition in the ocean   总被引:1,自引:0,他引:1  
The oceanic cycle of cadmium is still poorly understood, despite its importance for phytoplankton growth and paleoceanographic applications. As for other elements that are biologically recycled, variations in isotopic composition may bring unique insights. This article presents (i) a protocol for the measurement of cadmium isotopic composition (Cd IC) in seawater and in phytoplankton cells; (ii) the first Cd IC data in seawater, from two full depth stations, in the northwest Pacific and the northwest Mediterranean Sea; (iii) the first Cd IC data in phytoplankton cells, cultured in vitro. The Cd IC variation range in seawater found at these stations is not greater than 1.5 εCd/amu units, only slightly larger than the mean uncertainty of measurement (0.8 εCd/amu). Nevertheless, systematic variations of the Cd IC and concentration in the upper 300 m of the northwest Pacific suggest the occurrence of Cd isotopic fractionation by phytoplankton uptake, with a fractionation factor of 1.6 ± 1.4 εCd/amu units. This result is supported by the culture experiment data suggesting that freshwater phytoplankton (Chlamydomonas reinhardtii and Chlorella sp.) preferentially take up light Cd isotopes, with a fractionation factor of 3.4 ± 1.4 εCd/amu units. Systematic variations of the Cd IC and hydrographic data between 300 and 700 m in the northwest Pacific have been tentatively attributed to the mixing of the mesothermal (temperature maximum) water (εCd/amu = −0.9 ± 0.8) with the North Pacific Intermediate Water (εCd/amu = 0.5 ± 0.8). In contrast, no significant Cd IC variation is found in the northwest Mediterranean Sea. This observation was attributed to the small surface Cd depletion by phytoplankton uptake and the similar Cd IC of the different water masses found at this site. Overall, these data suggest that (i) phytoplankton uptake fractionates Cd isotopic composition to a measurable degree (fractionation factors of 1.6 and 3.4 εCd/amu units, for the in situ and culture experiment data, respectively), (ii) an open ocean profile of Cd IC shows upper water column variations consistent with preferential uptake and regeneration of light Cd isotopes, and (iii) different water masses may have different Cd IC. This isotopic system could therefore provide information on phytoplankton Cd uptake and on water mass trajectories and mixing in some areas of the ocean. However, the very small Cd IC variations found in this study indicate that applications of Cd isotopic composition to reveal aspects of the present or past Cd oceanic cycle will be very challenging and may require further analytical improvements. Better precision could possibly be obtained with larger seawater samples, a better chemical separation of tin and a more accurate mass bias correction through the use of the double spiking technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号