首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The San Juan River, located in San Juan Province (Argentina), crosses the Precordillera and other geologic units including the Ullum tectonic valley and the La Laja Zone between latitudes 31°S and 32°S. The San Juan River is antecedent as is suggested by its two perpendicular segments linked by an almost parallel segment to the main structural trend. Along the Precordillera, the San Juan River valley has many different alluvial fans at the river junctions with its tributaries. The Quaternary alluvial fans display surfaces cut in a series of steps which we consider to be alluvial terraces generated by aggradation and repeated incision episodes. The studied sector includes one area with recent major seismic activity (La Laja Zone), another without major seismic activity (Precordillera area), and a subsident area (Ullum area) where a large lake was formed 6500 yr BP. The old San Juan River was captured by the Quebrada de Ullum valley by means of a 25-m incision, which resulted in river-gradient headward erosion. The San Juan River gradient shows some irregularities that, although unrelated to the main structures, are associated with river dynamics, which emphasizes lithologic differences. The main river valley width, the geometry and gradient of each tributary, together with the basement rock lithologies and the size of each local source area are the major factors which control the alluvial terrace generation processes. In the La Laja Zone, where the uppermost terrace is capped by travertine, dating of travertine deposits suggests that the maximum incision rate is 0.9–1 mm/yr related to episodic activity on the La Laja Fault.  相似文献   

2.
The Asna river basin is located in Hingoli and Nanded districts of Marathwada region of Maharashtra. A geomorphometric analysis is an important method for the investigation and management of natural resources of watershed. The geomorphometric analysis of Asna river basin classifies three sub-basins that have been delineated using GIS and remote sensing through measurements of linear, aerial, and relief aspects. The Asna river basin comprises an area of 1187 km2 with seventh-order drainage pattern. As per Strahler classification, the upper part of the basin shows dendritic to sub-dendritic and the lower part exhibits parallel to sub-parallel drainage pattern. The total numbers of stream segments are 2422 and length of streams is 2187.92 km. The bifurcation value ranges from 1.26 to 5.58 indicating that there are no structural disturbances. The form factor value (0.49) indicates that the shape of the basin is moderately circular. The high values of drainage density, stream frequency, and low infiltration number indicate the high runoff due to impermeable lithology. The slope of the basin varies from 1 to 32.2%, terrain elevation ranges from 333 to 551 m, and overall relief of the basin is 218 m amsl. River sub-basin prioritization has an immense importance in natural resource management, especially in semi-arid regions. The present study is an attempt to prioritize the sub-basins of Asna river based on geomorphometric parameters. The weightage is assigned to different morphometric parameters of sub-basins based on erosion potential. The Asna river sub-basins have been classified into three categories as high, medium, and low on the basis of priorities for soil and water conservation. It is confirmed that sub-basin I is characterized as highly vulnerable to erosion and has high sedimentation load; sub-basin II has low priority, i.e., very low erodibility; and sub-basin III is of moderate type. The morphometric analysis and prioritization methods can be applied to hydrological studies in surface as well as subsurface water, climatic studies, rainwater harvesting, groundwater recharging sites, and watershed management.  相似文献   

3.
Morphometric analysis, being widely used to assess the drainage characteristics of the river basins, has been found to be a useful tool to delineate the glacial till covered overburden material as well as to identify areas prone to flash floods in present studies. A number of parameters including the stream frequency, drainage density and drainage texture suggest that the unconsolidated, unstratified and highly permeable glacially deposited overburden till material facilitates the infiltration of snowmelt and rainwater in the Pindari glacio-fluvial basin, Eastern Kumaun Himalaya, India. Likewise, other till overburden covered glacial and proglacial areas of Higher Himalayan regions have been contributing to the groundwater budget. The shape parameters further suggest that the sub-basins with higher form factor are more prone to flash floods. Besides this, the anomalies in the morphometric parameters have been found to be a useful tool to delineate zones of active tectonics in such areas.  相似文献   

4.
The spatial distribution and several morphometric characteristics of the Quaternary alluvial fans of the San Juan River, in the province of San Juan, at the Central and Western part of Argentina, have been studied to classify them as paraglacial megafans, as well to ratify its depositional environmental conditions. The high sedimentary load exported by San Juan river from the Central Andes to the foreland depressions is estimated about 3,682,200 hm3. The large alluvial fans of Ullum-Zonda and Tulum valleys were deposited into deep tectonic depressions, during the Upper Pleistocene deglaciation stages. The outcome of collecting remotely sensed data, map and DEM data, geophysical data and much fieldwork gave access to morphometric, morphographic and morphogenetic data of these alluvial fans. The main drainage network was mapped on processed images using QGis (vers.2.0.1). Several fan morphometric parameters were measured, such as the size, the shape, the thickness, the surface areas and the sedimentary volume of exported load. The analyzed fans were accumulated in deep tectonic depressions, where the alluvium fill reaches 700 to 1200 m thick. Such fans do not reach the large size that other world megafans have, and this is due to tectonic obstacles, although the sedimentary fill average volume surpasses 514,000 hm3. The author proposes to consider Ullum-Zonda and Tulum alluvial fans as paraglacial megafans. According to the stratigraphic relationships of the tropical South American Rivers, the author considers that the San Juan paraglacial megafans would have occurred in the period before 24 ka BP, possibly corresponding to Middle Pleniglacial (ca 65–24ka BP). They record colder and more humid conditions compared with the present arid and dry conditions.  相似文献   

5.
In arid and semiarid areas, the only surface and groundwater recharge source is the runoff generated through flash floods. Lack of hydrological data in such areas makes runoff estimation extremely complicated. Flash floods are considered catastrophic phenomena posing a major hazardous threat to cities, villages, and their infrastructures. The objective of this study is to assess the flash flood hazard and runoff in Wadi Halyah and its sub-basins. Integration of morphometric parameters, geo-informatics, and hydrological models has been done to overcome the challenge of scarcity of data.Advanced Spaceborne Thermal Emission and Reflection (ASTER) data was used to prepare a digital elevation model (DEM) with 30-m resolution, and geographical information system (GIS) was used in the evaluation of network, geometry, texture, and relief features of the morphometric parameters. Thirty-eight morphometric parameters were estimated and have been linked together for producing nine effective parameters for evaluation of the flash flood hazard in the study basin.Flash flood hazard in Wadi Halyah and its sub-basins was identified and grouped into three classes depending on nine effective parameters directly influencing the flood prone areas. Calculated runoff volume of Wadi Halyah ranges from 26.7 × 106 to 111.4 × 106 m3 with an inundation area of 15 and 27 km2 at return periods of 5 and 100 years, respectively. Mathematical relationships among rainfall depth, runoff volume, infiltration losses, and rainfall excess demonstrate a strong directly proportional relationships with correlation coefficient of about 0.99.  相似文献   

6.
A review of the assessment and mitigation of floods in Sindh, Pakistan   总被引:1,自引:0,他引:1  
  相似文献   

7.
This work analyzes various morphometric characteristics of the Colangüil river basin in order to evaluate flash flood hazards. Such high-water events pose a risk to the similarly named small village located at the basin’s foot area. For this purpose, the basin is divided into seven sub-basins and some basic measurements (surface, perimeter, basin length, river beds, elevations and slope of the main river bed, and of a number of minor river beds) are calculated. These measurements permit to predict approximately the behavior of the basin in the presence of a series of theoretical rainstorms that may generate unusual runoff volumes that make up such flash floods.  相似文献   

8.
Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.  相似文献   

9.
The study consists of the identification of landforms subject to alluvial fan flooding in active sectors of the Zonda range piedmont. In the Department of Pocito, located about 5 km southwest of San Juan City, a series of alluvial fans have been identified. These alluvial fans are located downstream of the natural drainage basins covering an area of approximately 130 km^2 towards the eastern slopes of the Zonda range at a median elevation of 2,000 m a.s.l.  相似文献   

10.
Between 2001 and 2005, a large debris rock slide occurred on the western slope of the Cordillera de Santa Cruz in the southeast Andean corner of the Province of San Juan (31°40′ S–70°16′ W). The landslide material accumulated in a downstream gorge as a natural dam of the Santa Cruz river, forming a large-volume lake. In November 2005, probably as a result of the increasing pressure of the water volume, this natural dam breached off with a violent and unexpected flash flood. In addition to life-threatening instances lived by some people downstream, this flood caused great economic loss to main localities of the Department of Calingasta, as well as considerable damage to one of the most relevant projects of the Province, the Caracoles Hydropower Project dam on the San Juan river. Considering the high costs of any physical remediation for a natural dam located in this high, remote, and inaccessible mountain area with no reliable road access, the main protective measures left to be pondered are the installation of a flash-flood early-warning system connected to downstream localities, along with a program of hydrological monitoring at the dam-forming area and annual satellital monitoring to verify the evolution of accumulated mass movements.  相似文献   

11.
Flash floods are the most common type of natural hazards that cause loss of life and massive damage to economic activities. During the last few decades, their impact increased due to rapid urbanization and settlement in downstream areas, which are desirable place for development. Wadi Asyuti, much like other wadis in the Eastern Desert of Egypt, is prone to flash flood problems. Analysis and interpretation of microwave remotely sensed data obtained from the Shuttle Radar Topography Mission (SRTM) and Tropical Rainfall Measuring Mission (TRMM) data using GIS techniques provided information on physical characteristics of catchments and rainfall zones. These data play a crucial role in mapping flash flood potentials and predicting hydrologic conditions in space and time. In order to delineate flash flood potentials in Wadi Asyuti basin, several morphometric parameters that tend to promote higher flood peak and runoff, including drainage characteristics, basin relief, texture, and geometry were computed, ranked, and combined using several approaches. The resulting flash flood potential maps, categorized the sub-basins into five classes, ranging from very low to very high flood potentials. In addition, integrating the spatially distributed drainage density, rainfall intensity, and slope gradient further highlighted areas of potential flooding within the Wadi Asyuti basin. Processing of recent Landsat-8 imagery acquired on March 15, 2014, validated the flood potential maps and offered an opportunity to measure the extent (200–900 m in width) of the flooding zone within the flash flood event on March 9, 2014, as well as revealed vulnerable areas of social and economic activities. These results demonstrated that excessive rainfall intensity in areas of higher topographic relief, steep slope, and drainage density are the major causes of flash floods. Furthermore, integration of remote sensing data and GIS techniques allowed mapping flood-prone areas in a fast and cost-effective to help decision makers in preventing flood hazards in the future.  相似文献   

12.
Watershed development and management plans are more important for harnessing surface water and groundwater resources in arid and semi-arid regions. To prepare a comprehensive watershed development plan, it becomes necessary to understand the topography, erosion status and drainage patterns of the region. This study was undertaken to determine the drainage characteristics of Pageru River basin using topographical maps on a scale of 1:50,000. The total area of the Pageru River basin is 480 km2. It was divided into X sub-basins for analysis. The drainage patterns of the basin are dendritic and include a sixth order stream. The quantitative analysis of various aspects of a river basin drainage network characteristics reveals complex morphometric attributes. The streams of lower orders mostly dominate the basin. The development of stream segments in the basin area is more or less affected by rainfall. The elongated shape of the basin is mainly due to the guiding effect of thrusting and faulting. The erosional processes of fluvial origin have been predominately influenced by the subsurface lithology of the basin.  相似文献   

13.
An examination of river channels has ability to provide substantial information regarding the geomorphic characteristics, control of lithology, tectonic uplift and geomorphic evolution during the geological past of an area. In this paper, a detailed study of geomorphic and structural investigation has been carried out for Pravara basin, Maharashtra, with the help of 90-m resolution SRTM DEM and geospatial techniques. Drainage network analysis performed in this paper demonstrates the general geomorphic characteristics, while the analysis of longitudinal profile synthesises lithological control over Pravara basin. Pravara is a 6th order drainage basin, encompassing an area of 2637 km2. Bifurcation ratio reveals low to moderate structural control. Due to the hard rock lithology, the drainage density and stream frequency are low, and it indicates higher permeability in the sub-surface layers. The shape parameters denote that Pravara is highly elongated and it is easier to control floods in this basin. Relief parameters show very steep slope and higher vulnerability to the slope failure in some areas. Upstream of Pravara river has shown that series of breaks and knickzones indicate active erosion and acute lithological control on the channel. Major breaks are observed only in the main channel whereas in two major tributaries, no such breaks found, instead these tributaries are characterised by several knickzones which indicate regional variation in the lithological physiognomies. Different lithological stages on knickpoint and channel incision substantiate rejuvenation of Pravara river in several phases during geological past. The geospatial methodology carried out in this study can be pragmatic elsewhere around this world to recognise the geomorphic appearances and lithological control of a drainage basin.  相似文献   

14.
Flash floods are considered to be one of the worst weather-related natural disasters. They are dangerous because they are sudden and are highly unpredictable following brief spells of heavy rain. Several qualitative methods exist in the literature for the estimations of the risk level of flash flood hazard within a watershed. This paper presents the utilization of remote sensing data such as enhanced Thematic Mapper Plus (ETM+), Shuttle Radar Topography Mission (SRTM), coupled with geological, geomorphological, and field data in a GIS environment for the estimation of the flash flood risk along the Feiran–Katherine road, southern Sinai, Egypt. This road is a vital corridor for the tourists visiting here for religious purposes (St. Katherine monastery) and is subjected to frequent flash floods, causing heavy damage to man-made features. In this paper, morphometric analyses have been used to estimate the flash flood risk levels of sub-watersheds within the Wadi Feiran basin. First, drainage characteristics are captured by a set of parameters relevant to the flash flood risk. Further, comparison between the effectiveness of the sub-basins has been performed in order to understand the active ones. A detailed geomorphological map for the most hazardous sub-basins is presented. In addition, a map identifying sensitive sections is constructed for the Feiran–Katherine road. Finally, the most influenced factors for both flash flood hazard and critical sensitive zones have been discussed. The results of this study can initiate appropriate measures to mitigate the probable hazards in the area.  相似文献   

15.
A morphometric analysis was done to determine the drainage characteristics of Lules River basin using land-sat imageries and topographical maps. This catchment was divided into seven sub-basins for the analysis: Liquimayo, Hoyada, Ciénaga, De Las Tablas, Siambón, Potrerillo and San Javier. Yungas ecoregion covers almost all the watershed. The drainage patterns of the sub-basins are dendritic and parallel. The basin includes seventh order stream and lower streams order mostly dominate the basin. The development of stream segments is affected by slope and local relief. The mean bifurcation ratio indicates that the drainage pattern is not much influenced by geological structures. The shape parameters also reveal the elongation of the basin and sub-basins.  相似文献   

16.
This geoarcheological study investigates soil stratigraphy and geochronology of alluvial deposits to determine Holocene landscape evolution within the Hot Creek, La Jara Creek, and Alamosa River drainage basins in the San Juan Mountains of Colorado. Geomorphic mapping and radiocarbon dating indicate synchronicity in patterns of erosion, deposition, and stability between drainage basins. In all three basins, the maximum age of mapped alluvial terraces and fans is ~ 3300 cal yr BP. A depositional period seen at both Hot Creek and the Alamosa River begins ~ 3300 to 3200 cal yr BP. Based on soil development, short periods of stability followed by alluvial fan aggradation occur in the Alamosa River basin ~ 2200 cal yr BP. A period of landscape stability at Hot Creek before ~ 1100 cal yr BP is followed by a period of rapid aggradation within all three drainages between ~ 1100 and 850 cal yr BP. A final aggradation event occurred between ~ 630 and 520 cal yr BP at La Jara Creek. These patterns of landscape evolution over the past ~ 3300 yr provide the framework for an archeological model that predicts the potential for buried and surficial cultural materials in the research area.  相似文献   

17.
An evaluation of morphometric parameters of two drainage networks derived from different sources was done to determine the influence of sub-basins to flooding on the main channel in the Havran River basin (Balıkesir-Turkey). Drainage networks for the sub-basins were derived from both topographic maps scaled 1:25.000 and a 10-m resolution digital elevation model (DEM) using geographic information systems (GIS). Blue lines, representing fluvial channels on the topographic maps were accepted as a drainage network, which does not depict all exterior links in the basin. The second drainage network was extracted from the DEM using minimum accumulation area threshold to include all exterior links. Morphometric parameters were applied to the two types of drainage networks at sub-basin levels. These parameters were used to assess the influence of the sub-basins on the main channel with respect to flooding. The results show that the drainage network of sub-basin 4—where a dam was constructed on its outlet to mitigate potential floods—has a lower influence morphometrically to produce probable floods on the main channel than that of sub-basins 1, 3, and 5. The construction of the dam will help reduce flooding on the main channel from sub-basin 4 but it will not prevent potential flooding from sub-basin 1, 3 and 5, which join the main channel downstream of sub-basin 4. Therefore, flood mitigation efforts should be considered in order to protect the settlement and agricultural lands on the floodplain downstream of the dam. In order to increase our understanding of flood hazards, and to determine appropriate mitigation solutions, drainage morphometry research should be included as an essential component to hydrologic studies.  相似文献   

18.
Carbon and Sr-isotope profiles in Upper Cambrian platformal carbonate Formations in the Precordillera, western Argentina (Zonda, La Flecha and La Silla Formations), were constructed for three representative sections: (a) Quebrada de la Flecha, Eastern Precordillera, (b) Cerro La Silla, Central Precordillera and (c) Quebrada de La Angostura, northern part of the Central Precordillera.

At Quebrada de La Angostura, upper part of the La Flecha Formation, δ13Ccarb varies continuously up-section from − 2.0 to + 5.6‰ (PDB) and records the SPICE anomaly (+ 5‰) reported for the first time in South America. The peak of this excursion is characterized by intercalated 2 m thick beds of black shale with marl and limestone that record the onset of a sea-level change.

The Steptoean Zonda Formation dolomites at the Quebrada de la Flecha exhibit a total δ13C range from − 2.7 to + 0.6‰ with discrete positive anomaly about 200 m from the transition to the overlying Sunwaptan La Flecha Formation. Pronounced C-isotope anomaly (− 5.6‰) is observed in the La Flecha Formation at about 300 m below the transition to the La Silla Formation.

At the Cerro La Silla section, the Zonda Formation exhibit δ13C values of  − 1‰, increasing slightly at the transition to the La Flecha Formation (− 1 to 0‰). The transition of the La Flecha to the La Silla Formations is characterized by alternation of black shales and dolomitic limestone with a discrete positive C-isotope excursion, probably corresponding to the SPICE.

At the Quebrada de La Flecha, 87Sr/86Sr for the Zonda Formation varies from 0.70924 to 0.70955 and for the La Flecha Formation from 0.70908 to 0.70942. At Cerro La Silla this ratio varies from 0.70914 to 0.70923 for the La Flecha Formation, and from 0.70898 to 0.70980 for the La Silla Formation. At the Quebrada de La Angostura, ratios for the La Flecha carbonates range from 0.70918 to 0.70993. The overall variation of 87Sr/86Sr is consistent with globally reported Upper Cambrian seawater values at ca. 500 Ma.

The unambiguous record of SPICE in the La Flecha Formation at the Quebrada de La Angostura supports a Steptoean age for its deposition and allows precise local, regional, and global stratigraphic correlation. The pronounced negative C-isotope excursion recorded in the La Flecha Formation carbonates at the Quebrada de La Flecha is likely equivalent to that registered in Sunwaptan carbonates of North America and Australia, and might be tied to a global event, as a valuable tool in stratigraphic correlation (SNICE, acronym for Sunwaptan negative isotope carbon excursion).  相似文献   


19.
Forest fire can modify and accelerate the hydrological response of Mediterranean basins submitted to intense rainfall: during the years following a fire, the effects on the hydrological response may be similar to those produced by the growth of impervious areas. Moreover, climate change and global warming in Mediterranean areas can imply consequences on both flash flood and fire hazards, by amplifying these phenomena. Based on historical events and post-fire experience, a methodology to interpret the impacts of forest fire in terms of rainfall-runoff model parameters has been proposed. It allows to estimate the consequences of forest fire at the watershed scale depending on the considered burned area. In a second stage, the combined effect of forest fire and climate change has been analysed to map the future risk of forest fire and their consequence on flood occurrence. This study has been conducted on the Llobregat river basin (Spain), a catchment of approximately 5,000 km2 frequently affected by flash floods and forest fires. The results show that forest fire can modify the hydrological response at the watershed scale when the burned area is significant. Moreover, it has been shown that climate change may increase the occurrence of both hazards, and hence, more frequent severe flash floods may appear.  相似文献   

20.
A geomorphic unit Usri drainage basin (latitude: 24° 04′00″ N to 24° 34′00″ N and longitude 86°05′00″E to 86°25′00″E) lies in north-eastern parts of Chhotanagpur Plateau, India, has been selected for morphometric analysis. Digital elevation model (DEM) has been generated by Cartosat stereo pair data at 10-m resolution. The morphometric parameters considered for the analysis includes the linear, areal, and relief aspects of the basin. Morphometric analysis of the river network and the basin revealed that the Usri Basin has sixth-order river network with a dendritic drainage pattern. The dendritic drainage pattern indicates that the basin has homogeneous lithology, gentle regional slope, and lack of structural control. The bifurcation ratio between different successive orders varies but the mean ratio is low that suggests the higher permeability and lesser structural control. The low drainage density, poor stream frequency, and moderately coarse drainage texture values of the basin indicate that the terrain has gentle slope, is made up of loose material, and hence has good permeability of sub-surface material and significant recharge of ground water. The shape parameters indicate that the basin is elongated in shape with low relief, high infiltration capacity, and less water flow for shorter duration in basin. The 50 % of the basin has altitude below 300 m and gently sloping towards the southeast direction. All the morphometric parameters and existing erosional landforms indicated mature to early old stage topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号