首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nizhny Tagil and Guli clinopyroxenite-dunite massifs, located in the Middle Urals and Maimecha-Kotui Province, respectively, are associated with world-class platinum-group elements (PGE) placer deposits. Both massifs contain small bodies of schlieren to massive chromitite associated with dunite. The predominance of Pt-Fe alloys at Nizhny Tagil is consistnt with the whole-rock “M”-shaped mantle-normalized PGE pattern of the chromitite. In contrast, the preponderance of laurite and Os-Ir alloys at Guli is consistent with a negatively sloped PGE pattern, the latter being characteristic of ophiolite-type podiform chromitites. The ‘unradiogenic’ 187Os/188Os values obtained for both platinum-group minerals (PGM) and chromitite are indicative of a common near-to-chondritic source for the PGE and implies that the osmium isotope budget of chromitite is largely controlled by laurite and Os-rich alloy. Average model 187Os/188Os ages calculated for the Nizhny Tagil and Guli massifs correspond to the late Riphean (e.g., 862 ± 48 Ma and 616 ± 8 Ma, respectively). The compositional and isotope-geochemical results provide new constraints on the temporal evolution of ultramafic rocks of the Uralian Platinum Belt and northern segment of the Siberian Platform.  相似文献   

2.
We report highly unusual platinum-group mineral (PGM) assemblages from geologically distinct chromitites (banded and podiform) of the Kraubath massif, the largest dismembered mantle relict in the Eastern Alps. The banded chromitite has a pronounced enrichment of Pt and Pd relative to the more refractory platinum-group elements (PGEs) of the IPGE group (Os, Ir, Ru), similar to crustal sections of ophiolites. On the contrary, the podiform chromitite displays a negatively sloping chondrite-normalised PGE pattern typical of ophiolitic podiform chromitite. The chemical composition of chromite varies from Cr# 73-77 in the banded type to 81-86 in the podiform chromitite. Thirteen different PGMs and one gold-rich mineral are first observed in the banded chromitite. The dominant PGM is sperrylite (53% of all PGMs), which occurs in polyphase assemblages with an unnamed Pt-base metal (BM) alloy and Pd-rich minerals such as stibiopalladinite, mayakite, mertieite II, unnamed Pd-Rh-As and Pd(Pt)-(As,Sb) minerals. This banded type also contains PGE sulphides (about 7%) represented by a wide compositional range of the laurite-erlichmanite series and irarsite (8%). Os-Ir alloy, geversite, an unnamed Pt-Pd-Bi-Cu phase and tetrauricupride are present in minor amounts. By contrast, the podiform chromitite, which yielded 21 different PGMs, is dominated by laurite (43% of all PGMs) which occurs in complex polyphase assemblages with PGE alloys (Ir-Os, Os-Ir, Pt-Fe), PGE sulphides (kashinite, bowieite, cuproiridsite, cuprorhodsite, unnamed (Fe,Cu)(Ir,Rh)2S4, braggite, unnamed BM-Ir and BM-Rh sulphides) and Pd telluride (keithconnite). A variety of PGE sulpharsenides (33%) including irarsite, hollingworthite, platarsite, ruarsite and a number of intermediate species have been identified, whereas sperrylite and stibiopalladinite are subordinate (2%). The occurrence of such a wide variety of PGMs from only two, 2.5-kg chromitite samples is highly unusual for an ophiolitic environment. Our novel sample treatment allowed to identify primary PGM assemblages containing all six PGEs in both laurite-dominated podiform chromitite as well as in uncommon sperrylite-dominated banded chromitite. We suggest that the geologically, geochemically and mineralogically distinct banded chromitite from Kraubath characterises the transition zone of an ophiolite, closely above the mantle section hosting podiform chromitite, rather than being representative of the crustal cumulate pile.  相似文献   

3.
Summary ?We report, for the first time, the occurrence of five palladium-rich, one palladium bearing and two gold-silver minerals from podiform chromitites in the Eastern Alps. Minerals identified include braggite, keithconnite, stibiopalladinite, potarite, mertieite II, Pd-bearing Pt-Fe alloy, native gold and Ag-Au alloy. They occur in heavy mineral concentrates produced from two massive podiform chromitite samples (unaltered and highly altered) of the Kraubath ultramafic massif, Styria, Austria. Distribution patterns of platinum-group elements (PGE) in these chromitites show considerable differences in the behaviour of the less refractory PGE (PPGE-group: Rh, Pt, Pd) compared to the refractory PGE (IPGE-group: Os, Ir, Ru). PPGE are more enriched in chromitite showing pronounced alteration features. The unaltered chromitite displays a negatively sloped chondrite-normalised PGE pattern similar to typical ophiolitic-podiform chromitite. Except for the Pd- and Au-Ag minerals that are generally rare in ophiolites, about 20 other platinum-group minerals (PGM) have been discovered. They include PGE-sulphides (laurite, erlichmanite, kashinite, bowieite, cuproiridsite, cuprorhodsite, unnamed Ir-rich variety of ferrorhodsite, unnamed Ni-Fe-Cu-Rh- and Ni-Fe-Cu-Ir-Rh monosulphides), PGE alloys (Pt-Fe, Ir-Os, Os-Ir and Ru-Os-Ir), PGE-sulpharsenides (irarsite, hollingworthite, platarsite, ruarsite and a number of intermediate species), sperrylite and a Ru-rich oxide (?). Three PGM assemblages have been recognised and attributed to different processes ranging from magmatic to hydrothermal and weathering-related. Pd-rich minerals are characteristic of both chromitite types, although their chemistry and relative proportions vary considerably. Keithconnite, braggite and Pd-bearing ferroan platinum, together with a number of PGE-sulphides (mainly laurite-erlichmanite) and alloys, are typical only of the unaltered podiform chromitite (assemblage I). Euhedral mono- and polyphase PGM grains in the submicron to 100 μm range show features of primary magmatic assemblages. The diversity of PGM in these assemblages is unusual for ophiolitic environments. In assemblage II, laurite-erlichmanite is intergrown with and overgrown by PGE-sulpharsenides; other minerals of assemblage I are missing. Potarite, stibiopalladinite, mertieite II, native gold and Ag-Au alloys, as well as PGE-sulpharsenides, sperrylite and base metal arsenides and sulphides are characteristic for the highly altered chromitite (assemblage III). They occur either interstitial to chromite in association with metamorphic silicates, in chromite rims or along cracks, and are thus interpreted as having formed by remobilization of PGE by hydrothermal processes during polyphase regional metamorphism. Received August 3, 2000;/revised version accepted December 28, 2000  相似文献   

4.
This study firstly presents chemical and initial Os-isotopic compositions of Os-Ir-Ru minerals of two ultramafic formations of Polar Siberia, which are exemplified by Guli clinopyroxene-dunite massif of the Maimecha-Kotui Province and the Kunar dunite-harzburgite massif from the Chelyuskin ultramafic belt of the Taimyr Peninsula. The study employed a range of methods, including electron microprobe analysis, negative thermal ionization mass spectrometry (N-TIMS) and laser ablation attached to an inductively coupled plasma mass spectrometry (LA MC-ICP-MS). The majority of platinum-group minerals (PGM) from the Guli massif are Os-(Ir-Ru) solid solutions or Os-rich minerals. At Kunar, minerals of Ru-Os-Ir system (i.e., osmium, ruthenium, iridium and rutheniridosmine) dominate the PGM assemblage. The ruthenium trend in the mineral compositions is due to the formation of these minerals under high pressures and temperatures at considerable depths. The 187Os/188Os values of Os-rich minerals from the Guli massif range from 0.12309 ± 0.00002 to 0.12606 ± 0.00003 (n = 168). The initial Os-isotopic composition of PGM from the central block of the Guli massif is characterized by the 187Os/188Os values, varying in the range 0.12404–0.12606. Osmiumrich minerals from the southwestern block of the Guli massif are characterized by the least “radiogenic” 187Os/188Os values (i.e., 0.12309–0.12341). Low relative to the chondritic universal reservoir (CHUR) 187Os/188Os values are indicative of a near-to-chondritic source of platinum-group elements (PGE). The most “productive” stage of PGM formation at Guli (n = 121) is recorded in the time interval of 545–615 Ma. The older model 187Os/188Os ages of osmium minerals are characteristic of the southwestern block of the Guli massif (e.g., 745–760 Ma). The results of the initial Os-isotopic composition for Os-rich alloys are consistent with a model, in which PGM were formed during multi-stage melt depletion events in the mantle. This agrees well with the suggestion that the Guli massif consists of heterogeneous blocks of ultramafic rocks. The 187Os/188Os ratio in the investigated PGM from the Kunar massif varies in a wider range (0.1094–0.1241, n = 28). For the dominant set of PGM samples (n = 25), regardless of their chemical composition, four groups of the initial osmium isotopic compositions can be estimated, with average 187Os/188Os values of 0.1217 ± 0.0002 (n = 7), 0.1223 ± 0.0002 (n = 7), 0.1230 ± 0.0002 (n = 6) and 0.1238 ± 0.0003 (n = 6), respectively. The average model Re-Os ages for the defined groups of the Kunar massif are consistent with Late Riphean age interval (e.g., 975 ± 42 Ma, 892 ± 42 Ma, 791 ± 28 Ma and 681 ± 42 Ma, respectively). Significant variations in the 187Os/188Os values and model ages for Ru-Os-Ir alloys at Kunar are close to those from other duniteharzburgite massifs of the Earth, pointing out for their prolonged multi-stage evolution within the upper mantle.  相似文献   

5.
On the basis of a representative collection of ultramafic rocks and chromite ores and a series of technological samples from the largest (Central and Western) deposits in the Rai-Iz massif of the Polar Urals and the Almaz-Zhemchuzhina and Poiskovy deposits in the Kempirsai massif of the southern Urals, the distribution and speciation of platinum-group elements (PGE) in various type sections of mafic-ultramafic massifs of the Main ophiolite belt of the Urals have been studied. Spectral-chemical and spectrophotometric analyses were carried out to estimate PGE in 700 samples of ultramafic rocks and chromite ores; 400 analyses of minerals from rocks, ores, and concentrates and 100 analyses of PGE minerals (PGM) in chromite ores and concentrates were performed using an electron microprobe. Near-chondritic and nonchondritic PGE patterns in chromitebearing sections have been identified. PGE mineralization has been established to occur in chromite ore from all parts of the mafic-ultramafic massifs in the Main ophiolite belt of the Urals. The PGE deposits and occurrences discovered therein are attributed to four types (Kraka, Kempirsai, Nurali-Upper Neiva, and Shandasha), which are different in mode of geological occurrence, geochemical specialization, and placer-forming capability. Fluid-bearing minerals of the pargasite-edenite series have been identified for the first time in the matrix of chromite ore of the Kempirsai massif (the Almaz-Zhemchuzhina deposit) and Voikar-Syn’ya massif (the Kershor deposit). The PGE grade in various types of chromite ore ranges from 0.1–0.2 to 1–2 g/t or higher. According to technological sampling, the average PGE grade in the largest deposits of the southeastern ore field of the Kempirsai massif is 0.5–0.7 g/t. Due to the occurrence of most PGE as PGM 10–100 mm in size and the proved feasibility of their recovery into nickel alloys, chromites of the Kempirsai massif can be considered a complex ore with elevated and locally high Os, Ir, and Ru contents. The Nurali-Upper Neiva type of ore is characterized by small-sized primary deposits, which nevertheless are the main source of large Os-Ir placers in the Miass and Nev’yansk districts of the southern and central Urals, respectively.  相似文献   

6.
The new data for the geology and mineralogy of the platinum group element (PGE) mineralization related to the chromite–platinum ore zones within the dunite of the Svetly Bor and Veresovy Bor massifs in the Middle Urals are discussed. The geological setting of the chromite–platinum ore zones, their platinum content, compositional and morphological features of the platinum group minerals (PGM) are compared to those within the Nizhny Tagil massif, the world standard of the zonal complexes in the Platinum Ural belt. The chromite–platinum orebodies are spatially related to the contacts between differently granular dunites. Majority of PGM are formed by Pt–Fe alloys that are close in terms of stoichiometry to isoferroplatinum (Pt3Fe), and associated with Os–Ir alloys, Ru–Os and Ir–Rh sulfides, and Ir–Rh thiospinels of the cuproiridsite–cuprorhodsite–ferrorhodsite solid solution. The tetraferroplatinum (PtFe)–tulameenite (PtFe0.5Cu0.5) solid solution and Pt–Cu alloys belong to the later PGM assemblage. The established features of the chromite–platinum ore zones testify to the highly probable identification of the PGE mineralization within the dunite of the Svetly Bor and Vesesovy Bor massifs and could be used in prospecting and exploration for platinum.  相似文献   

7.
New data on the composition, assemblages, and formation conditions of platinum-group minerals (PGM) identified in platinum-group element (PGE) occurrences of the Monchetundra intrusion (2495 +- 13 to 2435 ± 11 Ma) are described. This intrusion is a part of the Paleoproterozoic pluton of the Monche-Chuna-Volch’i and Losevy tundras located in the Pechenga-Imandra-Varzuga Rift System. The rhythmically layered host rocks comprise multiple megarhythms juxtaposed to mylonite zones and magmatic breccia and injected by younger intrusive rocks in the process of intense and long magmatic and fluid activity in the Monchetundra Fault Zone. The primary PGM and later assemblages that formed as a result of replacement of the former have been identified in low-sulfide PGE occurrences. More than 50 minerals and unnamed PGE phases including alloys, Pt and Pd sulfides and bismuthotellurides, PGE sulfarsenides, and minerals of the Pd-As-Sb, Pd-Ni-As, and Pd-Ag-Te systems have been established. The unnamed PGE phases—Ni6Pd2As3, Pd6AgTe4, Cu3Pt, Pd2NiTe2, and (Pd, Cu)9Pb(Te, S)4—are described. The primary PGM were altered due to the effect of several mineral-forming processes that resulted in the formation of micro- and nanograins of Pt and Pd alloys, sulfides, and oxides, as well as in the complex distribution of PGE, Au, and Ag mineral assemblages. New types of complex Pt and Pd oxides with variable Cu and Fe contents were identified in the altered ores. Pt and Pd oxides as products of replacement of secondary Pt-Pd-Cu-Fe alloys occur as zonal and fibrous nanoscale Pt-Pd-Cu-Fe-(±S)-O aggregates.  相似文献   

8.
In the alluvial deposits of the Prizhlimny Creek (southern part of the Koryak Highland), grains of platinum-group minerals are found along with gold. We have established that the grains are native platinum (Pt, Fe) containing Cu (up to 5 wt.%), Os (up to 8 wt.%), and Rh (up to 2 wt.%). Inclusions in the platinum are native osmium (the content of Ir impurity reaches 12 wt.%, the average content being 0.2–4 wt.%), an unnamed intermetallic compound of composition PtRh, sulfides and arsenides of PGE (cooperite, laurite, malanite, cuproiridsite, cuprorhodsite, sperrylite, hollingworthite, unnamed compounds PdS, (Ir,Ru)S2, (Ir,Pt)S2, Cu, and Fe (bornite, chalcopyrite), chromite, and Cr-magnetite. Replacement of native-osmium crystals by compound IrO2 is described. It has been established that this compound formed during oxidation accompanied by the replacement of isoferroplatinum by native platinum. The data obtained agree with the results of study of platinum-group mineral assemblages from placers localized in weakly eroded Ural–Alaskan-type massifs whose apical parts formed under high oxygen activity conditions. Clinopyroxenites of the Prizhimny massif are considered to be the potential source of PGE.  相似文献   

9.
 The platinum-group mineralogy (PGM) of the chromitite from Gebel Lawi, in the southeastern desert has been investigated. The most abundant base metal sulfides (BMS) associated with the Lawi chromite are pentlandite, millerite and heazlewoodite. The major platinum-group minerals identified were as follows: laurite (IrOsRu)S2, osmian iridium (OsIr), hollingworthite (RhAsS), tellurian arsenopalladinite (PdTeSbAs), potarite (PdHg) besides cuprian palladian gold (CuPdAu), a Pd-Sb-Hg and HgTe phases. Laurite and osmian iridium occur preferentially in chromite. Os-Ir commonly forms composite PGM with laurite. Hollingworthite and tellurian arsenopalladinite are included within serpentine and, close to the base-metal sulfides, the cuprian palladian gold shares boundaries with chromite. Potarite together with the Pd-Sb-Hg and HgTe phases are embedded in serpentine. Palladium is the most abundant PGE in the Gebel Lawi chromite. A paragenetic sequence of PGM formation is described. Textural evidence indicates that Os-, Ir- and Ru-bearing PGM formed early and were followed by Rh- and Pd-bearing PGM. The concentration of all five PGE could be magmatic, but much of the PGE mineralogy except for laurite and osmian iridium in the center of chromite grains, has been modified by subsequent processes. At later stages, the environment became Te-, Sb-, As- and Hg-rich, which finally led to the formation of low-temperature alteration minerals. Received: 24 April 1995 / Accepted: 28 March 1996  相似文献   

10.
The isotopic and geochemical characteristics of PGE mineralization in high-Mg chromitite from the banded dunite–wehrlite–clinopyroxenite complex of the Nurali lherzolite massif, the South Urals, Russia is characterized for the first time. Electron microprobe analysis and LA MC-ICP-MS mass spectrometry are used for studying Cr-spinel and platinum-group minerals (PGM). Two processes synchronously develop in high-Mg chromitite subject to metamorphism: (1) the replacement of Mg–Al-rich Cr-spinel, orthopyroxene, and diopside by chromite, Cr-amphibole, chlorite, and garnet; (2) the formation of a secondary mineral assemblage consisting of finely dispersed ruthenium or Ru-hexaferrum aggregate and silicate–oxide or silicate matter on the location of primary Ru–Os-sulfides of the laurite–erlichmanite solid solution series. Similar variations of Os-isotopic composition in both primary and secondary PGM assemblages are evidence for the high stability of the Os isotope system in PGM and for the possibility of using model 187Os/188Os ages in geodynamic reconstructions.  相似文献   

11.
The Dobromirtsi Ultramafic Massif, located in the Rhodope Mountains (SE Bulgaria), is a portion of a Paleozoic sub-oceanic mantle affected by polyphase regional metamorphism. This massif contains several small, podiform chromitite bodies which underwent the same metamorphic evolution as their host peridotites. Like other ophiolite chromitites, those found in Dobromirtsi carry abundant platinum-group minerals (PGM) and base-metal minerals (BMM). The PGM consist mainly of Ru-, Os-, and Ir-based PGM (laurite RuS2-erlichmanite OsS2, Os-Ru-Ir alloys, irarsite [IrAsS], Ru-rich pentlandite, and an unknown Ir-sulfide) but minor Rh- and Pd-based PGM (hollingworthite [RhAsS] and a series of unidentified stannides and sulfantimonides) are also present. In contrast, the BMM are dominated by pentlandite (Ni,Fe)9S8, followed by heazlewoodite (Ni3S2), breithauptite (NiSb), maucherite (Ni11As8), godlevskite (Ni7S6), gersdorffite (NiAsS), millerite (NiS), undetermined minerals containing Ni, As and Sb, orcelite (Ni5-XAs2), awaruite (Ni3Fe) and chalcopyrite (CuFeS2). The detailed study of the textural relationships, morphology and composition of the PGM and BMM inclusions indicate the existence of two different PGM-BMM assemblages: (i) a primary or magmatic; and (ii) a secondary related with postmagmatic alteration. The PGM and BMM inclusions in unaltered zones of chromite crystals (mainly laurite-erlichmanite and pentlandite) are considered to be primary magmatic minerals formed under variable temperature (1200–1100°C) and sulfur fugacity (between −2 and −0.5 log fS2). In contrast, PGM and BMM located along altered edges of chromite and serpentinised silicate matrix are considered to be secondary, formed from or re-equilibrated with altering fluids. Secondary PGM and BMM assemblages are considered as result of the combination of reducing and oxidising events related with regional metamorphism. Under low fO2 states, fS2 also drops giving place to the formation of S-poor Ni-rich sulfides and secondary Ru-alloys by desulfurisation of primary S-containing minerals. In contrast, predominance of platinum-group elements and/or base-metal arsenides and sulfarsenides associated with the altered edges of chromite (chromite strongly enriched in Fe2O3) is related with the fixing of remobilised PGE (mainly Ir, Rh and Pd) and base-metals (mainly Ni and Fe) when late oxidising fluids supplied As as well as Sb and Sn.  相似文献   

12.
Abstract: Ru–Os–Ir alloys have been found in two podiform chromitites located at the Chiroro and Bankei mines in the Sarugawa peridotite complex in the Kamuikotan zone, Hokkaido, Japan. This is the first report on the occurrence of PGM (= platinum-group minerals) from chromitites in Japan. The Ru–Os–Ir alloys most typically form polyhedra associated with other minerals (Ni–Fe alloys and heazlewoodite) in chromian spinel. The PGM are possibly pseudomorphs after some primary PGM such as laurite and are chemically highly inhomogeneous, indicating a low-temperature alteration origin. This is consistent with intense alteration (formation of serpentine, uvarovite and kämmererite) imposed on the Kamuikotan chromitites. High-temperature primary PGE (platinum–group elements)–bearing sulfides were possibly recrystallized at low temperatures into a new assemblage of PGM, Ni-Fe alloys and sulfides. Placer PGM around the peridotite complexes are chemically different from the PGM in dunite and chromitite possibly due to the, as yet, incomplete search for the rock-hosted PGM. The PGE content in chromitites is distinctly higher in those in the Kamuikotan zone than in those in the Sangun zone of Southwest Japan, consistent with the more refractory nature (Cr# of spinel, up to 0.8) of the former than the latter (Cr# of spinel, 0.5).  相似文献   

13.
Platinum-group minerals (PGM) in primary ores and placers are compared in order to substantiate prospecting guides for layered and differentiated intrusions containing sulfide Cu-Ni ores with platinum-group elements (PGE). It is shown that supergene placer mineral assemblages bear information on primary sources and their probable economic value. The mineralogical and geochemical data on the large Siberian intrusions that host Cu-Ni and low-sulfide PGM deposits (Noril’sk 1, Kingash, Chinei, and Yoko-Dovyren) are used to elaborate mineralogical prospecting guides based on the comparative study of PGM assemblages in primary ore, heavy concentrate halos, and hillside sediments. The mechanism of PGM redistribution under supergene conditions is exemplified in the Chinei deposit. The placer mineral assemblage with prevalence of Pt-Fe alloys, atokite-rustenburgite, sperrylite, and multicomponent Pd-Sn-Cu-Pb compounds can be used as a prospecting guide for Noril’sk-type primary PGM ore and related economic placers. The paolovite-sperrylite or sperrylite PGM assemblage in heavy concentrate halos indicates occurrence of Cu-Ni ore in the prospecting area. Sperrylite with isomorphic admixture of Ir and Os typical of the Kingash pluton could be a orospecting guide for Ni-bearing mafic-ultramafic intrusions.  相似文献   

14.
Summary The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE. The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates. Author’s address: Vadim Vadimovich Distler, Institute of Geology of Ore Deposits, Mineralogy, Petrography and Geochemistry Russian Academy of Sciences (IGEM RAS), Staromonetny 35, 119017 Moscow, Russia  相似文献   

15.
Summary ?Geological, mineralogical and Os isotopic data for detrital PGE-mineralization derived from the Guli and Bor-Uryah ultramafic massifs, within the Maimecha-Kotui Province (the northern part of the Siberian Platform, Russia), are presented for the first time. The detrital platinum-group minerals (PGM) are dominated by Os–Ir–(Ru) species, which is typical for ophiolites or Alpine-type complexes. However, the PGM assemblage in the placers investigated is similar to that derived from zoned platiniferous clinopyroxenite–dunite massifs (also known as Uralian-, Alaskan-type and Aldan-type massifs). The unique features of the Au-PGE placers at Guli are (1) the dominance of Os-rich alloys over other PGM and Au, and (2) the considerable predicted resources of noble metals, particularly osmium. Dominant chromite, olivine and clinopyroxene inclusions recorded in Os–Ir–(Ru) alloys imply that they were derived from ultramafic sources (e.g., chromitite, dunite and clinopyroxenite). The first in situ osmium-isotope measurements by laser ablation - multiple collector - inductively coupled plasma mass spectrometry of different, intimately intergrown, PGM (e.g., laurite and Os-rich alloys) in various nuggets from Guli have revealed low 187Os/188Os and γOs values. They yield a very narrow range of 187Os/188Os (0.12432 to 0.12472) and γOs (− 2.39 to − 2.07). These values are indicative of a common chondritic or subchondritic mantle source of PGE. 187Os/188Os and γOs values of Os-rich alloys, derived from the Bor-Uryah massif, are different (i.e., γOs ranges from − 2.67 to − 1.30). The mineral-isotopic data obtained are consistent with the conclusion that the PGM were derived from parent ultramafic source rocks. Os-isotope model ages in the range of 495 to 240 Ma constrain the age of ultramafic protoliths in the northern part of the Siberian Craton. The variation in 187Os/188Os values for detrital PGM, where the provenance source is unknown, is considered to be a useful technique for distinguishing parent bedrock sources. Received July 12, 2001; revised version accepted December 27, 2001  相似文献   

16.
Summary The study of platinum-group minerals (PGM) concentrates from the Nizhni Tagil placers related to the Soloviev Mountain (Gora Solovieva) Uralian-Alaskan-type intrusion revealed a predominance of (Pt, Fe) alloys over Ir-, and Os-bearing alloys. (Pt, Fe) alloys (“isoferroplatinum-type”) are interstitial with respect to chromite and show important variations in their chemical compositions, which are, however, falling within the experimentally determined stability field of isoferroplatinum. Tetraferroplatinum, enriched in Cu and Ni and tulameenite represent low-temperature mineral phases replacing (Pt, Fe) alloys. Alloys belonging to the Os–Ir–Ru ternary system have compositions corresponding to native osmium, iridium and ruthenium, respectively, and to rutheniridosmine. Osmium exsolutions appear in Ir-, and (Pt, Fe) alloys, and iridium exsolutions in (Pt, Fe) alloys. Laurite is a high-temperature phase included in native iridium and (Pt, Fe) alloys. Low-temperature PGM association comprises Ir-bearing sulpharsenides, including a phase (Ir, Os, Fe, Pt, Ru, Ni)3(As, Sb)0.85S, and a palladium antimonide Pd20Sb7. These two phases were previously unknown in nature. Furthermore, native palladium occurs in the studied concentrates. This low-temperature paragenesis indicates an interaction of Pt-, Os-, Ir- and Ru-bearing alloys with late fluids enriched in volatiles, As and Sb. The chromite composition is characterized by the predominance of Cr3+ → Fe3+ substitution like in other Uralian-Alaskan-type intrusions; that indicates a fO2 variation during the chromite precipitation. Monomineralic inclusions of euhedral clinopyroxene and chromite crystals in (Pt, Fe) alloys were observed. Furthermore, (Pt, Fe) alloys contain polyphase silicate inclusions, which occupy the alloy negative crystals. Two types of silicate inclusions were recognized: (1) Low-pressure inclusions composed of amphibole, biotite, Jd-poor clinopyroxene, magnetite, apatite and glass; (2) High-pressure inclusions include: omphacitic clinopyroxene (up to 56 mol.% Jd), tremolite, muscovite, apatite, titanite and glass. In this case, the clinopyroxene is strongly zoned, revealing a pressure drop from about 25 to 5 kbar. The chemical composition of glass is corundum-normative and its H2O content varies from about 12 to 15 wt.%. The composition of magmatic melts, from which the silicate inclusions have originated was estimated using EPMA and image analysis interpreted by stereology. Their compositions are close to those obtained experimentally by hydrous partial melting of upper mantle rocks. The interpretation of analytical data shows that magmatic melts entrapped by (Pt, Fe) alloys crystallized from about 1100 to 700 °C. The (Pt, Fe) alloys formed after the crystallization of chromite, clinopyroxene and albite. Consequently, the precipitation temperature of (Pt, Fe) alloys is estimated at about 900 °C. The significant pressure drop implies a decrease of volatile concentrations in the magmatic melt and the possible formation of a fluid phase, which might have generated, the precipitation of chromite and PGM.  相似文献   

17.
Summary Chromitites (Cr ores) of the Ojen lherzolite massif (Serranía de Ronda, Betic Cordillera, Southern Spain) were found to contain platinum-group minerals (PGM) as discrete inclusions in the chromite and in the associated silicates. The PGM mineralogy consists of sulfides [laurite, erlichmanite, malanite, unnamed (Ni-Fe-Cu)2 (Ir, Rh) S3, unidentified Pd-S], sulfarsenides (irarsite, hollingworthite, ruarsite, and osarsite), arsenides [sperrylite, unidentified (Pd, Ni)-As], one unidentified Pd-Bi compound, and native platinum group elements (PGE) consisting of Ru and Pt-Fe alloys. Textural considerations suggest that the PGE chalcogenides with S and As were formed in the high-temperature magmatic stages, as part of the chromite precipitation event (primary PGM), in contrast with the native PGE, which originated during the low-temperature serpentinization of the ultramafic host of the chromitites (secondary PGM).The primary PGM inclusions in the Ojen chromite are unusual compared with PGM inclusions in chromitites from tectonitic upper-mantle of ophiolites and other alpine-type complexes in that i) they display a great variety of mineral species sulfides, sulfarsenides and arsenides, and ii) comprise specific phases of all six PGE. The singularity of the primary PGM mineralization probably reflects high activities of both S and As during chromite precipitation at Serrania de Ronda to be related with particular physico-chemical conditions during uplifting of sub-continental, astenospheric mantle.The nature, composition, and paragenetic association of secondary PGM at Ojen confirm the relatively-high mobility of the PGE at low temperature, and indicate that remobilization can be selective under appropriate redox conditions causing separation and redistribution of the PGE in the rocks as a result of the alteration process.
Platingruppen-Minerale in chromititen aus dem ojen-lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien)
Zusammenfassung Platingruppen-Minerale in Chromititen aus dem Ojen-Lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien) In den Chromititen (Cr-Erzen) aus dem Ojen-Lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien) warden Platingruppen-Minerale (PGM) als einzelne Einschlüsse im Chromit and in den begleitenden Silikaten gefunden. Die Mineralogie der PGM setzt sich aus Sulfiden [Laurit, Erlichmanit, Malanit, einem unbenannten (Ni-Fe-Cu)2 (Ir, Rh)S3 und einem nicht identifizierten Pd-S], Sulfarseniden (Irarsit, Hollingworthit, Ruarsit und Osarsit), Arseniden [Sperrylit, einem nicht identifizierten (Pd, Ni)-As], einer nicht identifizierten Pd-Bi-Verbindung sowie gediegenen Platingruppen-Elementen (PGE) bestchend aus Ru and Pt-Fe-Legierungen, zusammen. Texturelle Untersuchungen haben ergeben, daß die PGE-Chalkogenide mit S und As im Zuge der Chromitfällung (primäre PGM) in den hochtemperierten, magmatischen Stadien gebildet warden, während die gediegenen PGE während der niedriggradigen Serpentini sierung des ultramafischen Nebengesteins der Chromitite (sekundäre PGM) gebildet warden.Die primären PGM-Einschlüsse in den Ojen-Chromiten sind im Vergleich zu PGM-Einschlüssen in Chromititen aus dem tektonisierten oberen Mantel in Ophiolithen und anderen alpinotypen Komplexen ungewöhnlich: i) Einerseits zeigen sie eine große Vielfalt an Mineralarten aus der Gruppe der Sulfide, Sulfarsenide und Arsenide. ii) Andererseits enthalten sie spezifische Phasen aller sechs PGE. Die Einzigartigkeit der primären PGM-Mineralisation könnte hohe Aktivitäten von S and As während der Chromit-Fällung in Serranía de Ronda widerspiegeln, die mit besonderen physiko-chemischen Bedingungen während der Hebung des subkontinentalen, asthenosphärischen Mantels zusammenhängen.Die Art, die Zusammensetzung and die paragenetische Vergesellschaftung von sekundären PGM in Ojen bestätigen die relativ hohe Mobilität der PGE bei niedriger Temperatur und zeigen, daß die Remobilisierung unter geeigneten Redox-Bedingungen selektiv wirken kann, wodurch eine Trennung und Neuverteilung der PGE in den Gesteinen als Ergebnis des Alterationsprozesses bewirkt wird.


With 7 Figures  相似文献   

18.
The Pt-Pd and Au-Ag mineralization hosted in both wehrlite without visible links to sulfide mineralization (dispersed assemblage of the Tartai massif) and disseminated Cu-Ni sulfide ore (ore assemblage of the Ognit massif) was found in dunite-wehrlite massifs localized in the fold framework of the Siberian Craton. The Pt minerals in both assemblages comprise sperrylite (PtAs2) and secondary Pt-Fe-Ni alloys in the Ognit massif and Pt-Fe-Cu and Pt-Cu alloys in the Tartai massif. The Pd minerals are widespread in the ore assemblages as compounds with Te, Sb, and Bi, whereas in the dispersed assemblage Pd is concentrated primarily in Pd-Cu-Sb compounds. Both assemblages are characterized by similar substitution of sperrylite with orcelite (Ni5 ? xAs2) and then with secondary Pt-Fe-Ni or Pt-Fe-Cu and Pt-Cu alloys; the occurrence of Au-Ag alloys with prevalence of Ag over Au; and replacement of them with auricupride (Cu3Au) at the late stage. Sperrylite in both assemblages contains Ir impurities, while the Pd minerals contain Cu and Ni admixtures, which are typical of mineral assemblages related to the ultramafic intrusions with nickel specialization. PGM were formed under a low sulfur fugacity and high As, Bi, and Sb activities. The postmagmatic fluids affected the primary mineral assemblages under reductive conditions, and this effect resulted in replacement of sperrylite with Ni arsenide (orcelite) and Pt-Fe-Ni and Pt-Fe-Cu alloys; Ni and Cu sulfides were replaced with awaruite and native copper.  相似文献   

19.
High-carbonaceous stratified formations and related metasomatic rocks of global abundance are among highly promising sources of gold and platinum-group metals (PGMs) in the 21st century. The Au-PGM mineralization of the black-shale type hosted in the Early Karelian Kursk and Oskol groups in central Russia is characterized by complex multicomponent and polymineralic composition (more than 60 ore minerals, including more than 20 Au and PGM phases) and diverse speciation of noble metals in form of (1) native elements (gold, palladium, platinum, osmium, silver); (2) metallic solid solutions and intermetallic compounds (Pt-bearing palladium, Fe-bearing platinum, gold-platinum-palladium, osmiridium, rutheniridosmin, platiridosmin, platosmiridium, Hg-Te-Ag-bearing gold, gold-silver amalgam, arquerite, palladium stannide (unnamed mineral), platinum-palladium-gold-silver-tin); (3) PGM, Au, and Ag sulfoarsenides, tellurides, antimonides, selenides, and sulfosalts (sperrylite, irarsite, hessite, Pd and Pt selenide (unnamed mineral)), testibiopalladinite, Pd antimonide (unnamed mineral), etc.; and (4) impurities in ore-forming sulfides, sulfoarsenides, tellurides, antimonides, and selenides. The chemical analyses of PGM and Au minerals are presented, and their morphology and microstructure are considered.  相似文献   

20.
The Ferguson Lake Ni–Cu–Co–platinum-group element (PGE) deposit in Nunavut, Canada, occurs near the structural hanging wall of a metamorphosed gabbroic sill that is concordant with the enclosing country rock gneisses and amphibolites. Massive to semi-massive sulfide occurs toward the structural hanging wall of the metagabbro, and a low-sulfide, high-PGE style of mineralization (sulfide veins and disseminations) locally occurs ~30–50 m below the main massive sulfide. Water–rock interaction in the Ferguson Lake Ni–Cu–Co–PGE deposit is manifested mostly as widespread, post-metamorphic, epidote–chlorite–calcite veins, and replacement assemblages that contain variable amounts of sulfides and platinum-group minerals (PGM). PGM occur as inclusions in magmatic pyrrhotite and chalcopyrite in both the massive sulfide and high-PGE zones, at the contact between sulfides and hornblende or magnetite inclusions in the massive sulfide, in undeformed sulfide veins and adjacent chlorite and/or epidote halos, in hornblende adjacent to hydrothermal veins, and in plagioclase–chlorite aggregates replacing garnet cemented by sulfide. The PGM are mostly represented by the kotulskite (PdTe)–sobolevskite (PdBi) solid solution but also include michenerite (PdBiTe), froodite (PdBi2), merenskyite (PdTe2), mertieite II (Pd8[Sb,As]3), and sperrylite (PtAs2) and occur in variety of textural settings. Those that occur in massive and interstitial sulfides, interpreted to be of magmatic origin and formed through exsolution from base metal sulfides at temperatures <600°C, are dominantly Bi rich (i.e., Te-bearing sobolevskite), whereas those that occur in late-stage hydrothermal sulfide/silicate veins and their epidote–chlorite alteration halos tend to be more Te rich (i.e., Bi-bearing kotulskite). The chemistry and textural setting of the various PGM supports a genetic model that links the magmatic and hydrothermal end-members of the sulfide–PGM mineralization. The association of PGM with magmatic sulfides in the massive sulfide and high-PGE zones has been interpreted to indicate that PGE mineralization was initially formed through exsolution from base metal sulfides which formed by magmatic sulfide liquid segregation and crystallization. However, the occurrence of PGM in undeformed sulfide-bearing veins and in their chlorite–epidote halos and differences in PGM chemistry indicate that hydrothermal fluids were responsible for post-metamorphic redistribution and dispersion of PGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号