首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Group II xenoliths, corresponding to the lithology of dunite, wehrlite to olivine clinopyroxenite and olivine websterite to websterite, occur in Pleisto-Holocene alkali basalts from Jeju Island, South Korea. The large grain size (up to 5?mm), moderate mg# [=100?×?Mg/(Mg?+?Fetotal) atomic ratio] of olivine (79–82) and pyroxenes (77–83), and absence of metamorphic textural features indicate that they are cumulates of igneous origin. Based on textural features, mineral equilibria and major and trace element variations, it can be inferred that the studied xenoliths were crystallized from basaltic melts enriched in incompatible trace elements and belong to the Jeju Pleisto-Holocene magma system. They appear to have been emplaced near the present Moho, an estimated 5–8?kbars beneath Jeju Island. Consolidation of cumulates was followed by infiltration of silica-enriched metasomatic melt, producing secondary orthopyroxenes at the expense of olivine. The metasomatic agent appears to have been a silica-enriched residual melt evolved from an initially slightly silica-undersaturated alkali basalt to silica-saturated compositions by fractional crystallization under relatively high pressure conditions. The result of this study indicates that relatively young olivine-bearing cumulates could have been metasomatized by a silica-enriched melt within underplates, suggesting that silica enrichment can occur in intraplate Moho-related rocks as well as in the upper mantle of the subarc area.  相似文献   

2.
Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155°–230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10–3–1.91×10–3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.  相似文献   

3.
 We have investigated new samples from the Gees mantle xenolith suite (West Eifel), for which metasomatism by carbonatite melt has been suggested. The major metasomatic change is transformation of harzburgites into phlogopite-rich wehrlites. Silicate glasses are associated with all stages of transformation, and can be resolved into two major groups: a strongly undersaturated alkaline basanite similar to the host magma which infiltrated the xenoliths during ascent, and Si-Al-enriched, variably alkaline glass present exclusively within the xenoliths. Si-Al-rich glasses (up to 72 wt% SiO2 when associated with orthopyroxene (Opx) are usually interpreted in mantle xenoliths as products of decompressional breakdown of hydrous phases like amphibole. In the Gees suite, however, amphibole is not present, nor can the glass be related to phlogopite breakdown. The Si-Al-rich glass is compositionally similar to glasses occurring in many other xenolith suites including those related to carbonatite metasomatism. Petrographically the silicate glass is intimately associated with the metasomatic reactions in Gees, mainly conversion of harzburgite orthopyroxene to olivine + clinopyroxene. Both phases crystallize as microlites from the glass. The chemical composition of the Si-Al-enriched glass shows that it cannot be derived from decompressional melting of the Gees xenoliths, but must have been present prior to their entrainment in the host magma. Simple mass-balance calculations, based on modal analyses, yield a possible composition of the melt prior to ascent of the xenoliths, during which glass + microlite patches were modified by dissolution of olivine, orthopyroxene and spinel. This parental melt is a calc-alkaline andesite (55–60 wt% SiO2), characterized by high Al2O3 (ca. 18 wt%). The obtained composition is very similar to high-alumina, calc-alkaline melts that should form by AFC-type reactions between basalt and harzburgite wall rock according to the model of Kelemen (1990). Thus, we suggest that the Si-Al-enriched glasses of Gees, and possibly of other suites as well, are remnants of upper mantle hybrid melts, and that the Gees suite was metasomatized by silicate and not carbonatite melts. High-Mg, high-Ca composition of metasomatic olivine and clinopyroxene in mantle xenoliths have been explained by carbonatite metasomatism. As these features are also present in the Gees suite, we have calculated the equilibrium Ca contents of olivine and clinopyroxene using the QUI1F thermodynamical model, to show that they are a simple function of silica activity. High-Ca compositions are attained at low a SiO2 and can thus be produced during metasomatism by any melt that is Opx-undersaturated, irrespective of whether it is a carbonatite or a silicate melt. Such low a SiO2 is recorded by the microlites in the Gees Si-Al-rich glasses. Our results imply that xenolith suites cannot confidently be related to carbonatite metasomatism if the significance of silicate glasses, when present, is not investigated. Received: 2 March 1995 / Accepted: 12 June 1995  相似文献   

4.
Leander Franz  Rolf L. Romer 《Lithos》2010,114(1-2):30-53
Petrologic, geochemical and isotopic investigations on two ultramafic xenoliths with metasomatic veins from the TUBAF Seamount in the Bismarck Archipelago NE of Papua New Guinea reveal different styles of metasomatic overprinting. The first xenolith, a clinopyroxene–poor spinel lherzolite, was part of the depleted upper mantle. It contains an orthopyroxene-rich vein that formed by hydrous metasomatism at ~ 980 °C and ~ 1.5 GPa. The second xenolith is a clinopyroxene-dominated spinel olivine websterite that formed as a magmatic cumulate at the transition of the upper mantle to the oceanic crust. The websterite contains a vein with orthopyroxenes and clinopyroxenes, which give evidence for high-temperature crystallization at ~ 1300 °C and < 0.36 GPa. Both xenoliths were transported to the seafloor by a Quaternary trachybasalt in a fore-arc position. The vein minerals show a strong affinity to a supra-subduction zone or island arc setting. The REE pattern of the vein in the clinopyroxene–poor lherzolite strongly resembles the one from the host trachybasalt, with a high enrichment of the LREE and a strong to moderate enrichment of the MREE and HREE. Although broadly similar in shape, the REE pattern of the vein in the websterite shows a much weaker enrichment. The same applies to the trace-element patterns, although there are significant differences in the Eu, Zr, Hf and Nb concentrations. The isotope signatures of both veins suggest a derivation from a subducted slab that had been hydrothermally altered by seawater (high 87Sr/86Sr values).The contrasting crystallization temperatures of the vein minerals as well as their overall geochemical differences indicate that the metasomatic agents responsible for the vein in the websterite were mobilized from a previously depleted source at a much deeper mantle level than those forming the vein of the clinopyroxene–poor lherzolite. The metasomatic agents may also have been mobilized at different times and from different plates, i.e., the deeply subducted Solomon Sea Microplate (for the veins in the websterite) and the shallow dehydrating Pacific Plate (for the veins in the clinopyroxene–poor lherzolite).Metasomatic agents responsible for similar petrologic phenomena, i.e., modal or cryptic metasomatism, may have distinctly different origins and show contrasting histories. A strongly depleted lherzolite may totally lose its initial geochemical signature by the influence of an enriched metasomatic agent, whereas a primarily enriched ultramafic rock, e.g., a websterite, may strongly obscure the trace-element pattern of a less enriched metasomatic vein. Furthermore, the geochemistry of the ultramafic xenoliths may reflect polyphase cryptic and modal metasomatism related to veining and later transport by the hosting melt to the seafloor.  相似文献   

5.
Garnet and spinel peridotite xenoliths associated with the Phanerozoic Lambert-Amery Rift in eastern Antarctica contain evidence for several stages in the development of the mantle beneath the rift. Despite the fact that equilibria were only partly attained, a combination of petrography, whole-rock geochemistry, mineral chemistry and thermobarometry can be used to decipher four stages prior to entrainment of the xenoliths in the host magma during the initial stages of the breakup of Antarctica, India and Madagascar. The first chronological stage is represented by harzburgitic protoliths represented by rare occurrences of low-Ca olivines and orthopyroxenes in spinel lherzolites: these yield the lowest temperatures of 830-850 °C, and are also characterized by distinct trace element contents; lower Ti, Cr, V and Zn in olivine and orthopyroxene, and additionally lower Cu, Ni, Ga and Li in orthopyroxene. Some garnets are subcalcic, indicating that the spinel-garnet lherzolites also formed from harzburgitic protoliths. The second stage is the formation of garnet due to a pressure increase probably related to collision at 1.1 Ga. The third stage is marked by the growth of clinopyroxene, demonstrably in cpx-poor spinel lherzolites but probably in all xenolith groups: equilibrium of clinopyroxene with olivine and orthopyroxene was not attained in all samples, so that the non-judicious use of thermobarometers can produce bewildering results. The fourth stage is an enrichment episode that affected all spinel-garnet peridotites and about half of the spinel peridotites. During this stage, reaction rims were produced on the clinopyroxenes that formed during stage 3, the modal content of olivine and Mg/(Mg + Fe) in the rocks was reduced, CaO, Al2O3 and trace elements were enriched, and garnets were almost completely transformed to kelyphites. A later stage is documented by interstitial glasses and films around spinels related to infiltration of melt from the host magma. These post-date, and are more enriched in alkalies than, partially melted rims on clinopyroxenes, demonstrating that all the three earlier episodes were pre-entrainment events. Pressures indicated by the spinel + garnet lherzolites are restricted to 20-24 kbar at 1040-1180 °C. Early harzburgitic assemblages are interpreted to represent an earlier, cooler geotherm, whereas the kelyphite assemblages indicate temperatures 180-200 °C hotter than the main xenolith geotherm. This event also caused recrystallization of the clinopyroxene rims and is attributed to heating during rifting, but not due to the host magma itself. The preservation of evidence for three progressively hotter geotherms can be related to the upward movement of isotherms during the development of the sub-rift mantle.  相似文献   

6.
A suite of metasomatised xenoliths from the Letlhakane kimberlite (Botswana) forms a metasomatic sequence from garnet peridotite to garnet phlogopite peridotite to phlogopite peridotite. Before the modal metasomatism, most of the Letlhakane xenoliths were depleted harzburgites that had been subjected to an earlier cryptic metasomatic event. Modal phlogopite and clinopyroxene - Cr-spinel increase at the expense of garnet and orthopyroxene with increasing degrees of metasomatism. The most metasomatised xenolith is a wehrlite. With progressive modal metasomatism, the clinopyroxene becomes enriched in Sr, Sc and the LREE, orthopyroxene becomes depleted in Ca and Ni, but enriched in Al and Mn, and olivine becomes depleted in Al and V. Garnet chemical composition largely remains unchanged. The garnet replacement reaction seen in most xenoliths allows the measurement of the flux of trace elements through detailed modal analysis of the pseudomorphs. Mass balance calculations show that the modally metasomatised rocks became enriched in incompatible elements such as Sr, Na, K, the LREE and the HFSE (Ti, Zr and Nb). Major elements (Al, Cr and Fe) and garnet-compatible trace elements (V, Y, Sc, and the HREE) were removed during this metasomatic process. The modal metasomatism caused a strong depletion in Al, and the results challenge previous suggestions that this metasomatic process merely occurred within an Al-poor environment. The data suggest that the xenoliths represent the mantle wallrock adjacent to a major conduit for an alkaline basic silicate melt (with high contents of volatile and incompatible elements). The volatile and incompatible element-enriched component of this melt percolated into the wallrock along a strong temperature gradient and caused the observed range of metasomatism.  相似文献   

7.
Water partitioning between mantle minerals from peridotite xenoliths   总被引:1,自引:1,他引:1  
The speciation and amount of water dissolved in nominally anhydrous silicates comprising eight different mantle xenoliths has been quantified using synchrotron micro-FTIR spectroscopy. Samples studied are from six geographic localities and represent a cross-section of the major upper mantle lithologies from a variety of tectonic settings. Clinopyroxene contains between 342 and 413 ppm H2O. Orthopyroxene, olivine and garnet contain 169–201, 3–54 and 0 to <3 ppm H2O, respectively. Pyroxenes water contents and the distribution of water between ortho- and clinopyroxene is identical regardless of sample mineralogy (D watercpx/opx = 2.1 ± 0.1). The total water contents of each xenolith are remarkably similar (113 ± 14 ppm H2O). High-resolution spectroscopic traverses show that the concentration and speciation of hydrous defects dissolved in each phase are spatially homogeneous within individual crystals and identical in different crystals interspersed throughout the xenolith. These results suggest that the amount of water dissolved in the silicate phases is in partial equilibrium with the transporting melt. Other features indicate that xenoliths have also preserved OH signatures of equilibrium with the mantle source region: Hydroxyl stretching modes in clinopyroxene show that garnet lherzolites re-equilibrated under more reducing conditions than spinel lherzolites. The distribution of water between pyroxenes and olivine differs according to xenolith mineralogy. The distribution of water between clinopyroxene and olivine from garnet peridotites (D watercpx/oliv(gnt) = 22.2 ± 24.1) is a factor of four greater than mineral pairs from spinel-bearing xenoliths (D watercpx/oliv(sp) = 88.1 ± 47.8). Such an increase in olivine water contents at the spinel to garnet transition is likely a global phenomenon and this discontinuity could lead to a reduction of the upper mantle viscosity by 0.2–0.7 log units and a reduction of its electrical resistivity by a factor of 0.5–0.8 log units.  相似文献   

8.
The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V. Grib kimberlite pipe (Arkhangelsk Diamond Province, Russia) was studied. Based on petrographic characteristics, the peridotite xenolith reflects a sheared peridotite. The sheared peridotite experienced a complex evolution with formation of three main mineral assemblages: (1) a relict harzburgite assemblage consist of olivine and orthopyroxene porphyroclasts and cores of garnet grains (Gar1) with sinusoidal rare earth elements (REE) chondrite C1 normalized patterns; (2) a neoblastic olivine and orthopyroxene assemblage; (3) the last assemblage associated with the formation of clinopyroxene and garnet marginal zones (Gar2). Major and trace element compositions of olivine, orthopyroxene, clinopyroxene and garnet indicate that both the neoblast and clinopyroxene-Gar2 mineral assemblages were in equilibrium with a high Fe-Ti carbonate-silicate metasomatic agent. The nature of the metasomatic agent was estimated based on high field strength elements (HFSE) composition of olivine neoblasts, the garnet-clinopyroxene equilibrium condition and calculated by REE-composition of Gar2 and clinopyroxene. All these evidences indicate that the agent was a high temperature carbonate-silicate melt that is geochemically linked to the formation of the protokimberlite melt.  相似文献   

9.
Spinel peridotite xenoliths in alkali basalts at Tok, SE Siberian craton range from fertile lherzolites to harzburgites and wehrlites; olivine-rich (70-84%) rocks are dominant. REE patterns in the lherzolites range from nearly flat for fertile rocks (14-17% cpx) to LREE-enriched; the enrichments are positively correlated with modal olivine, consistent with high-permeability of olivine-rich rocks during melt percolation. Clinopyroxene in olivine-rich Tok peridotites typically has convex-upward trace element patterns (La/NdPM < 1 and Nd/YbPM ? 1), which we consider as evidence for equilibration with evolved silicate liquids (with higher REE and lower Ti contents than in host basalts). Whole-rock patterns of the olivine-rich xenoliths range from convex-upward to LREE-enriched (La/NdPM > 1); the LREE-enrichments are positively correlated with phosphorus abundances and are mainly hosted by accessory phosphates and P-rich cryptocrystalline materials. In addition to apatite, some Tok xenoliths contain whitlockite (an anhydrous, halogen-poor and Na-Mg-rich phosphate), which is common in meteorites and lunar rocks, but has not been reported from any terrestrial mantle samples. Some olivine-rich peridotites have generations of clinopyroxene with distinct abundances of Na, LREE, Sr and Zr. The mineralogical and trace element data indicate that the lithospheric mantle section represented by the xenoliths experienced a large-scale metasomatic event produced by upward migration of mafic silicate melts followed by percolation of low-T, alkali-rich melts and fluids. Chromatographic fractionation and fractional crystallisation of the melts close to the percolation front produced strong LREE-enrichments, which are most common in the uppermost mantle and are related to carbonate- and P2O5-rich derivatives of the initial melt. Reversal and gradual retreat of the percolation front during thermal relaxation to ambient geotherm (“retrograde” metasomatism) caused local migration and entrapment of small-volume residual fluids and precipitation of volatile-rich accessory minerals. A distinct metasomatic episode, which mainly produced “anhydrous” late-stage interstitial materials was concomitant with the alkali basaltic magmatism, which brought the xenoliths to the surface.  相似文献   

10.
Peridotite xenoliths found in Cenozoic alkali basalts of northern Victoria Land, Antarctica, vary from fertile spinel-lherzolite to harzburgite. They often contain glass-bearing pockets formed after primary pyroxenes and spinel. Few samples are composite and consist of depleted spinel lherzolite crosscut by amphibole veins and/or lherzolite in contact with poikilitic wehrlite. Peridotite xenoliths are characterized by negative Al2O3–Mg# and TiO2–Mg# covariations of clino- and orthopyroxenes, low to intermediate HREE concentrations in clinopyroxene, negative Cr–Al trend in spinel, suggesting variable degrees of partial melting. Metasomatic overprint is evidenced by trace element enrichment in clinopyroxene and sporadic increase of Ti–Fetot. Preferential Nb, Zr, Sr enrichments in clinopyroxene associated with high Ti–Fetot contents constrain the metasomatic agent to be an alkaline basic melt. In composite xenoliths, clinopyroxene REE contents increase next to the veins suggesting metasomatic diffusion of incompatible element. Oxygen isotope data indicate disequilibrium conditions among clinopyroxene, olivine and orthopyroxene. The highest δ18O values are observed in minerals of the amphibole-bearing xenolith. The δ18Ocpx correlations with clinopyroxene modal abundance and geochemical parameters (e.g. Mg# and Cr#) suggest a possible influence of partial melting on oxygen isotope composition. Thermobarometric estimates define a geotherm of 80°C/GPa for the refractory lithosphere of NVL, in a pressure range between 1 and 2.5 GPa. Clinopyroxene microlites of melt pockets provide P–T data close to the anhydrous peridotite solidus and confirm that they originated from heating and decompression during transport in the host magma. All these geothermometric data constrain the mantle potential temperature to values of 1250–1350°C, consistent with the occurrence of mantle decompressional melting in a transtensive tectonic regime for the Ross Sea region.  相似文献   

11.
 Ultramafic xenoliths in Cenozoic alkali basalts from Yitong, northeast China comprise three types in terms of their modal mineralogy: lherzolite, pyroxenite and wehrlite. The wehrlite suite always contains interstitial pale/brown glass which occupies several per cent by volume of the whole rock. The texture of the wehrlites is porphyroclastic with some large strained grains of olivine (0.5–1 mm) scattered in a very fine grained matrix (0.1 mm), implying a metamorphic origin for the protolith rather than an igneous origin. The host minerals are compositionally zoned, showing evidence of reaction with a melt. Petrological evidence for resorption of spinel (lherzolite) and orthopyroxene (wehrlite) by infiltrating melt further supports the hypothesis that the wehrlites result from interaction between a partial melting residue and a melt, which preferentially replaced primary spinel, Cr-diopside and enstatite to produce secondary clinopyroxene (cpx) + olivine (ol) ± chromite ± feldspar (fd). The composition of the mineral phases supports this inference and, further indicates that, prior to melt impregnation, the protoliths of these wehrlites must have been subjected to at least one earlier Fe-enrichment event. This explanation is consistent with the restricted occurrence of glasses in the wehrlite suite. The glass is generally associated with fine-grained (0.1 mm) minerals (cpx+ol+chromite ±fd). Electron microprobe analyses of these glasses show them to have high SiO2 content (54–60 wt%), a high content of alkalis (Na2O, 5.6–8.0%; K2O, 6.3–9.0%), high Al2O3 (20–24%), and a depletion in CaO (0.13–2.83%), FeO (0.89–4.42%) and MgO (0.29–1.18%). Ion probe analyses reveal a light rare earth element-enrichment in these glasses with chondrite normalised (La)n = 268–480. The high K2O contents in these glasses and their mode of occurrence argue against an origin by in-situ melting of pre-existent phases. Petrographic characteristics and trace element data also exclude the possibility of percolation of host-basalt related melts for the origin of these glasses. Thus the glasses must have resulted from local penetration of mantle metasomatic melts which may have been produced by partial melting of peridotites with involvement of deep-seated fluids. Such melts may have been significantly modified by subsequent fractional crystallization of ol, cpx and sp, extensive reaction with the mantle conduit and the xenolith transport process. Received: 1 August 1995 / Accepted: 19 June 1996  相似文献   

12.
Summary Spongy textures are observed in anhydrous Group 1 mantle xenoliths (harzburgite, lherzolite and wehrlite) hosted in Tertiary alkali basaltic lavas from the Hessian Depression, Germany. These textures are developed only on clinopyroxene and spinel, and occur as rims or cross-cutting veinlets and patches showing optical continuity with the host grain. They are often associated with pools of amorphous glassy material. There is no preferential development of spongy domains against the xenolith-lava contact suggesting that the host magma did not play any significant role in their formation. Spongy clinopyroxene and spinel occur in all rock types, but, are more pervasive in wehrlite. Chemically, spongy domains of clinopyroxene and spinel are more refractory than unaffected areas, which is consistent with their formation through a partial melting event. The associated glassy material shows chemical characteristics which suggest that the melt pools are genetically related to the development of the spongy textures. The partial melting event was probably triggered by the infiltration of a low-density fluid. The fluid may have evolved from a silicate melt responsible for the metasomatic Fe-enrichment recorded in wehrlite. In this context, the more pervasive development of spongy clinopyroxene in wehrlite may be explained by a higher concentration of the evolved fluid phase at proximity to its silicate melt source. Received March 15, 2000; revised version accepted September 6, 2001  相似文献   

13.
Spinel-lherzolite xenoliths in alkali basalts from eastern China have porphyroclastic to equigranular textures displaying varying degrees of deformation and subsolidus re-equilibration. The proportions of minerals in these xenoliths vary from 52 to 72% homogeneous olivine (Fo88-91); 11 to 26% orthopyroxene (Wo0.9.1.6; En88-90; Fs8.7.10.7), with minor discontinuous variations of Al2O3, FeO, and CaO; 6 to 19% clinopyroxene (Wo43.47; En49.51; Fs3.7.6.7); and 1 to 5% spinel, with similar Mg# (79.6 to 82.6), but wider variations of Al2O3 and Cr2O3 (100Cr/(Cr + Al + Fe3+) = 8.1 to 23.6). Although previous trace-element and isotopic studies have shown that at least two distinctly different mantle sources were sampled by Cenozoic basalts, mineralogical heterogeneities seem to be minor within the spinel-peridotite-facies lithosphere beneath eastern China.

These xenoliths experienced limited interaction with the host basaltic magma during eruption. Symplectites of secondary, minute silicates, titanomagnetite, and sulfide have replaced orthopyroxene—and to a lesser extent olivine—at the contact with the basalt. The spinel in the margin of the xenolith is continuously zoned by substitutions of Fe3O4 (magnetite) and Fe2TiO4 (ulvospinel) for MgAl2O3 (spinel), and is rimmed by titanomagnetite with a sharp boundary. However, the compositions of the interior clinopyroxenes were commonly modified by metasomatic partial melting, which resulted in “spongy-textured” rinds on primary clinopyroxene. This secondary assemblage is composed mainly of a refractory, jadeite-poor clinopyroxene, which is largely in optica! continuity with the primary clinopyroxene in addition to interstitial feldspars, with minor titanomagnetite and Fe-Ni sulfides. This assemblage was produced by the introduction of K-rich fluids from the enclosing basaltic magma. The intensity of these secondary reactions appears to have been a function of the residence time of the xenolith in the host basalt. Therefore, all secondary alteration of both external and internal primary minerals in these xenoliths are the result of near-surface metasomatic processes, rather than of mantle phenomena.  相似文献   

14.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

15.
The mineral chemistry, major and trace element, and Sr–Nd isotopic composition of Cr-diopside, spinel peridotite xenoliths from the Estancia Lote 17 locality in southern Patagonia document a strong carbonatitic metasomatism of the backarc continental lithosphere. The Lote 17 peridotite xenolith suite consists of hydrous spinel lherzolite, wehrlite, and olivine websterite, and anhydrous harzburgite and lherzolite. Two-pyroxene thermometry indicates equilibration temperatures ranging from 870 to 1015 °C and the lack of plagioclase or garnet suggests the xenoliths originated from between ˜40 and 60 km depth. All of the xenoliths are LILE- and LREE-enriched, but have relatively low 87Sr/86Sr (0.70294 to 0.70342) and high ɛNd (+3.0 to +6.6), indicating recent trace element enrichment (∼25 Ma, based on the low 87Sr/86Sr and high Rb concentrations of phlogopite separates) in the long-term, melt-depleted Patagonian lithosphere. Lote 17 peridotite xenoliths are divided into two basic groups. Group 1 xenoliths consist of fertile peridotites that contain hydrous phases (amphibole ± phlogopite ± apatite). Group 1 xenoliths are further subdivided into three groups (a, b, and c) based on distinctive textures and whole-rock chemistry. Group 1 xenolith mineralogy and chemistry are consistent with a complex metasomatic history involving variable extents of recent carbonatite metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu) that has overprinted earlier metasomatic events. Group 2 xenoliths consist of infertile, anhydrous harzburgites and record cryptic metasomatism that is attributed to CO2-rich fluids liberated from Group 1 carbonatite metasomatic reactions. Extremely variable incompatible trace element ratios and depleted Sr–Nd isotopic compositions of Lote 17 peridotite xenoliths indicate that the continental lithosphere was neither the primary source nor an enriched lithospheric contaminant for Neogene Patagonian plateau lavas. Neogene plateau magmatism associated with formation of asthenospheric slab windows may have triggered this occurrence of “intraplate-type” carbonatite metasomatism in an active continental backarc setting. Received: 26 January 2000 / Accepted: 1 March 2000  相似文献   

16.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


17.
Approximately 200 upper mantle xenoliths from Summit Lake, near Prince George, British Columbia, were collected from a basanitoid flow of Late Cenozoic (possibly post-glacial) age. The most abundant xenolith is spinel lherzolite (55%), with subordinate wehrlite (22%), clinopyroxenite (10%), olivine websterite (10%), websterite (2%) and dunite (1%). Xenoliths have granular textures and both green chrome diopside-bearing and black aluminous augitebearing xenoliths are present. About 5% of the xenoliths are banded on a cm scale, suggesting that the upper mantle beneath north-central British Columbia is heterogeneous on a scale of cm to meters.Microprobe data on the mineral phases indicate that the xenoliths are generally well equilibrated. Typically in spinel lherzolite, olivines are Fo89, orthopyroxenes are En90 and chrome diopside is Wo45En50Fs5. Spinels vary in composition from xenolith to xenolith. The evidence for partial melting observed in five xenoliths, may be due to heating during incorporation of the xenoliths within the host magma or to instability caused by decompression as the xenoliths are transported to the surface.Using element partition geothermometers, equilibration temperatures are calculated to be between 1080–1100° C. Pressures, estimated from a Cordilleran geotherm, are between 18–20 kbar. These temperatures are somewhat higher than estimates from xenoliths from other localities in Late Cenozoic alkali basalts in south and central British Columbia. It is concluded, therefore, that either the Summit Lake suite represents samples from a deeper source region in the upper mantle or the Late Cenozoic geotherm varied in time and space.On leave from the Geological Institute, University of Tokyo  相似文献   

18.
The paper discusses the results of mineralogical and petrographic studies of spinel lherzolite xenoliths and clinopyroxene megacrysts in basalt from the Jixia region related to the central zone of Cenozoic basaltic magmatism of southeastern China. Spinel lherzolite is predominantly composed of olivine (Fo89.6–90.4), orthopyroxene (Mg# = 90.6–92.7), clinopyroxene (Mg# = 90.3–91.9), and chrome spinel (Cr# = 6.59–14.0). According to the geochemical characteristics, basalt of the Jixia region is similar to OIB with asthenospheric material as a source. The following equilibrium temperatures and pressures were obtained for spinel peridotite: 890–1269°C and 10.4–14.8 kbar. Mg# of olivine and Cr# of chrome spinel are close to the values in rocks of the enriched mantle. It is evident from analysis of the textural peculiarities of spinel lherzolite that basaltic melt interacted with mantle rocks at the xenolith capture stage. Based on an analysis of the P–T conditions of the formation of spinel peridotite and clinopyroxene megacrysts, we show that mantle xenoliths were captured in the course of basaltic magma intrusion at a significantly lower depth than the area of partial melting. However, capture of mantle xenoliths was preceded by low-degree partial melting at an earlier stage.  相似文献   

19.
Rare dunite and 2-pyroxene gabbro xenoliths occur in banded trachyte at Puu Waawaa on Hualalai Volcano, Hawaii. Mineral compositions suggest that these xenoliths formed as cumulates of tholeiitic basalt at shallow depth in a subcaldera magma reservoir. Subsequently, the minerals in the xenoliths underwent subsolidus reequilibration that particularly affected chromite compositions by decreasing their Mg numbers. In addition, olivine lost CaO and plagioclase lost MgO and Fe2O3 during subsolidus reequilibration. The xenoliths also reacted with the host trachyte to form secondary mica, amphibole, and orthopyroxene, and to further modify the compositions of some olivine, clinopyroxene, and spinel grains. The reaction products indicate that the host trachyte melt was hydrous. Clinopyroxene in one dunite sample and olivine in most dunite samples have undergone partial melting, apparently in response to addition of water to the xenolith. These xenoliths do not contain CO2 fluid inclusions, so common in xenoliths from other localities on Hualalai, which suggests that CO2 was introduced from alkalic basalt magma between the time CO2-inclusion-free xenoliths erupted at 106±6 ka and the time CO2-inclusion-rich xenoliths erupted within the last 15 ka.  相似文献   

20.
Summary Mantle-derived xenoliths from Baarley in the Quaternary West Eifel volcanic field contain six distinct varieties of glass in veins, selvages and pools. 1) Silica-undersaturated glass rich in zoned clinopyroxene microlites that forms jackets around and veins within the xenoliths. This glass is compositionally similar to groundmass glass in the host basanite. 2) Silica-undersaturated alkaline glass that contains microlites of Cr-diopside, olivine and spinel associated with amphibole in peridotites. This glass locally contains corroded primary spinel and phlogopite. 3) Silica-undersaturated glass associated with diopside, spinel ± olivine and rh?nite microlites in partly to completely broken down amphibole grains in clinopyroxenites. 4) Silica-undersaturated to silica-saturated, potassic glass in microlite-rich fringes around phlogopite grains in peridotite. 5) Silica-undersaturated potassic glass in glimmerite xenoliths. 6) Silica-rich glass around partly dissolved orthopyroxene crystals in peridotites. Geothermometry of orthopyroxene–clinopyroxene pairs (P = 1.5 GPa) gives temperatures of ∼ 850 °C for unveined xenoliths to 950–1020 °C for veined xenoliths. Clinopyroxene – melt thermobarometry shows that Cr-diopside – type 2 glass pairs in harzburgite formed at 1.4 to 1.1 GPa and ∼ 1250 °C whereas Cr-diopside – type 2 glass pairs in wehrlite formed at 0.9 to 0.7 GPa and 1120–1200 °C. This bimodal distribution in pressure and temperature suggests that harzburgite xenoliths may have been entrained at greater depth than wehrlite xenoliths. Glass in the Baarley xenoliths has three different origins: infiltration of an early host melt different in composition from the erupted host basanite; partial melting of amphibole; reaction of either of these melts with xenolith minerals. The composition of type 1 glass suggests that jackets are accumulations of relatively evolved host magma. Mass balance modelling of the type 2 glass and its microlites indicates that it results from breakdown of disseminated amphibole and reaction of the melt with the surrounding xenolith minerals. Type 3 glass in clinopyroxenite xenoliths is the result of breakdown of amphibole at low pressure. Type 4 and 5 glass formed by reaction between phlogopite and type 2 melt or jacket melt. Type 6 glass associated with orthopyroxene is due to the incongruent dissolution of orthopyroxene by any of the above mentioned melts. Compositional gradients in xenolith olivine adjacent to type 2 glass pools and jacket glass can be modelled as Fe–Mg interdiffusion profiles that indicate melt – olivine contact times between 0.5 and 58 days. Together with the clinopyroxene – melt thermobarometry calculations these data suggest that the glass (melt) formed over a short time due to decompression melting of amphibole and infiltration of evolved host melt. None of the glass in these xenoliths can be directly related to metasomatism or any other process that occurred insitu in the mantle. Received November 23, 1999; revised version accepted September 5, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号