首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Surface area measurements as well as organic carbon, nitrogen and phosphorus analyses on various grain size fractions of carbonate mud samples confirm that in natural environments of carbonate deposition, surface sorption processes take place which are similar to those described earlier for dissolved organics and artificially suspended calcite particles in both seawater and synthetic solutions.The specific surface area of the sediment increases from 1.8m2/g for the coarse-grained fraction to 12.5 m2/g for the fine material; likewise organic carbon, nitrogen and phosphorus increase with increasing surface area so that there are 1.20 mg C, 0.175 mg N and 0.06–0.20 mg P associated with every square meter of carbonate surface irrespective of the mineralogy of the sediment particles.It appears that the organic matter in these sediments is similar in composition, structure and quantity to the organic layers produced in sorption experiments. With their apparently defined structure and ubiquitous nature, these layers could determine the mineralogy and orientation of submarine carbonate cement or could even be a prerequisite to calcification in general.  相似文献   

2.
《Organic Geochemistry》1999,30(2-3):133-146
Lake George, located in the St. Marys River, has been heavily impacted by human-induced environmental changes over the past century. The effects of human impacts starting in the late nineteenth century and of natural, gradual diagenesis can be distinguished in the bulk organic matter and molecular contents of the sedimentary record. Organic carbon concentrations increase from 0.5% in sediments deposited 200 years ago to ∼4% in recent sediments. A fourfold increase in organic carbon mass accumulation rates accompanies the change in concentrations. Elevated C/N ratios in near-modern sediments indicate that increased delivery of land-derived organic matter has been responsible for much of the recent increases in sedimentary organic carbon. Organic δ13C and δ15N values change significantly and coincidentally with the environmental changes, reflecting depressed algal productivity since the introduction of industrial effluents to the aquatic system, increased delivery of land-derived organic matter and some impacts of acid rain. Increases in microbial and petroleum hydrocarbon contributions occur in sediments deposited since 1900. Fatty acid distributions provide evidence of substantial microbial reworking of organic matter throughout the sedimentary record.  相似文献   

3.
The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia’s largest brackish water lagoon. Surface and core sediments were collected from various locations of the Chilika lagoon and were analysed for grain-size distribution and major elements in order to understand their distribution and sources. Sand is the dominant fraction followed by silt + clay. Primary production within the lagoon, terrestrial input from river discharge and anthropogenic activities in the vicinity of the lagoon control the distribution of OC, TN, TP and BSi in the surface as well as in the core sediments. Low C/N ratios in the surface sediments (3.49–3.41) and cores (4–11.86) suggest that phytoplankton and macroalgae may be major contributors of organic matter (OM) in the lagoon. BSi is mainly associated with the mud fraction. Core C5 from Balugaon region shows the highest concentration of OC ranging from 0.58–2.34%, especially in the upper 30 cm, due to direct discharge of large amounts of untreated sewage into the lagoon. The study highlights that Chilika is a dynamic ecosystem with a large contribution of OM by autochthonous sources with some input from anthropogenic sources as well.  相似文献   

4.
The Maikop Formation, deposited in eastern Azerbaijan during Oligocene and Early Miocene times, contains prolific source rocks with primarily Type II organic matter. Paleontological analyses of dinoflagellate cysts revealed a Lower to Upper Oligocene age for the investigated succession near Angeharan. A major contribution of aquatic organisms (diatoms, green algae, dinoflagellates, chrysophyte algae) and minor inputs from macrophytes and land plants to organic matter accumulation is indicated by n-alkane distribution patterns, composition of steroids and δ13C of hydrocarbon biomarkers. Microbial communities included heterotrophic bacteria, cyanobacteria, chemoautotrophic bacteria, as well as green sulfur bacteria. Higher inputs of terrigenous organic matter occurred during deposition of the Upper Oligocene units of the Maikop Formation from Angeharan mountains. The terpenoid hydrocarbon composition argues for angiosperm dominated vegetation in the Shamakhy–Gobustan area.High primary bioproductivity resulted in a stratified water column and the accumulation of organic matter rich sediments in the Lower Oligocene units of the Maikop Formation. Organic carbon accumulation during this period occurred in a permanently (salinity-) stratified, mesohaline environment with free H2S in the water column. This is indicated by low pristane/phytane ratios of all sediments (varying from 0.37–0.69), lower methylated-(trimethyltridecyl)chromans ratio in the lower units and their higher contents of aryl isoprenoids and highly branched isoprenoid thiophenes. Subsequently, the depositional environment changed to normal marine conditions with oxygen deficient bottom water. The retreat of the chemocline towards the sediment–water interface and enhanced oxic respiration of OM during deposition of the Upper Oligocene Maikop sediments is proposed.Parallel depth trends in δ13C of total OM, n-alkanes, isoprenoids and steranes argue for changes in the regional carbon cycle, associated with the changing environmental conditions. Increased remineralisation of OM in a more oxygenated water column is suggested to result in low TOC and hydrocarbon contents, as well as 15N enriched total nitrogen of the Upper Oligocene units.  相似文献   

5.
Particulate carbon, nitrogen, and phosphorus samples from the water column and surficial sediments of the Maryland portion of Chesapeake Bay were thermally partitioned into their organic and inorganic components. During periods of both high and low fluvial input and high and low phytoplanktonic production, particulate organic carbon accounted for a mean of 99.3% of the total particulate carbon and particulate organic nitrogen accounted for a mean of 99.1% of the total particulate nitrogen. The particulate organic phosphorus contribution was variable both seasonally and spatially, accounting for 14–77% of the total pool of particulate phosphorus. The highest concentrations were found in the surface waters during maximum phytoplanktonic production and low fluvial input. The contribution of particulate inorganic phosphorus to the seston and to total particulate phosphorus decreased as distance from the primary fluvial source increased, reflecting a greater relative inclusion of particulate phosphorus in the biologically bound component in the higher salinity zone seaward of the turbidity maximum. Organic carbon and nitrogen constituted over 99% of the surficial sediment carbon and nitrogen, and organic phosphorus was 10–40% of the surficial sediment phosphorus.  相似文献   

6.
太湖东部湖湾水生植物生长区底泥氮磷污染特征   总被引:6,自引:0,他引:6  
向速林  朱梦圆  朱广伟  许海 《沉积学报》2014,32(6):1083-1088
为了解太湖东部湖湾(贡湖湾、光福湾、渔洋湾)表层底泥中氮、磷的污染特征及其与水生植物生长的关系,采集了各湖湾滨岸带水生植物生长区的表层底泥,探讨了水生植物的生长与分布对表层底泥中总氮(TN)、总磷(TP)及总有机碳(TOC)等含量的影响,并对表层底泥进行营养评价.结果表明,水生植物生长密集区底泥中TN、TP、TOC的含量均显著低于水生植物零星生长区,说明水生植物的生长对太湖东部湖湾表层底泥中营养盐与有机碳含量具有较为明显的影响;相关性分析显示,表层底泥中TOC与TN含量呈显著相关性(R2=0.832 8),而与TP的相关性则较弱(R2=0.166 5),反映了TOC在湖泊底泥中的沉积可能成为湖泊氮的重要来源,而对磷的影响较小.利用有机指数与有机氮指数两种方法分别对东部各湖湾底泥进行污染评价,贡湖湾、光福湾、渔洋湾底泥有机指数平均值分别为0.142 7、0.228 6与0.208 6,均属较清洁与尚清洁水平,而各湖湾有机氮指数平均值均为Ⅲ与Ⅳ级,说明底泥已遭受了一定程度的氮污染.因此,对水生植物零星生长区表层底泥中氮含量的控制与削减有利于湖泊富营养化的预防与治理.  相似文献   

7.
The environmental impacts of salmon net-pen aquaculture on the benthic environment were investigated at a commercial fish farm located in coastal Maine waters. This site has a sandy mud bottom and low current velocities, is subjected to episodic sediment resuspension, and way in production for 3 yr prior to this study: We examined both the increase in carbon flux to the benthos caused by the net-pen and the effects of the elevated flux on sediment biogeochemistry and the microbenthic communities. The experimental design involved the establishment of two study sites, an ambient site ca. 100 m from the net-pen and a treatment site around the pen. Sediment traps deployed 1 m above the sediment-water interface indicated that carbon flux to the benthos was increased 1-fold to 6-fold (to a maximum of 5 g m?2d?1) at the edge of the net-pen with little or no increase in carbon flux 10 m from the pen. Unlike carbon flux rates, sediment organic matter inventories showed a complex pattern of change over time. Mineral surface area, organic carbon and nitrogen, digestible protein, and sterol content were initially (April 1991) lower beneath the pen than in ambient sediments. During 1991 ambient sediment accumulated organic matter until July after which it decreased, to a low during November. In contrast, organic matter inventories of sediment beneath the pen remained low until July and then increased to a high during November. These latter gains were associated with the development of bacterial mats at the sediment-water interface. Beneath the pen, microbial and macrofaunal communities were shifted toward those commonly associated with organic enrichment but seasonal trends and storm-related resuspension events also significantly affected these sediment communities. When abundant, most epibenthic organisms were more numerous near the pen than in adjacent ambient areas. These results suggest that net-pen aquaculture can alter the benthic ecosystem in Maine Coastal waters but indicate that the effects are spatially limited.  相似文献   

8.
Total nitrogen, phosphorus and organic carbon were compared in natural and transplanted estuarine marsh soils (top 30 cm) to assess nutrient storage in transplanted marshes. Soils were sampled in five transplanted marshes ranging in age from 1 to 15 yr and in five nearby natural marshes along the North Carolina coast. Dry weight of macroorganic matter (MOM), soil bulk density, pH, humic matter, and extractable P also were measured. Nutrient pools increased with increasing marsh age and hydroperiod. Nitrogen, phosphorus and organic carbon pools were largest in soils of irregularly flooded natural marshes. The contribution of MOM to marsh nutrient reservoirs was 6–45%, 2–22%, and 1–7% of the carbon, nitrogen and phosphorus, respectively. Rates of nutrient accumulation in transplanted marshes ranged from 2.6–10.0, 0.03–1.10, and 84–218 kmol ha?1yr?1 of nitrogen, phosphorus and organic carbon, respectively. Accumulation rates were greater in the irregularly flooded marshes compared to the regularly flooded marshes. Approximately 11 to 12% and 20% of the net primary production of emergent vegetation was buried in sediments of the regularly flooded and irregularly flooded transplanted marshes, respectively. Macroorganic matter nutrient pools develop rapidly in transplanted marshes and may approximate natural marshes within 15 to 30 yr. However, development of soil carbon, nitrogen and phosphorus reservoirs takes considerably longer.  相似文献   

9.
Concentrations and vertical distributions of total nitrogen (TN), total phosphorus (TP) and their different forms in sediments obtained from nine locations of Lake Dalinouer in September 2008 were analyzed. The results demonstrated that TP in surface sediments ranged from 0.493 to 0.904 g/kg, and inorganic phosphorus was the main fraction of total phosphorus, ranging from 335 to 738 mg/kg. Simultaneously, the autogenetic calcium phosphorus (ACa-P) was the main fraction of inorganic phosphorus, ranging from 145.4 to 543.2 mg/kg. Vertical distribution of different phosphorus forms in different sediment cores was distinguishing, and most of them tended to increase toward the surface sediment, indicated that the phosphorus concentration was related to the humanity with a certain extent. The relationships between TP and occluded phosphorus and ACa-P were significant. Nitrogen in the sediment was composed mainly of organic nitrogen, accounting for grater than 80 % of TN. NO3 ?-N was the dominate fraction of inorganic nitrogen in the surface sediment, ranging between 51 and 346 mg/kg (151.1 ± 104.4 mg/kg), and accounting for between 2.2 and 17.7 % of total sediment nitrogen (6.2 ± 5.6 %). The ratio of organic carbon and TN in sediment was in range of 6.0–25.8 and presented a tendency of lake centre >lake sides, indicating that nitrogen accumulated in the sediments from lake sides came mainly from terrestrial source and nitrogen was mainly autogenetic in lake centre. Ratio of N:P in all sampling sites was below 14, indicated that N was the limiting nutrient for algal growth in this lake.  相似文献   

10.
Lacustrine sediments can provide potential information about environmental changes in the past. On the basis of high-resolution multi-proxy analysis including carbon and nitrogen contents of organic matter, C/N ratios, inorganic carbon contents, and carbon and oxygen isotopic composition of carbonate, together with precise 137Cs dating, the environmental evolution of Lake Chenghai, Yunnan Province, during the past 100 years has been investigated. It is shown that the carbonate in Lake Chenghai is authigenic, and the organic matter is mainly derived from aquatic plants and algae, instead of terrestrial-source materials. The environmental evolution of Lake Chenghai can be diverged into three periods with the contrasting characteristics during the past 100 years. Before 1940, the stable carbon and oxygen isotope values, the poor correlation between them and the lower carbon and nitrogen contents of organic matter suggested that Lake Chenghai was open, and the lake water was oligotrophic during that period. During 1940-1993, the negative δ13C values and the gradual increase of carbon and nitrogen contents of organic matter and C/N ratios indicated that the eutrophication was aggravated. The closeness of Lake Chenghai and human activities may be responsible for this eutrophication. After 1993, notable increases in carbon and oxygen isotopic values of carbonate, carbon and nitrogen contents of organic matter, C/N ratios and inorganic carbon contents demonstrated that the increase of lacustrine productivity and the serious eutrophication were resulted from strong human activities. Therefore, the multi-proxy in Lake Chenghai sediments has reliably recorded the natural environmental evolution and the impacts from human activities.  相似文献   

11.
Hypoxia has been observed in Hood Canal, Puget Sound, WA, USA since the 1970s. Four long sediment cores were collected in 2005 and age-dated to resolve natural and post-urbanization signatures of hypoxia and organic matter (OM) sources in two contrasting basins of Puget Sound: Main Basin and Hood Canal. Paleoecological indicators used for sediment reconstructions included pollen, stable carbon and nitrogen isotopes (??13C and ??15N), biomarkers of terrestrial OM (TOM), biogenic silica (BSi), and redox-sensitive metals (RSM). The sedimentary reconstructions illustrated a gradient in RSM enrichment factors as Hood Canal > Main Basin, southern > northern cores, and pre-1900s > 1900?C2005. The urbanization of Puget Sound watersheds during the 1900s was reflected as shifts in all the paleoecological signatures. Pollen distributions shifted from predominantly old growth conifer to successional alder, dominant OM signatures recorded a decrease in the proportion of marine OM (MOM) concomitant with an increase in the proportion of TOM, and the weight % of BSi decreased. However, these shifts were not coincidental with an overall increase in the enrichment of RSM or ??15N signatures indicative of cultural eutrophication. The increased percentage of TOM was independently verified by both the elemental ratios and lignin yields. In addition, isotopic signatures, BSi, and RSMs all suggest that OM shifts may be due to a reduction in primary productivity rather than an increase in OM regeneration in the water column or at the sediment/water interface. Therefore, the reconstructions suggested the Hood Canal has been under a more oxygenated ??stance?? during the twentieth century compared to prior periods. However, these 2005 cores and their resolutions do not encompass the period of high resolution water column measurements that showed short-lived hypoxia events and fish kills in Hood Canal during the early twenty-first century. The decoupling between the increased watershed-scale anthropogenic alterations recorded in the OM signatures and the relatively depleted RSM during the twentieth century suggests that physical processes, such as deep-water ventilation, may be responsible for the historical variation in oxygen levels. Specifically, climate oscillations may influence the ventilation and/or productivity of deep water in Puget Sound and particularly their least mixed regions.  相似文献   

12.
苏北潮滩湿地不同生态带碳、氮、磷分布特征*   总被引:1,自引:0,他引:1  
通过对比苏北潮滩湿地不同生态带的表层以及柱状沉积物中总有机碳、总氮、总磷和有机磷含量,并结合不同植被不同植株部位中碳、氮、磷的含量变化,分析了潮滩沉积物中碳、氮、磷的垂向和水平分布特征与规律,探讨了不同生态带以及潮滩植被对碳、氮、磷等生源要素的富集作用。对比分析结果表明:苏北潮滩湿地各生态带对不同的测量指标有着不同的富集作用,互花米草滩的总有机碳、总氮和有机磷含量要远大于其他几个生态带,光滩沉积物中总磷的含量最高; 粒度效应是控制互花米草前缘地带以及互花米草滩沉积物中有机碳和氮分布的一个重要因素,盐蒿和芦苇滩中有机碳和氮的分布更多的是受粒度之外的其他因素影响; 不同生态带表层沉积物中的C/N比值分布,大致可反映其有机物来源的差异,而不同生态带中柱状沉积物中的C/N比值相对接近,很难根据C/N比值大小来对不同生态带中的有机物来源进行判断,这可能是埋藏在柱状沉积物中的有机物更多的受到了早期成岩作用造成的。植被对潮滩湿地中碳、氮、磷的分布有着重要影响,3种物质在互花米草、盐蒿和芦苇中的含量差别不是很大,因此潮滩植被对沉积物中上述3种物质的贡献差别主要是由不同植被的生物量和其所处环境的沉积动力差异造成的。  相似文献   

13.
Analyses for dissolved oxygen, nitrate and total CO2 in the interstitial water have been combined with solid phase sediment analyses of carbon and nitrogen to calculate the rates of reaction and stoichiometry of decomposing organic matter in central Equatorial Pacific pelagic sediments. The diagenesis is dominated by aerobic respiration and nitrification.Organic carbon and total nitrogen decrease exponentially with depth in both red clay and carbonate ooze sediments. In addition, there is a correlation between surface organic carbon and total nitrogen with distance from the equator. Fixed NH4 is relatively constant with depth and constitutes 12 to 64% of the total nitrogen. The remainder is considered to be organic nitrogen.The CN ratio of the decomposing organic matter was obtained using three approaches. Using the correlations of organic carbon with total nitrogen or organic nitrogen the molar ratios varied from 3.4 to 18.1. The average of all stations was 12.6 using total nitrogen and 13.7 using organic nitrogen. The Redfield ratio is 6.6. Approaches using interstitial water chemistry gave lower ratios. The average value using correlations between dissolved oxygen and nitrate was 8.1. The same approach using total CO2 and nitrate gave an average of 9.1. Due to difficulties in unambiguously interpreting the solid phase data we favor the ratios obtained from the pore water analyses.The rate of organic matter decomposition can be obtained from model calculations using the dissolved oxygen and solid organic carbon data. Most gradients occur in the upper 10 to 20 cm of the sediments. Assuming that bioturbation is more important than sedimentation we have calculated first order rate constants. The average values using organic carbon and dissolved oxygen was 3.9 kyr? and 4.2 kyr? respectively using a biological mixing coefficient of 100 cm2 kyr?1. These rate constants decrease in direct proportions to the mixing coefficient.  相似文献   

14.
Organic matter in sediments, for instance, carbon, nitrogen and phosphorus, can be used to reconstruct the paleoecological and pollution history of lakes and their catchment basins. In this paper, the contents of allochthonous organic carbon (allochthonous OC) and autochthonous organic carbon (autochthonous OC) in sediment cores taken from Wuliangsuhai Lake and Daihai Lake in northern China are quantified by using a binary model, and phosphorus forms in the sediment cores from the two lakes are extracted by sequential extraction techniques. The results indicate that the palaeoenvironment and paleoclimate of Daihai Lake and its catchment basin in the recent 250 years can be well reconstructed based on the content of allochthonous OC. The climate was relatively humid and warm in the period of 1865–2005, while relatively dry and cold in the period of 1765–1865. The sedimentary information of allochthonous OC in the 22–42-cm portion of the sediment cores in Daihai Lake corresponds to the final cold fluctuation of the Little Ice Age that occurred since the Middle Holocene. The difference of phosphorus forms in the sediment cores between the two lakes indicates that phosphorus input to the lakes and the correlation between phosphorus forms and distribution and the changes of environment are influenced by the eutrophication mechanisms and environmental conditions of the two lakes.  相似文献   

15.
To examine the biogeochemistry of amino acids (AAs) in the sediment of Lake Taihu, surface sediments (0–3 cm) and deeper sediments (18–21 cm) were collected at 21 sites from different ecotype zones of the lake. AAs were extracted from the sediments, and the total hydrolyzable amino acids (THAA) were determined by high-performance liquid chromatography instrument. The THAA contents in Taihu sediment were much lower than that in marine sediments, ranging from 6.84 to 38.24 μmol g−1 in surface sediments and from 2.91 to 18.75 μmol g−1 in deeper sediments in Taihu, respectively. AAs were a major fraction of the organic matter (OM) and organic nitrogen in Taihu sediments. The AAs on average contributed 8.2% of organic carbon (OC) and 25.0% of total nitrogen (TN) from surface sediments, and 5.9% of OC and 20.5% of TN in deeper sediments, respectively. AA composition provided very useful information about the degradation of OM. Glycine (Gly) and lysine (Lys) were the predominant forms of AAs in the sediments, irrespective of lake regions, followed by alanine, glutamic acid, serine (Ser), and aspartic acid (Asp). The high concentrations of Gly, Lys, and Ser suggested that these forms of AAs were relatively refractory during OM degradation in sediments. The relationship between the Asp/Gly ratio and Ser + Thr [mol%] indicated that OM in surface sediment was relatively fresher than that in deeper sediments. The AAs-based degradation index (DI) gave a similar conclusion. The composition and DI of AAs in surface sediments are markedly different across different zones in Taihu. The percentages of AAs to organic carbon (AA-C%) and total nitrogen (AA-N%) were higher in phytoplankton-dominated zones than those in macrophyte-dominated zones. These results suggest that DI could provide useful information about the degradation of OM in shallow lakes such as Taihu.  相似文献   

16.
The carbon and nitrogen isotope composition of organic matter has been widely used to trace biogeochemical processes in marine and lacustrine environments. In order to reconstruct past environmental changes from sedimentary organic matter, it is crucial to consider potential alteration of the primary isotopic signal by bacterial degradation in the water column and during early diagenesis in the sediments.In a series of oxic and anoxic incubation experiments, we examined the fate of organic matter and the alteration of its carbon and nitrogen isotopic composition during microbial degradation. The decomposition rates determined with a double-exponential decay model show that the more reactive fraction of organic matter degrades at similar rates under oxic and anoxic conditions. However, under oxic conditions the proportion of organic matter resistent to degradation is much lower than under anoxic conditions. Within three months of incubation the δ13C of bulk organic matter decreased by 1.6‰ with respect to the initial value. The depletion can be attributed to the selective preservation of 13C-depleted organic compounds. During anoxic decay, the δ15N values continuously decreased to about 3‰ below the initial value. The decrease probably results from bacterial growth adding 15N-depleted biomass to the residual material. In the oxic experiment, δ15N values increased by more then 3‰ before decreasing to a value indistinguishable from the initial isotopic composition. The dissimilarity between oxic and anoxic conditions may be attributed to differences in the type, timing and degree of microbial activity and preferential degradation. In agreement with the anoxic incubation experiments, sediments from eutrophic Lake Lugano are, on average, depleted in 13C (−1.5‰) and 15N (−1.2‰) with respect to sinking particulate organic matter collected during a long-term sediment trap study.  相似文献   

17.
Reactive phosphorus undergoes diagenetic transformation once transferred into marine sediments. The degree of regeneration and redistribution of phosphorus depends on early diagenetic and environmental conditions, which may be linked to larger scale phenomena, such as bottom water circulation, water column ventilation, and organic carbon flux. Phosphorus phases of the <50-μm-sized fraction of deep-sea sediments from core SU 90-09 (North Atlantic, 43°31′N, 30°24′W, 3375 m below sea level) have been analyzed using a sequential extraction technique (SEDEX method) to reconstruct phosphorus geochemistry during Heinrich events 4 and 5. Comparison with Holocene samples from the same site indicates that postdeposition diagenetic transformation has not affected phosphorus distribution in the deep part of the sediments. Total and reactive phosphorus average 0.40 ± 0.04 mg/g and 0.30 ± 0.05 mg/g, respectively, and are comparable to values found in analog deep-sea environments in the North Atlantic. Detrital phosphorus, the phase linked to igneous- and metamorphic-derived material, sharply increases during Heinrich events and covaries with the ice-rafted debris record, whereas authigenic and Fe-bound phosphorus phases, both influenced by redox conditions, decrease or even disappear. These findings suggest that during the deposition of Heinrich layers (HLs), environmental parameters hampered the precipitation of these phases. Large freshwater discharges in relation to iceberg surges may have provoked a temporary stratification of the water column. Accordingly, dysaerobic conditions in the sediments may have fostered the loss of dissolved phosphorus from the sediments to the water column, in a direct and rapid response to the changed conditions. Decreasing trends in organic matter elemental ratios (total organic carbon/organic phosphorus) and Rock-Eval oxygen index values, along with the presence of partly authigenic dolomite and ankerite within HLs, also support this assumption.  相似文献   

18.
巢湖富营养化过程的沉积记录   总被引:33,自引:3,他引:30  
姚书春  李世杰 《沉积学报》2004,22(2):343-347
土地利用和人类活动加剧所导致的营养元素输入的增加是引起湖泊富营养化趋势增强的重要原因。巢湖沉积钻孔柱状样中总有机碳和总氮自20世纪70年代以来呈明显升高趋势,分别增加了2.5、2.9倍。由柱状样中的TOC/TN比值、TARHC、OEP判断得出,19世纪末到20世纪40年代中期TOC是陆源和内源两种来源并重;20世纪40年代中期到20世纪70年代初期以陆源为主,并可能存在石油污染;20世纪70年代以来沉积物有机质中藻类来源的有机质占主要地位。巢湖沉积柱状样的研究表明20世纪70年代以来巢湖富营养化开始恶化。  相似文献   

19.
A multicomponent diagenetic model was developed and applied to reconstruct the conditions under which the most recent sapropel, S1, was deposited in the eastern Mediterranean Sea. Simulations demonstrate that bottom waters must have been anoxic and sulphidic during the formation of S1 and that organic matter deposition was approximately three times higher than at present. Nevertheless, most present day sediment and pore water profiles — with the exception of pyrite, iron oxyhydroxides, iron-bound phosphorus and phosphate — can be reproduced under a wide range of redox conditions during formation of S1 by varying the depositional flux of organic carbon. As a result, paleoredox indicators (e.g., Corg:S ratio, Corg:Porg ratio, trace metals) are needed when assessing the contribution of oxygen-depletion and enhanced primary production to the formation of organic-rich layers in the geological record. Furthermore, simulations show that the organic carbon concentration in sediments is a direct proxy for export production under anoxic bottom waters.The model is also used to examine the post-depositional alteration of the organic-rich layer focussing on nitrogen, phosphorus, and organic carbon dynamics. After sapropel formation, remineralisation is dominated by aerobic respiration at a rate that is inversely proportional to the time since bottom waters became oxic once again. A sensitivity analysis was undertaken to identify the most pertinent parameters in regulating the oxidation of sapropels, demonstrating that variations in sedimentation rate, depositional flux of organic carbon during sapropel formation, bottom water oxygen concentration, and porosity have the largest impact. Simulations reveal that sedimentary nutrient cycling was markedly different during the formation of S1, as well as after reoxygenation of bottom waters. Accumulation of organic nitrogen in sediments doubled during sapropel deposition, representing a significant nitrogen sink. Following reventilation of deep waters, N2 production by denitrification was almost 12 times greater than present day values. Phosphorus cycling also exhibits a strong redox sensitivity. The benthic efflux of phosphate was up to 3.5 times higher during the formation of S1 than at present due to elevated depositional fluxes of organic matter coupled with enhanced remineralisation of organic phosphorus. Reoxygenation of bottom waters leads to a large phosphate pulse to the water column that declines rapidly with time due to rapid oxidation of organic material. The oxidation of pyrite at the redox front forms iron oxyhydroxides that bind phosphorus and, thus, attenuate the benthic phosphate efflux. These results underscore the contrasting effects of oxygen-depletion on sedimentary nitrogen and phosphorus cycling. The simulations also confirm that the current conceptual paradigm of sapropel formation and oxidation is valid and quantitatively coherent.  相似文献   

20.
Allochthonous inputs of suspended particulate matter from freshwater environments to estuaries influence nutrient cycling and ecosystem metabolism. Contributions of different biogeochemical reactions to phosphorus dynamics in Tomales Bay, California, were determined by measuring dissolved inorganic phosphorus exchange between water and suspended particulate matter in response to changes in salinity, pH, and sediment redox. In serum bottle incubations of suspended particulate matter collected from the major tributary to the bay, dissolved inorganic phosphorus release increased with salinity during the initial 8 h; between 1–3 d, however, rates of release were similar among treatments of 0 psu, 16 psu, 24 psu, and 32 psu. Release was variable over the pH range 4–8.5, but dissolved inorganic phosphorus releases from sediments incubated for 24 h at the pH of fresh water (7.3) and seawater (8.1) were similarly small. Under oxidizing conditions, dissolved inorganic phosphorus release was small or dissolved inorganic phosphorus was taken up by particulate matter with total P content <50 μmoles P g?1; release was greater from suspended particulate matter with total phosphorus content >50 μmoles P g?1. In contrast, under reducing conditions maintained by addition of free sulfide (HS?), dissolved inorganic phosphorus was released from particles at all concentrations of total phosphorus in suspended particulate matter, presumably from the reduction of iron oxides. Since extrapolated dissolved inorganic phosphorus release from this abiotic source can account for only 12.5% of the total dissolved inorganic phosphorus flux from Tomales Bay sediments, we conclude most release from particles is due to organic matter oxidation that occurs after estuarine deposition. The abiotic, sedimentary flux of dissolved inorganic phosphorus, however, could contribute up to 30% of the observed net export of dissolved inorganic phosphorus from the entire estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号