首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic susceptibility and petrographic studies of drilled rock cuttings from two geothermal wells (Az-26 and Az-49) of the important electricity-generating geothermal system, Los Azufres, Mexico, were carried out to determine the relation between the magnetic susceptibility of rocks, the concentration of magnetic minerals and hydrothermal alteration. For this purpose, low-frequency magnetic susceptibility (χ lf) was measured and compared its distribution trends with those of magnetic and Fe–Mg silicate minerals, and with the extent of hydrothermal alteration in rocks of the two geothermal wells. The study indicates a decrease in χ lf values with depth in the two geothermal wells corresponding with: (1) an increase in the reservoir temperature and hydrothermal alteration; and (2) a decrease in the concentrations of Fe–Mg silicates and opaque minerals. The data suggest that ferromagnesian minerals and opaque minerals like ilmenite are the main contributors to the χ lf of rocks. The decrease in χ lf, ilmenite, and Fe–Mg mineral contents with an increase in the hydrothermal alteration degree, pyrite and haematite contents suggests the hydrothermal alteration of ilmenite and Fe–Mg minerals (characteristic of high χ lf values) to pyrite, haematite and other opaque minerals (with low χ lf values). The interaction of hydrothermal fluids with rocks results in the hydrothermal alteration of primary minerals. In a geothermal area, an anomaly of low magnetic susceptibility values of rocks in a homogenous litho unit characterized by high magnetic susceptibility may suggest hydrothermal alteration. Magnetic susceptibility can be a useful parameter, during the initial stages of geothermal exploration, in identifying hydrothermally altered rocks and zones of hydrothermal alteration both at the surface and from drilled wells in geothermal systems.  相似文献   

2.
The Dexing deposit is located in a NE‐trending magmatic belt along the southeastern margin of the Yangtze Craton. It is the largest porphyry copper deposit in China, consisting of three porphyry copper orebodies of Zhushahong, Tongchang and Fujiawu from northwest to southeast. It contains 1168 Mt of ores with 0.5% Cu and 0.01% Mo. The Dexing deposit is hosted by Middle Jurassic granodiorite porphyries and pelitic schist of Proterozoic age. The Tongchang granodiorite porphyry has a medium K cal‐alkaline series, with medium K2O content (1.94–2.07 wt%), and low K2O/(Na2O + K2O) (0.33–0.84) ratios. They have high large‐ion lithophile elements, high light rare‐earth elements, and low high‐field‐strength elements. The hydrothermal alteration at Tongchang is divided into four alteration mineral assemblages and related vein systems. They are early K‐feldspar alteration and A vein; transitional (chlorite + illite) alteration and B vein; late phyllic (quartz + muscovite) alteration and D vein; and latest carbonate, sulfate and oxide alteration and hematite veins. Primary fluid inclusions in quartz from phyllic alteration assemblage include liquid‐rich (type 1), vapor‐rich (type 2) and halite‐bearing ones (type 3). These provide trapping pressures of 20–400 ´ 105 Pa of fluids responsible for the formation of D veins. Igneous biotite from least altered granochiorite porphyry and hydrothermal muscovite in mineralized granodiorite porphyry possess δ18O and δD values of 4.6‰ and ?87‰ for biotite and 7.1–8.9‰, ?71 to ?73‰ for muscovite. Stable isotopic composition of the hydrothermal water suggests a magmatic origin. The carbon and oxygen isotope for hydrothermal calcite are ?4.8 to ?6.2‰ and 6.8–18.8‰, respectively. The δ34S of pyrite in quartz vein ranges from ?0.1 to 3‰, whereas δ34S for chalcopyrite in calcite veins ranges from 4 to 5‰. These are similar to the results of previous studies, and suggest a magmatic origin for sulfur. Results from alteration assemblages and vein system observation, as well as geochemical, fluid inclusion, stable isotope studies indicate that the involvement of hydrothermal fluids exsolved from a crystallizing melt are responsible for the formation of Tongchang porphyry Cu‐Mo orebodies in Dexing porphyry deposit.  相似文献   

3.
Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz‐adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein‐centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10?3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27–0.06 × 10?3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10?3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks.  相似文献   

4.
以沙坪沟钼矿主要的赋矿岩石——石英正长岩和花岗斑岩为对象,通过对比不同蚀变强度岩石的岩相学、岩石地球化学和同位素特征,研究该矿床的钾质交代作用-矿化特征,探讨不同热液蚀变的元素组合、蚀变过程中的元素迁移和Sr-Nd同位素的变化及其成因、不同蚀变的物理化学条件差异及其与矿化的关系,进而揭示蚀变-成矿热液流体的特征和起源。研究表明,石英正长岩和花岗斑岩的地球化学特征总体相似,显示其属同源岩浆演化产物,二者均受到钾质蚀变,但蚀变强度相差较大。钾质蚀变岩石的化学成分表现为高K_2O、Rb和低Na_2O、CaO、Sr、Ba,不同蚀变强度的岩石Rb/Sr和Sr同位素组成差别较大,花岗斑岩样品数据更显离散,甚至出现异常低的锶同位素初始值,表明热液蚀变强烈改造了Rb-Sr同位素体系,而Sm-Nd体系基本保持稳定。这一现象在东秦岭-大别钼矿带中典型的斑岩钼矿床也有出现,显示该成矿带具有相似的蚀变类型、热液起源和演化特征。而且钾长石化后期至黄铁云(绢)英岩化阶段也是最主要的钼成矿期,表明这期间流体系统pH值的降低致使Mo元素从流体中沉淀成矿。对比斑岩铜、铜-钼矿床和钼矿床的蚀变特征及其过程中元素和同位素的变化可以发现,这3种矿床均发育碱质交代作用,但蚀变强度、热液的Rb-Sr分异程度及其对原岩的改造程度存在较大差异,这暗示了各自特有的成岩、成矿物质和流体来源及大地构造背景。  相似文献   

5.
喀拉果如木铜矿是近年在新疆喀喇昆仑地区发现的铜多金属矿.铜矿化赋存在二长花岗斑岩中,矿石呈细脉浸染状、斑点状.矿石矿物主要为黄铜矿,少量黄铁矿、斑铜矿和毒砂.围岩蚀变有硅化、绢云母化和青磐岩化,具有与斑岩铜矿类似的蚀变组合.二长花岗斑岩主要由斜长石、钾长石、石英、黑云母及蚀变的暗色矿物组成.二长花岗斑岩的SiO2(67.28% ~73.08%)、Al2 O3(13.38%~15.53%)、K2O(2.92% ~6.15%)和Na2O(2.78% ~4.89%)含量较高,CaO和TiO2含量较低,属于高钾钙碱性系列;富集大离子亲石元素(LILE),亏损高场强元素(HFSE)和重稀土元素,Nb和Ta负异常,显示准铝质-弱过铝质过渡的特点,岩浆结晶分异作用明显,具有陆缘孤花岗岩的地球化学亲缘性,微量元素显示其为同碰撞-后碰撞花岗岩.成矿岩体锆石LA-ICP-MS测年结果为189.3 ±2.8Ma,成岩成矿作用发生在早侏罗世.结合区域地质演化,本文认为喀拉果如木铜矿形成于南昆仑地体与喀喇昆仑-甜水海地体之间的古特提斯洋消减闭合之后的后碰撞伸展背景,喀喇昆仑在晚三叠世-早侏罗世进入后碰撞造山时期.  相似文献   

6.
The Tiegelongnan Cu (Au) deposit is the largest copper deposit newly discovered in the Bangong–Nujiang metallogenic belt. The deposit has a clear alteration zoning consisting of, from core to margin, potassic to propylitic, superimposed by phyllic and advanced argillic alteration. The shallow part of the deposit consists of a high sulphidation‐state overprint, mainly comprising disseminated pyrite and Cu–S minerals such as bornite, covellite, digenite, and enargite. At depth porphyry‐type mineralization mainly comprises disseminated chalcopyrite, bornite, pyrite, and a minor vein molybdenite. Mineralization is disseminated and associated with veins contained within the porphyry intrusions and their surrounding rocks. The zircon U–Pb ages of the mineralized diorite porphyry and granodiorite porphyry are 123.1 ± 1.7 Ma (2σ) and 121.5 ± 1.5 Ma (2σ), respectively. The molybdenite Re–Os age is 121.2 ± 1.2 Ma, suggesting that mineralization was closely associated with magmatism. Andesite lava (zircon U–Pb age of 111.7 ± 1.6 Ma, 2σ) overlies the ore‐bodies and is the product of post‐mineralization volcanic activity that played a critical role in preserving the ore‐bodies. Values of ?4.6 ‰ to + 0.8 ‰ δ34S for the metal sulfides (mean ? 1.55 ‰) suggest that S mainly has a deep magmatic source. The H and O isotopic composition is (δD = ?87 ‰ to ?64 ‰; δ18OH2O = 5.5 ‰ to 9.0 ‰), indicating that the ore‐forming fluids are mostly magmatic‐hydrothermal, possibly mixed with a small amount of meteoric water. The zircon εHf(t) of the diorite porphyry is 3.7 to 8.3, and the granodiorite porphyry is 1.8 to 7.5. Molybdenite has a high Re from 382.2 × 10?6 to 1600 × 10?6. Re and Hf isotope composition show that Tiegelongnan has some mantle source, maybe the juvenile lower crust from crust–mantle mixed source. Metallogenesis of the Tiegelongnan giant porphyry system was associated with intermediate to acidic magma in the Early Cretaceous (~120 Ma). The magma provenance of the Tiegelongnan deposit has some mantle‐derived composition, possibly mixed with the crust‐derived materials.  相似文献   

7.
中国还原性斑岩矿床研究进展及判别标志   总被引:1,自引:1,他引:0  
申萍  潘鸿迪 《岩石学报》2020,36(4):967-994
世界上大多数斑岩矿床的成矿流体为氧化流体(CO_2 CH_4)。然而,Rowins(2000)提出一些斑岩Cu-Au矿床的成矿流体为富含CH_4的还原流体,矿床缺乏磁铁矿、赤铁矿和硬石膏等表征高氧逸度的矿物,而发育大量的磁黄铁矿,矿床规模小,矿床形成与含钛铁矿的还原性的Ⅰ型花岗岩类有关,并将其称之为还原性斑岩Cu-Au矿床。我国学者研究发现,中国不但发育还原性斑岩铜矿床,还发育还原性斑岩-矽卡岩铜矿床和还原性斑岩钼矿床,我们建议将这三种矿床统称为还原性斑岩矿床。本文基于课题组近十年来的研究工作,并结合前人的研究成果,综合分析了中国发育的大中型还原性斑岩矿床的典型实例,在此基础上,重点阐明中国大型还原性斑岩矿床的特点、流体中CH_4来源及其有关的成矿作用、容矿围岩特点、成矿岩浆氧化还原状态及其成因、矿床形成的构造背景等。与Rowins(2000)提出的还原性斑岩铜矿床规模小的特点不同,中国发育的一些还原性斑岩矿床规模大;我们研究还识别出该类矿床发育独特的热液矿物和矿石矿物,比如,还原性斑岩铜矿发育热液钛铁矿,矿石矿物以黄铜矿为主,罕见斑铜矿、辉铜矿等矿物;还原性斑岩钼矿床出现热液钛铁矿,矿石矿物以辉钼矿为主,罕见黑钨矿和锡石等矿物;还原性斑岩-矽卡岩铜矿床的矽卡岩期发育钙铝榴石、钙铁辉石等还原性矽卡岩矿物和大量的磁黄铁矿,热液期以发育黄铜矿而非斑铜矿和辉铜矿等矿石矿物为特征。因此,还原性斑岩矿床除了Rowins(2000)提出的发育富CH_4还原流体和磁黄铁矿等识别标志之外,还可辅以独特的脉石矿物(如钛铁矿、钙铝榴石、钙铁辉石等)和简单的矿石矿物(如黄铜矿、辉钼矿等)这两个标志进行识别。中国还原性斑岩矿床含矿岩体的围岩中普遍发育还原性岩石(如含碳质沉积岩或火山沉积岩、含亚铁的火山岩或火山沉积岩等);对于成矿流体中CH_4、C_2H_6等还原性气体的来源,多数学者认为CH_4、C_2H_6等还原性气体主要源于还原性围岩,部分源于岩浆。关于还原性斑岩矿床的成矿岩体是否为含钛铁矿的、还原性的花岗岩类,目前研究较少且存在争议,多数学者认为成矿原始岩浆为氧化性岩浆,但其氧逸度偏低,少数学者认为成矿岩浆始终为还原岩浆。还原性斑岩矿床与经典的斑岩矿床的成矿构造背景类似,二者没有明显区别。还原性斑岩矿床显示的还原性热液蚀变和成矿特点均与成矿流体富含CH_4还原气体密切相关,因此,富含CH_4还原流体是还原性斑岩矿床形成的关键。  相似文献   

8.
The Bolong porphyry Cu–Au deposit is a newly discovered deposit in the central Tibetan Plateau, and is ranked as the second largest copper deposit discovered to date in the Bangong‐Nujiang metallogenic belt in China. Three granodiorite porphyry phases occur within the Bolong porphyry Cu–Au deposit. Phyllic alteration is widespread on the surface of the deposit, and potassic alteration occurs at depth, associated with granodiorite porphyries. The copper and gold mineralization is clearly related to the potassic and phyllic alteration. Multiple chronometers were applied to constrain the timing of magmatic–hydrothermal activity at the Bolong deposit. Zircon U–Pb geochronology reveals that the granodiorite porphyry phases were emplaced at ca. 120 Ma. Re–Os data of four molybdenite samples from quartz–molybednite veinlets yielded an isochron age of 119.4 ± 1.3 Ma. The plateau age of hydrothermal K‐feldspar from the potassic alteration zone, analyzed by 40Ar/39Ar dating, is 118.3 ± 0.6 Ma, with a similar reverse isochron age of 118.5 ± 0.7 Ma. Therefore, the magmatic–hydrothermal activity occurred at ca. 120–118 Ma, which is similar in age to the neighboring Duobuza porphyry copper deposit. The period of 120–118 Ma is therefore important for the development of porphyry Cu–Au mineralization in the central Tibetan Plateau, and these porphyry deposits were formed during the final stages of the northward subduction of the Neo‐Tethys Ocean.  相似文献   

9.
The Pulang (普朗) porphyry copper deposit, located in the southern segment of the Yidun-Zhongdian (义敦-为中甸) island arc ore-forming belt of the Tethys-Himalaya ore-forming domain, is a recently discovered large copper deposit. Compared with the composition of granodiorite in China, the porphyry rocks in this area are enriched in W, Mo, Cu, Au, As, Sb, F, V, and Na2O (K1≥1.2). Compared with the composition of fresh porphyry rocks in this district, the mineralized rocks are enriched in Cn, Au, Ag, Mo, Pb, Zn, W, As, Sb, and K2O (K≥1.2). Some elements show clear anomalies, such as Zn, Ag, Cu, Au, W, and Mo, and can be regarded as pathfinders for prospecting new ore bodies in depth. It has been inferred from factor analysis that the Pulang porphyry copper deposit may have undergone the multiple stages of alteration and mineralization: (a) Cu-Au mineralization; (b) W-Mo mineralization; and (c) silicification and potassic metasomatism in the whole ore-forming process. A detailed zonation sequence of indicator elements is obtained using the variability index of indicator elements as follows: Zn→Ag→Cu→Au→W→Mo. According to this zonation, an index such as (Ag×Zn) D/(Mo×W) D can be constructed and regarded as a significant criterion for predicting the Cu potential at a particular depth.  相似文献   

10.
The Wunugetushan porphyry Cu–Mo deposit is located in the Manzhouli district of NE China, on the southern margin of the Mesozoic Mongol–Okhotsk Orogenic Belt. Concentric rings of hydrothermal alteration and Cu–Mo mineralization surround an Early–Middle Jurassic monzogranitic porphyry. The Cu–Mo mineralization is clearly related to the quartz–potassic and quartz–sericite alteration. Molybdenite Re–Os and groundmass 40Ar/39Ar of the host porphyry dates indicate that the ore-formation and porphyry-emplacement occurred at 177.6 ± 4.5 Ma and 179.0 ± 1.9 Ma, respectively. Geochemically, the host porphyry of the deposit is characterized by strong LREE/HREE fractionation, enrichment in LILE, Ba, Rb, U, Th and Pb, and depletion of HFSE, Nb, Ta, Ti and HREE. The Sr–Nd–Pb isotopic compositions of the porphyry display an varied initial (87Sr/86Sr)i ratio, a positive εNd(t) values and high 206Pb/204Pbt, 207Pb/204Pbt and 208Pb/204Pbt ratios. These data indicate that the magmatic source of the host porphyry comprised two end-members: lithospheric mantle metasomatized by fluids derived from the subducted slab; and continental crust. We infer that the primitive magma of the host porphyry was derived from crust–mantle transition zone. Based on regional geology and geochemistry of the host porphyry, the Wunugetushan deposit is suggested to form in a continental collision environment after closure of the Mongol–Okhotsk Ocean.  相似文献   

11.
Abstract: The Fengshan porphyry-skarn copper–molybdenum (Cu–Mo) deposit is located in the south-eastern Hubei Province in east China. Cu–Mo mineralization is hosted in the Fengshan granodiorite porphyry stock that intruded the Triassic Daye Formation carbonate rocks in the early Cretaceous (~140 Ma), as well as the contact zone between granodiorite porphyry stock and carbonate rocks, forming the porphyry-type and skarn-type association. The Fengshan granodiorite stock and the immediate country rocks are strongly fractured and intensely altered by hydrothermal fluids. In addition to intense skarn alteration, the prominent alteration types are potassic, phyllic, and propylitic, whereas argillation is less common. Mineralization occurs as veins, stock works, and disseminations, and the main ore minerals are chalcopyrite, pyrite, molybdenite, bornite, and magnetite. The contents of palladium, platinum and gold (Pd, Pt and Au) are determined in nine samples from fresh and mineralized granodiorite and different types of altered rocks. The results show that the Pd content is systematically higher than Pt, which is typical for porphyry ore deposits worldwide. The Pt content ranges from 0.037 to1.765 ppb, and the Pd content ranges between 0.165 and 17.979 ppb. Pd and Pt are more concentrated in porphyry mineralization than skarn mineralization, and have negative correlations with Au. The reconnaissance study presented here confirms the existence of Pd and Pt in the Fengshan porphyry-skarn Cu–Mo deposit. When compared with intracontinent and island arc geotectonic settings, the Pd, Pt, and Au contents in the Fengshan porphyry Cu–Mo deposit in the intracontinent is lower than the continental margin types and island are types. A combination of available data indicates that Pd and Pt were derived from oxidized alkaline magmas generated by the partial melting of an enriched mantle source.  相似文献   

12.
The Dongping gold deposit hosted in syenites is one of the largest hydrothermal gold deposits in China and composed of ore veins in the upper parts and altered zones in the lower parts of the ore bodies. Pervasive potassic alteration and silicification overprint the wall rocks of the ore deposit. The alteration minerals include orthoclase, microcline, perthite, quartz, sericite, epidote, calcite, hematite and pyrite, with the quartz, pyrite and hematite assemblages closely associated with gold mineralization. The phases of hydrothermal alteration include: (i) potassic alteration, (ii) potassic alteration - silicification, (iii) silicification - epidotization - hematitization, (iv) silicification - sericitization - pyritization and (v) carbonation. Mass-balance calculations in potassic altered and silicified rocks reveal the gain of K2O, Na2O, SiO2, HFSEs and transition elements (TEs) and the loss of REEs. Most major elements were affected by intense mineral reactions, and the REE patterns of the ore are consistent with those of the syenites. Gold, silver and tellurium show positive correlation and close association with silicification. Fluid inclusion homogenization temperatures in quartz veins range from 154 °C to 382 °C (peak at 275 °C–325 °C), with salinities of 4–9 wt.% NaCl equiv. At temperatures of 325 °C the fluid is estimated to have pH = 3.70–5.86, log fO2 =  32.4 to − 28.1, with Au and Te transported as Au (HS)2 and Te22  complexes. The ore forming fluids evolved from high pH and fO2 at moderate temperatures into moderate-low pH, low fO2 and low temperature conditions. The fineness of the precipitated native gold and the contents of the oxide minerals (e.g., magnetite and hematite) decreased, followed by precipitation of Au- and Ag-bearing tellurides. The hydrothermal system was derived from an alkaline magma and the deposit is defined as an alkaline rock-hosted hydrothermal gold deposit.  相似文献   

13.
The Jianchaling nickel deposit in the Bikou Terrane (Shaanxi Province, China) occurs along the boundaries between granite porphyry and carbonated ultramafic rocks (carbonated serpentinite, talc–carbonate rocks, and listwaenite). Serpentine– magnetite, serpentine– magnesite– magnetite, and magnesite– talc– quartz– pyrite– violarite– millerite– chalcopyrite assemblage formed in carbonated ultramafic rocks during hydrothermal activities. Ni-bearing sulphides, coexisting with magnesite, postdated magnetite in carbonated ultramafic rocks. Compared with serpentinite, Ni, Co, Cu, Mn, and Pb concentrate in talc–carbonate rocks. The fact that the NiO contents of magnetite decrease with progressive carbonation of serpentinite suggests that Ni from magnetite concentrated in fluid and contributed to the formation of the Jianchaling nickel deposit. Sulphides precipitated from fluid with log fO2 value varying from −34.5 to −31.8 and log fS2 value varying from −10.3 to −9.2. High pH and HS activities triggered by transformation of serpentine into magnesite–talc–quartz assemblage promoted precipitation of Ni-bearing sulphides, and finally formed the Jianchaling hydrothermal nickel deposit.  相似文献   

14.
玉峰金矿位于中亚造山带东天山东缘,是近年来新发现的含银高品位金矿床。该矿床目前已探明6个金矿体,均赋存在石英斑岩中。矿区热液蚀变作用发育,与成矿关系最密切的为黄铁绢英岩化和硅化,显示明显的蚀变分带:以石英硫化物脉为中心,黄铁绢英岩化带在其两侧大致对称分布。本文选取矿体上盘和下盘的石英斑岩、黄铁绢英岩进行了全岩的主、微量元素及成矿元素测试,并对其中的长石和绢云母进行电子探针成分分析。测试结果表明,黄铁绢英岩中的Au含量较蚀变前呈指数级增长,Ag、Cu、As等成矿元素大量增加,CaO、Na_2O、P_2O_5、P_2O_5、Sr、Pb、Th、U、Sb等元素显著迁出,而SiO_2、Al_2O_3、TiO_2含量和稀土元素含量变化较小,表现稳定。热液蚀变过程中,石英斑岩中71%~76%的正长石发生绢云母化,导致K_2O大量迁出;而钠长石几乎全部蚀变为绢云母,造成Na_2O大量迁出。热液流体的贡献使得蚀变岩中MgO、Fe_2O_3~T含量成倍增加,并主要富集在绢云母和/或黄铁矿晶格中。综合分析认为,绢英岩化蚀变带,Au、Cu、As和Bi等元素的综合化探异常,低电阻率、高激化率的地球物理特征可以作为玉峰矿区深部和外围找矿的标志。研究区内的石炭纪石英斑岩带,尤其是在构造叠加部位,热液活动使其更有利于矿化富集,是找矿勘探的有利部位。  相似文献   

15.
The Naruo porphyry Cu deposit is the third largest deposit discovered in the Duolong metallogenic district. Previous research has focused mainly on the geochemistry of the ore-bearing granodiorite porphyry; the metallogenesis remains poorly understood. In the present work, on the basis of outcrops and drilling core geological mapping, phases of early mineralization diorite, two inter-mineralization granodiorite porphyries, and late-mineralization granodiorite porphyry have been distinguished. Furthermore, the alteration zones were outlined, and the vein sequence was identified. The diorite and three porphyry phases were subjected to Laser Ablation Inductively Coupled Plasma Mass Spectrometry (La–ICP–MS) zircon U–Pb dating and in situ Hf isotope analyses as well as bulk major element, trace element, and Sr–Nd isotopic analyses. Molybdenite Re–Os dating was also conducted.The zircon U–Pb dating results show that the diorite and porphyry intrusions were emplaced at about 120 Ma, and the molybdenite Re–Os isochron age is 118.8 ± 1.9 Ma; this indicates that the Naruo porphyry Cu deposit was formed during a continuous magmatic–hydrothermal process. All of the diorite and granodiorite porphyry samples showed arc magmatic characteristics. Moreover, the moderate (87Sr/86Sr)i ratios and low εNd(t) and εHf(t) values of the diorite and porphyry intrusions suggest the source region of the juvenile lower crust. The lower (87Sr/86Sr)i and (143Nd/144Nd)i ratios and higher εNd(t) values and incompatible element concentrations than those in the granodiorite porphyry samples indicate a two-stage magmatic generation process for the intrusions. The early mineralization diorite has a high Cu concentration, implying that the source is enriched in Cu. However, the slightly lower Cu content of the late-mineralization granodiorite porphyry samples might imply Cu release from magmas and deposition within the metallogenic stage. The multiple stages of intrusions and subsequent volcanism within the Duolong metallogenic district, together with high Sr/Y features, indicate persistent magmatism during the metallogenic epoch, which is necessary for maintaining the activity of magmatic–hydrothermal and mineralization processes. Thus, the high Cu content in the source region, mantle-derived melt upwelling, and multiple stages of persistent magmatism were favorable for the formation of the Naruo porphyry Cu deposit.The high Fe2O3/FeO ratios of the diorite and granodiorite porphyry intrusions show very high oxidation features, which is coincident with estimated magmatic oxidation state calculated by the zircon trace element compositions. The high oxidation facilitates sulfur and chalcophile metals to be scavenged into the magmatic–hydrothermal systems, which is crucial for the metallogenesis of the Naruo porphyry Cu deposit.  相似文献   

16.
According to differences in features of illites including spatial distribution, crystallinity index, volume of swelling layer, polytype and relationship between its index and copper grade, two typical kinds of illite can be classified within the Tongchang porphyry copper deposit, Dexing County, East China. One is a kind of hydrothermally altered minerals within the hydrothermal alteration zone, including altered granodiorite-porphyry and altered metamorphic tuffaceous phyllite near the contact zone with porphyry rockbody. The illite crystallinity and expandability are mainly affected by water/rock ratio or fluid flux, and hydrothermal illite is formed by illitization of plagioclase and/or micas during hydrothermal fluid evolution within the porphyry body and near the contact zone with wall rocks. The other is a product of low-grade metamorphism itself by illitization of smectite, whose crystallinity index is lower than the hydrothermal illite and which is of 2M1 polytype with no swelling layer, in the altered metamorphic tuffaceous phyllite far from porphyry rockbody ( > 2 km). Moreover, the negative correlation between illite index and copper grade indicates that, within the alteration zone, the smaller the illite crystallinity, the stronger the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are controlled mainly by temperature and time.  相似文献   

17.
The Çöpler epithermal Au deposit and related subeconomic porphyry Cu–Au deposit is hosted by the middle Eocene Çöpler–Kabata? magmatic complex in central eastern Anatolia. The intrusive rocks of the complex were emplaced into Late Paleozoic–Mesozoic metamorphosed sedimentary basement rocks near the northeastern margin of the Tauride-Anatolide Block. Igneous biotite from two samples of the magmatic complex yielded 40Ar/39Ar plateau ages of 43.75?±?0.26 Ma and 44.19?±?0.23, whereas igneous hornblende from a third sample yielded a plateau age of 44.13?±?0.38. These ages closely overlap with 40Ar/39Ar ages of hydrothermal sericite (44.44?±?0.28 Ma) and biotite (43.84?±?0.26 Ma), and Re–Os ages from two molybdenite samples (44.6?±?0.2 and 43.9?±?0.2 Ma) suggesting a short-lived (<1 my) magmatic and hydrothermal history at Çöpler. No suitable minerals were found that could be used to date the epithermal system, but it is inferred to be close in age to the precursor porphyry system. The Çöpler–Kabata? intrusive rocks show I-type calc-alkaline affinities. Their normalized trace element patterns show enrichments in large ion lithophile and light rare earth elements and relative depletions in middle and heavy rare earth elements, resembling magmas generated in convergent margins. However, given its distance from the coeval Eocene Maden–Helete volcanic arc, the complex is interpreted to be formed in a back-arc setting, in response to Paleocene slab roll-back and upper-plate extension. The tectonomagmatic environment of porphyry-epithermal mineralization at Çöpler is comparable to some other isolated back-arc porphyry systems such as Bajo de la Alumbrera (Argentina) or Bingham Canyon (USA).  相似文献   

18.
Hydrothermal iron ores at Divri?i, east Central Anatolia, are contained in two orebodies, the magnetite-rich A-kafa and the limonitic B-kafa (resources of 133.8 Mt with 56% Fe and 0.5% Cu). The magnetite ores are hosted in serpentinites of the Divri?i ophiolite at the contact with plutons of the Murmano complex. Hydrothermal biotite from the Divri?i A-kafa yield identical weighted mean plateau ages of 73.75?±?0.62 and 74.34?±?0.83 Ma (2σ). This biotite represents a late alteration phase, and its age is a minimum age for the magnetite ore. Similar magnetite ores occur at Hasançelebi and Karakuz, south of Divri?i. There, the iron ores are hosted in volcanic or subvolcanic rocks, respectively, and are associated with a voluminous scapolite ± amphibole ± biotite alteration. At Hasançelebi, biotite is intergrown with parts of the magnetite, and both minerals formed coevally. The weighted mean plateau ages of hydrothermal biotite of 73.43?±?0.41 and 74.92?±?0.39 Ma (2σ), therefore, represent mineralization ages. Hydrothermal biotite from a vein cutting the scapolitized host rocks south of the Hasançelebi prospect has a weighted mean plateau age of 73.12?±?0.75 Ma (2σ). This age, together with the two biotite ages from the Hasançelebi ores, constrains the minimum age of the volcanic host rocks, syenitic porphyry dikes therein, and the scapolite alteration affecting both rock types. Pyrite and calcite also represent late hydrothermal stages in all of these magnetite deposits. The sulfur isotope composition of pyrite between 11.5 and 17.4‰ δ34S(VCDT) points towards a non-magmatic sulfur source of probably evaporitic origin. Calcite from the Divri?i deposit has δ18O(VSMOV) values between +15.1 and +26.5‰ and δ13C(VPDB) values between ?2.5 and +2.0‰, which are compatible with an involvement of modified marine evaporitic fluids during the late hydrothermal stages, assuming calcite formation temperatures of about 300°C. The presence of evaporite-derived brines also during the early stages is corroborated by the pre-magnetite scapolite alteration at Divri?i, and Hasançelebi-Karakuz, and with paleogeographic and paleoclimatic reconstructions. The data are compatible with a previously proposed genetic model for the Divri?i deposit in which hydrothermal fluids leach and redistribute iron from ophiolitic rocks concomitant with the cooling of the nearby plutons.  相似文献   

19.
The Na Son deposit is a small‐scale Pb–ZnPb–Zn–Ag deposit in northeast Vietnam and consists of biotite–chlorite schist, reddish altered rocks, quartz veins and syenite. The biotite–chlorite schist is intruded by syenite. Reddish altered rocks occur as an alteration halo between the biotite–allanite‐bearing quartz veins and the biotite–chlorite schist. Allanite occurs in the biotite–allanite‐bearing quartz veins and in the proximal reddish altered rocks. Rare earth element (REE) fluorocarbonate minerals occur along fractures or at rim of allanite crystals. The later horizontal aggregates of sulfide veins and veinlets cut the earlier reddish altered rocks. The earlier Pb–Zn veins consist of a large amount of galena and lesser amounts of sphalerite, pyrite and molybdenite. The later Cu veins cutting the Pb–Zn veins include chalcopyrite and lesser amounts of tetrahedrite and pyrite. The occurrences of two‐phase H2O–CO2 fluid inclusions in quartz from biotite–allanite‐bearing quartz veins and REE‐bearing fluorocarbonate minerals in allanite suggest the presence of CO2 and F in the hydrothermal fluid. The oxygen isotopic ratios of the reddish altered rocks, biotite–chlorite schist, and syenite range from +13.9 to +14.9 ‰, +11.5 to +13.3 ‰, and +10.1 to +11.6 ‰, respectively. Assuming an isotopic equilibrium between quartz (+14.6 to +15.8 ‰) and biotite (+8.6 ‰) in the biotite–allanite‐bearing quartz vein, formation temperature was estimated to be 400°C. At 400°C, δ18O values of the hydrothermal fluid in equilibrium with quartz and biotite range from +10.5 to +11.7 ‰. These δ18O values are consistent with fluid that is derived from metamorphism. Assuming an isotopic equilibrium between galena (+1.5 to +1.7 ‰) and chalcopyrite (+3.4 ‰), the formation temperature was estimated to be approximately 300°C. The formation temperature of the Na Son deposit decreased with the progress of mineralization. Based on the geological data, occurrence of REE‐bearing minerals and oxygen isotopic ratios, the REE mineralization is thought to result from interaction between biotite–chlorite schist and REE‐, CO2‐ and F‐bearing metamorphic fluid at 400°C under a rock‐dominant condition.  相似文献   

20.
Molybdenum is an economically important subproduct of North Chilean porphyry‐type deposits, and thus spatial and temporal distribution of molybdenite as the primary Mo‐bearing mineral in the Escondida and Escondida Norte deposits were characterized using several mineralogical and chemical techniques and the Re‐Os dating method. Molybdenum is distributed extensively in the two deposits, and high molybdenum concentrations (>500 ppm) are recognized particularly in the chlorite‐sericite transitional zone between the potassic and sericitic zones. Two modes of occurrence of molybdenite are observed in the Escondida deposit: aggregates with Cu‐Fe‐sulfide minerals in fine veinlets (sulfide‐veinlet type), and monomineralic microveinlets associated with NE‐trending faults. The former and the latter yielded ages of 36.1 ± 0.2 Ma and 35.2 ± 0.2 Ma, respectively. Re‐Os dating of Escondida Norte molybdenites also show two distinct episodes, at 37.7 ± 0.3 Ma and a younger episode at 36.6 ± 0.2 Ma. These data indicate that the Escondida Norte is older than the main Escondida deposit. The Re‐Os age data combined with those of the porphyry emplacement suggest that the molybdenite mineralization in the Escondida district occurred as several short episodic pulses during the late‐magmatic to hydrothermal transition, and that the Cu‐Mo deposits were formed in a variable overall period spanning 1 to 5 m.y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号