首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
金沙江流域不同区域水沙变化特征及原因分析   总被引:5,自引:1,他引:4       下载免费PDF全文
在金沙江流域水文站控制的不同区间的水文资料和降水量资料,以及大量的长江上游水土流失重点防治区小流域综合防治工程(简称"长治"工程)拦沙减蚀量、水库拦沙量资料的基础上,对金沙江流域各水文站控制的不同区间、不同时段的来水来沙变化特征及其变化原因进行了定量分析.结果表明,金沙江流域水沙在地区分布上有明显的水沙异源特性,不同区间水沙变化特征存在很大的差异,降水/径流变化引起的沙量变化、水库拦沙、"长治"工程减沙在不同区间起着不同的作用.金沙江攀枝花以上地区以冻融侵蚀和坡面侵蚀为主,年产沙量仅0.521亿t,输沙模数200 t/(km2·a),但增沙的趋势较明显;攀枝花至屏山区间新构造运动剧烈,断层发育,岩层松软破碎,地形陡峻,植被稀少,以重力侵蚀为主,年产沙量1.58亿t,输沙模数达2 200 t/(km2·a),1991-2000年来沙量增加,2001-2004年来沙量大幅度减小.  相似文献   

2.
从土壤侵蚀角度诠释泥沙连通性   总被引:3,自引:0,他引:3       下载免费PDF全文
张光辉 《水科学进展》2021,32(2):295-308
泥沙连通性是近10年来国际上的研究热点,从土壤侵蚀角度准确理解泥沙连通性至关重要。泥沙连通性表征流域内不同地貌或景观单元间的泥沙级联关系,受气候、地质地貌、流域特性、地形条件、土壤属性、植被特性、水文过程、土壤侵蚀以及人类社会活动及其时空变化的综合影响,泥沙连通性具有明显的时空变异特征。研究泥沙连通性的方法包括野外调查法、图论法、指标法和模型模拟法,不同方法的理论基础、数据要求、实施过程与结果存在一定差异,连通性指数目前应用最为广泛,但该指数更多强调结构连通性。亟需加强泥沙连通性概念与物理含义、影响因素及其动力机制、研究方法与指标体系等方面研究,明确泥沙连通性与水文连通性、土壤侵蚀和泥沙输移比的关系,分析水土保持措施对泥沙连通性的影响及其动力机制。  相似文献   

3.
Water erosion is a serious and continuous environmental problem in many parts of the world. The need to quantify the amount of erosion, sediment delivery, and sediment yield in a spatially distributed form has become essential at the watershed scale and in the implementation of conservation efforts. In this study, an effort to predict potential annual soil loss and sediment yield is conducted by using the Revised Universal Soil Loss Equation (RUSLE) model with adaptation in a geographic information system (GIS). The rainfall erosivity, soil erosivity, slope length, steepness, plant cover, and management practice and conservation support practice factors are among the basic factors that are obtained from monthly and annual rainfall data, soil map of the region, 50-m digital elevation model, remote sensing (RS) techniques (with use of Normalized Difference Vegetation Index), and GIS, respectively. The Ilam dam watershed which is located southeast part of Ilam province in western Iran is considered as study area. The study indicates that the slope length and steepness of the RUSLE model are the most effective factors controlling soil erosion in the region. The mean annual soil loss and sediment yield are also predicted. Moreover, the results indicated that 45.25%, 12.18%, 12.44%, 10.79%, and 19.34% of the study area are under minimal, low, moderate, high, and extreme actual erosion risks, respectively. Since 30.13% of the region is under high and extreme erosion risk, adoption of suitable conservation measures seems to be inevitable. So, the RUSLE model integrated with RS and GIS techniques has a great potential for producing accurate and inexpensive erosion and sediment yield risk maps in Iran.  相似文献   

4.
Large amounts of carbon in alpine sediments have been expected to be sensitive to climate change, but how carbon accumulation responds to climate change remains unclear. Thus, we explored the impact of different factors on the carbon accumulation rate (CAR) of alpine sediments by combining a variety of climatic variables, vegetation data and erosion indicators based on two alpine sediment successions on Taibai Mountain, the highest peak in central and eastern mainland China. One succession is near the modern treeline (Paomaliang Swamp, PML) and the other is located at the upper forest line (Sanqing Chi, SQC, a small lake). We used our previously published organic carbon content data and for the first time calculated the CAR, and further used pollen and physicochemical indicators to quantify the contributions from climate, vegetation and soil. We found that their contributions varied during different periods and between the two sediment successions. For the PML succession, from 5850 to 4000 calendar years before present (cal. a BP), the CAR was low, which was related to low annual temperatures, low vegetation cover and strong soil erosion. From 4000 to 2400 cal. a BP, a high CAR coincided with high annual temperatures, high vegetation cover and weak soil erosion. From 2400 to 200 cal. a BP, the CAR decreased, mainly attributed to low vegetation cover. Local vegetation cover had major impacts on the CAR in the SQC succession during the Middle–Late Holocene. In general, the local factor interpretation rate in SQC (83%) was higher than that of PML (47%), related to the vegetation stability of continuous forest and the treeline. This study highlights the important role of the local environment in determining carbon accumulation in the alpine region.  相似文献   

5.
Watershed degradation due to soil erosion and sedimentation is considered to be one of the major environmental problems in Iran. In order to address the critical conditions of watershed degradation in arid and semiarid regions, a study based on the Modified Pacific Southwest Inter-Agency Committee (MPSIAC) model was carried out at Golestan watershed, northeast of Iran. The model information layers comprising nine effective factors in erosion and sedimentation at the watershed site were obtained by digitalization and spatial interpolation of the basic information data in a GIS program. These factors are geology, soil, climate, runoff, topography, land cover, land use, channel, and upland erosion. The source data for the model were obtained from available records on rainfall and river discharge and sediment, topography, land use, geology, and soil maps as well as field surveys and laboratory analysis. The results of the MPSIAC model indicated that 60.75 % (194.4 km2) and 54.97 % (175.9 km2) of the total watershed area were classified in the heavy sedimentation and erosion classes, and the total basin sediment yield and erosion were calculated as 4,171.1 and 17,813.4 m3 km?2 year?1, respectively. In the sensitivity analysis, it was found that the most sensitive parameters of the model in order of importance were topography (slope), land cover and use, runoff, and channel erosion (R 2?=?0.92–0.94), while geology, climate (rainfall), soil, and upland erosion factors were found to have moderate effect to the model output (R 2?=?0.74–0.59).  相似文献   

6.
This research selected water soil erosion indicators (land cover, vegetation cover, slope) to assess the risk of soil erosion, ARCMAP GIS ver.9.0 environments and ERDAS ver.9.0 were used to manage and process satellite images and thematic tabular data. Landsat TM images in 2003 were used to produce land/cover maps of the study area based on visual interpreting method and derived vegetation cover maps, and the relief map at the scale of 1:50,000 to calculate the slope gradient maps. The area of water soil erosion was classified into six grades by an integration of slope gradients, land cover types, and vegetation cover fraction. All the data were integrated into a cross-tabular format to carry out the grid-based analysis of soil erosion risk. Results showed that the upper basin of Miyun Reservoir, in general, is exposed to a moderate risk of soil erosion, there is 715,848 ha of land suffered from water soil erosion in 2003, occupied 46.62% of total area, and most of the soil erosion area is on the slight and moderate risk, occupied 45.60 and 47.58% of soil erosion area, respectively.  相似文献   

7.
Soil erosion by water is a serious environmental problem which affects particularly the agriculture of developing countries. Due to specific factors, such as high rainfall intensity, steep slopes and vegetation scarcity, Tunisia is prone to soil erosion. Taking this into account, the main objective of this study was to estimate the soil erosion risk in the Batta watershed in Tunisia using qualitative and quantitative erosion model with remote sensing data and geographic information system (GIS). Moreover, a developed method that deals with evaluating the impact of vegetation on soil erosion by water is also applied. This method used multi-temporal satellite images with seasonal variability and the transformed soil adjusted vegetation index (TSAVI) which is appropriate in arid and semi-arid areas. For both erosion models, the results show that a large area of the Batta watershed is seriously affected by erosion. This potentially high risk is due especially to severe slopes, poor vegetation coverage and high soil erodibility in this watershed. Furthermore, the use of multi-temporal satellite images and vegetation index show that the effect of vegetation is a significant factor to protect the soil against erosion. The risk is especially serious in the summer season, but it decreases with the growth of vegetation cover in spring. Erosion model, combined with a GIS and remote sensing, is an adequate method to evaluate the soil erosion risk by water. The findings can be used by decision makers as a guideline to plan appropriate strategies for soil and water conservation practices.  相似文献   

8.
Revised Universal Soil Loss Equation(RUSLE) model coupled with transport limited sediment delivery(TLSD) function was used to predict the longtime average annual soil loss, and to identify the critical erosion-/deposition-prone areas in a tropical mountain river basin, viz., Muthirapuzha River Basin(MRB; area=271.75 km~2), in the southern Western Ghats, India. Mean gross soil erosion in MRB is 14.36 t ha~(-1) yr~(-1), whereas mean net soil erosion(i.e., gross erosion-deposition) is only 3.60 t ha~(-1) yr~(-1)(i.e., roughly 25% of the gross erosion). Majority of the basin area(~86%) experiences only slight erosion(5 t ha~(-1) yr~(-1)), and nearly 3% of the area functions as depositional environment for the eroded sediments(e.g., the terraces of stream reaches, the gentle plains as well as the foot slopes of the plateau scarps and the terrain with concordant summits). Although mean gross soil erosion rates in the natural vegetation belts are relatively higher, compared to agriculture, settlement/built-up areas and tea plantation, the sediment transport efficiency in agricultural areas and tea plantation is significantly high,reflecting the role of human activities on accelerated soil erosion. In MRB, on a mean basis, 0.42 t of soil organic carbon(SOC) content is being eroded per hectare annually, and SOC loss from the 4th order subbasins shows considerable differences, mainly due to the spatial variability in the gross soil erosion rates among the sub-basins. The quantitative results, on soil erosion and deposition, modelled using RUSLE and TLSD, are expected to be beneficial while formulating comprehensive land management strategies for reducing the extent of soil degradation in tropical mountain river basins.  相似文献   

9.
Soil erosion and sediment yield from catchments are key limitations to achieving sustainable land use and maintaining water quality in nature. One of the important aspects in protecting the watershed is evaluation of sediment produced by statistical methods. Controlling sediment loading in protecting the watershed requires knowledge of soil erosion and sedimentation. Sediment yield is usually not available as a direct measurement but is estimated using geospatial models. One of the geospatial models for estimating sediment yield at the basin scale is sediment delivery ratio (SDR). The present study investigates the spatial SDR model in determining the sediment yield rate considering climate and physical factors of basin in geographic information system environment. This new approach was developed and tested on the Amammeh catchments in Iran. The validation of the model was evaluated using the Nash Sutcliffe efficiency coefficient. The developed model is not only conceptually easy and well suited to the local data needs but also requires less parameter, which offers less uncertainty in its application while meeting the intended purpose. The model is developed based on local data. The results predict strong variations in SDR from 0 in to 70 % in the uplands of the Basin.  相似文献   

10.
This paper applied the Revised Universal Soil Loss Equation (RUSLE), remote-sensing technique, and geographic information system (GIS) to map the soil erosion risk in Miyun Watershed, North China. The soil erosion parameters were evaluated in different ways: the R factor map was developed from the rainfall data, the K factor map was obtained from the soil map, the C factor map was generated based on a back propagation (BP) neural network method of Landsat ETM+ data with a correlation coefficient (r) of 0.929 to the field collected data, and a digital elevation model (DEM) with a spatial resolution of 30 m was derived from topographical map at the scale of 1:50,000 to develop the LS factor map. P factor map was assumed as 1 for the watershed because only a very small area has conservation practices. By integrating the six factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the upper watershed of Miyun reservoir was obtained by the RUSLE model. The results showed that the annual average soil loss for the upper watershed of Miyun reservoir was 9.86 t ha−1 ya−1 in 2005, and the area of 47.5 km2 (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.88% very low, 21.90% low, 6.19% moderate, 2.90% severe, and 1.84% very severe. Among all counties and cities in the study area, Huairou County is in the extremely severe level of soil erosion risk, about 39.6% of land suffer from soil erosion, while Guyuan County in the very low level of soil erosion risk suffered from 17.79% of soil erosion in 2005. Therefore, the areas which are in the extremely severe level of soil erosion risk need immediate attention from soil conservation point of view.  相似文献   

11.
气候变化对中国北方荒漠草原植被的影响   总被引:70,自引:2,他引:70  
气候变化对陆地生态系统的影响及其反馈是全球变化研究的焦点之一。利用气候变量实现对遥感植被指数所表示的植被绿度信息的模拟,可以尝试作为表达生物圈过去和未来状态的一种途径。利用1961-2000年的气温、降水和1983-1999年的NOAA/AVHRR资料,分析了中国北方地带性植被类型荒漠草原植被分布区的短尺度气候的年际和季节变化,及其对植被的影响。结果表明,过去40年中该区域年际气候变化表现为增温和降水波动。年NDVI的最大值(NDVImax)可以较好地反映气候的变化,过去17年中NDVImax出现的时间略有提前。综合分析NDVI、植被盖度、NPP、区域蒸散量、土壤含水量及其气候的年际变化,表明增温加剧了土壤干旱化,降水和土壤含水量仍是制约本区植被生长的根本原因。  相似文献   

12.
Assessment of soil erosion risk using SWAT model   总被引:3,自引:2,他引:1  
Soil erosion is one of the most serious land degradation problems and the primary environmental issue in Mediterranean regions. Estimation of soil erosion loss in these regions is often difficult due to the complex interplay of many factors such as climate, land uses, topography, and human activities. The purpose of this study is to apply the Soil and Water Assessment Tool (SWAT) model to predict surface runoff generation patterns and soil erosion hazard and to prioritize most degraded sub-catchment in order to adopt the appropriate management intervention. The study area is the Sarrath river catchment (1,491 km2), north of Tunisia. Based on the estimated soil loss rates, the catchment was divided into four priority categories for conservation intervention. Results showed that a larger part of the watershed (90 %) fell under low and moderate soil erosion risk and only 10 % of the watershed was vulnerable to soil erosion with an estimated sediment loss exceeding 10 t?ha?1?year?1. Results indicated that spatial differences in erosion rates within the Sarrath catchment are mainly caused by differences in land cover type and gradient slope. Application of the SWAT model demonstrated that the model provides a useful tool to predict surface runoff and soil erosion hazard and can successfully be used for prioritization of vulnerable areas over semi-arid catchments.  相似文献   

13.
北京市密云水库北部地区土壤侵蚀情况的遥感调查   总被引:3,自引:0,他引:3  
应用遥感技术,对密云水库北部地区的土壤侵蚀情况进行了调查与评价。在研究中,首先利用遥感图像进行判读,并进行实地验证,然后,根据影响土壤侵蚀的生态环境因子,建立数学评判模型,并对土壤侵蚀情况进行评判。  相似文献   

14.
Agricultural nonpoint source (NPS) pollution at the Three Gorges reservoir area in China has been increasingly recognized as a threat to aquatic environment in recent years due to the serious eutrophication problem. Adsorbed NPS pollution is one of the major forms of NPS pollution in mountainous regions, the essential of the adsorbed NPS pollution is soil loss. Thus, simple, highly sensitive and continuous methods are required to simulate and quantify sediments yield at watershed scales. It is imperative to construct an integrated model to estimate the sediment yield and adsorbed NPS pollution load. According to the characteristics of climate, hydrology, topography, geology, geomorphology and land use types in Three Gorges reservoir area, a GIS-based dynamic-integrated-distributed model of annual adsorbed NPS load was presented in view of impacts of the rainfall intensity, sediment delivery ratio (SDR) and land management, where the temporally dynamic-continuous model of annual sediment yield was established by modifying the revised Universal Soil Loss Equation (RUSLE), and the spatially integrated-distributed model of annual adsorbed NPS load was then developed via the correlation between sediment yield and adsorbed NPS load. Furthermore, a case study of the Jialing River basin in China was applied to validate the integrated model, the dynamic-distributed coupling among GIS technology, sediment yield model, and adsorbed NPS load model was achieved successfully. The simulation results demonstrate the following: (1) runoff and sediment are influenced greatly by rainfall intensity, SDR and vegetation cover; rainfall and land management show high sensitivities to the integrated model; the average annual adsorbed TN and TP pollution loads from 2006 to 2010 decreased by 76 and 74 % compared with the previous treatment (1990), respectively. (2) Spatio-temporal variations of adsorbed NPS nitrogen and phosphorus load are mainly related to different land use types and the background level of nutriments in topsoil; different land use types have different contribution rates; the largest contribution rates of adsorbed total nitrogen (TN, 58.9 %) and total phosphorus (TP, 53 %) loads are both from the dryland cropland. (3) The identification of critical source areas can help to implement the prevention and control measures aiming at the reduction of water environmental pollution. These results will provide useful and valuable information for decision makers and planners to take sustainable land use management and soil conservation measures for the control of sediment pollution in the Three Gorges reservoir area. The application of this model in the catchment shows that the integrated model may be used as a major tool to assess sediment yield risks and adsorbed NPS pollution load at mountainous watersheds.  相似文献   

15.
西南喀斯特区土层浅薄、成土速率低等特点决定了其允许土壤流失量小,土壤一旦流失,极难恢复,土壤侵蚀及其造成的石漠化现象已成为制约该区可持续发展最严重的生态环境问题。文章首先明晰西南喀斯特区土壤侵蚀特征,从坡面、小流域和区域三个尺度上系统概括西南喀斯特区土壤侵蚀的相关研究进展。针对当前喀斯特区土壤侵蚀研究野外径流小区、小流域及区域空间尺度数据缺少和相关研究模型限制性强等不足,建议从不同尺度深入研究喀斯特区土壤侵蚀发生发展规律及时空演化格局,并结合高新遥感、地球物理探测技术及模型,同步监测坡面—小流域—区域土壤流失,对土壤侵蚀进行定量评估,结合不同空间尺度土壤侵蚀特征构建系统性水土保持生态恢复治理模式和监测系统评价体系。   相似文献   

16.
Increasing rainfall intensity and frequency due to extreme climate change and haphazard land development are aggravating soil erosion problems in Korea. A quantitative estimate of the amount of sediment from the catchment is essential for soil and water conservation planning and management. Essential to catchment-scale soil erosion modeling is the ability to represent the fluvial transport system associated with the processes of detachment, transport, and deposition of soil particles due to rainfall and surface flow. This study applied a spatially distributed hydrologic model of rainfall–runoff–sediment yield simulation for flood events due to typhoons and then assessed the impact of topographic and climatic factors on erosion and deposition at a catchment scale. Measured versus predicted values of runoff and sediment discharge were acceptable in terms of applied model performance measures despite underestimation of simulated sediment loads near peak concentrations. Erosion occurred widely throughout the catchment, whereas deposition appeared near the channel network grid cells with a short hillslope flow path distance and gentle slope; the critical values of both topographic factors, providing only deposition, were observed at 3.5 (km) (hillslope flow path distance) and 0.2 (m/m) (local slope), respectively. In addition, spatially heterogeneous rainfall intensity, dependent on Thiessen polygons, led to spatially distinct net-erosion patterns; erosion increased gradually as rainfall amount increased, whereas deposition responded irregularly to variations in rainfall.  相似文献   

17.
Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using RUSLE model. The GCM (general circulation model) derived emission scenarios (HadCM3 A2a and B2a SRES) were used for climate projection. The statistical downscaling model (SDSM) was used to downscale the precipitation for three future periods, 2011–2040, 2041–2070, and 2071–2099, at large scale. Rainfall erosivity (R) was calculated for future periods using the SDSM downscaled precipitation data. ASTER digital elevation model (DEM) and Indian Remote Sensing data – IRS LISS IV satellite data were used to generate the spatial input parameters required by RUSLE model. A digital soil-landscape map was prepared to generate spatially distributed soil erodibility (K) factor map of the watershed. Topographic factors, slope length (L) and steepness (S) were derived from DEM. Normalised difference vegetation index (NDVI) derived from the satellite data was used to represent spatial variation vegetation density and condition under various land use/land cover. This variation was used to represent spatial vegetation cover factor. Analysis revealed that the average annual soil loss may increase by 28.38, 25.64 and 20.33% in the 2020s, 2050s and 2080s, respectively under A2 scenario, while under B2 scenario, it may increase by 27.06, 25.31 and 23.38% in the 2020s, 2050s and 2080s, respectively, from the base period (1985–2013). The study provides a comprehensive understanding of the possible future scenario of soil erosion in the mid-Himalaya for scientists and policy makers.  相似文献   

18.
植被—侵蚀状态图在典型流域的应用   总被引:11,自引:1,他引:11  
运用植被—侵蚀动力学耦合方程组,研究了流域植被与侵蚀在人类活动特别是植树造林和工程治理影响下的演变。动力学方程组中的4个参数由实测植被侵蚀资料算出,利用这些参数发展出植被—侵蚀状态图作为分析工具,分析在停止人类干预后植被和土壤侵蚀的发展趋势。流域的植被—侵蚀状态有4种,即向着侵蚀模数增大和植被覆盖度降低方向发展的A区,向着侵蚀模数降低和植被完善方向发展的C区,植被和侵蚀模数都增长的B区,植被和侵蚀模数都减少的D区。将耦合方程组和植被—侵蚀状态图应用于黄土高原王家沟、安家沟流域,云南小江流域和北京西山地区,结果表明动力学方程组准确地模拟了植被和滑动侵蚀模数的演变过程。对植被侵蚀状态图的分析表明,在干旱寒冷的黄土高原增加植被对于减少侵蚀的作用显著,治理应该首先增加植被使其进入D区,再结合控制侵蚀进入C区,治理后仍应加强管理和防止人为破坏;在雨量较丰、气温较高的小江流域,减少侵蚀对改善植被的作用大,治理措施首选控制侵蚀;北京西山地区介于两者之间。  相似文献   

19.
Water erosion is one of the main forms of land degradation in Algeria, with a serious repercussion on agricultural productivity. The purpose of this study is to estimate the soil loss of Wadi El-Ham watershed in the center of Algeria, this study aims also to evaluate the effectiveness and reliability of the use of the Revised Universal Soil Loss Equation (RUSLE) under a Geographic Information System in this field. The RUSLE model involves the main factors of erosion phenomena, namely, rain aggressiveness, soil erodibility, topographic factor, land cover index and the anti-erosive practices factor. Using this approach, the specific erosion in Wadi El-Ham watershed is estimated as 5.7 (t/ha/yr) in the entire watershed area. This result is compared to the measured suspended sediment at the Rocade-Sud gauging station situated outlet the watershed. These data consist of 1293 instantaneous measures of the water discharge and the suspended sediment concentration recorded during 21 years. Through this comparison, the used approach of RUSLE under GIS estimates the soil loss in Wadi El-Ham in Hodna region of Algeria with an error of 7.5%. Consequently, the results obtained in cartographic format make it possible to target the areas requiring priority action for a larger scale analysis to find appropriate solutions to combat erosion and to protect the natural environment.  相似文献   

20.
贵州鹅项水库沉积物特征及其土壤侵蚀的意义   总被引:2,自引:0,他引:2       下载免费PDF全文
对位于贵州西南部非喀斯特丘原区的鹅项水库中取得的一沉积物样芯(EX-1)做了137Cs,TOC,C/N和粒度分析以及矿物磁性测量。通过对这些分析和测量结果进行解译,推测了在过去的45年(1960~2005年)中这一水库的汇水流域内土壤侵蚀强度的相对变化。在这45年中,鹅项水库流域的土壤侵蚀经历了由弱到强再持续减弱的一个过程。将这一推测结果与流域内降水数据和土地利用/覆被变化资料数据相结合,探究了该流域土壤侵蚀强度变化的原因。与贵州西南部典型喀斯特流域的情况相比,在鹅项流域内,土地利用/覆被变化情况对土壤侵蚀强度的影响相对次要,而降水对土壤侵蚀强度变化的影响则更为重要。这可能主要因为与典型喀斯特流域相比,鹅项流域的土层较厚、植被覆盖较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号