首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Betic-Rif Cordilleras, formed by the interaction of NW–SE convergence between the Eurasian and African plates and the westward motion of their Internal Zones, provide a good example of an active tectonic arc. The Campo de Dalías and Campo de Níjar constitute outcropping sectors of Neogene and Quaternary rocks located in the southeastern border of the Betic Cordilleras and allow us to study the recent deformations developed in the internal border of this tectonic arc.The main active faults with related seismicity, representing a moderate seismic hazard, associated to the southeastern Betic Cordilleras boundary, include high-angle NW–SE-oriented normal faults that affect, at least, the upper part of the crust, a main detachment located at 10 km depth, and probably another detachment at 20 km as well. Seismite structures, recent fault scarps with associated colluvial wedges that deform the drainage network and the alignment of the coastline, indicate that the high-angle faults have been active at least since the Quaternary.Paleostresses determined from microfault analysis in Quaternary deposits generally show an ENE–WSW trend of extension. Present-day earthquake focal mechanisms include normal, strike-slip and reverse faulting. Normal and strike-slip focal mechanisms generally indicate ENE–WSW extension, and strike-slip and reverse focal mechanisms are related to NNW–SSE compression.The maximum horizontal compression has a consistently NNW–SSE trend. The deep activity of detachments and reverse faults determines the NNW–SSE crustal shortening related to the Eurasian–African plate convergence. At surface, however, the predominance of normal faults is probably produced by the increase in the relative weight of the vertical stress axis, which in turn may be related to relief uplift and subsequent horizontal spreading. The internal mountain front boundary of the Betic Cordilleras developed through the activity of a set of structures that is more complex than a typical external mountain front, probably as a consequence of a vertical variable stress field that acted on previously deformed rocks belonging to the Internal Zone of the cordilleras.  相似文献   

2.
We investigate the stress regimes acting during serpentinization and faulting of the largest known subcontinental lithospheric peridotite body, namely the Ronda peridotites (Betic Cordillera, S. Spain). Petrological and structural analyses on serpentinites grown along fault planes crosscutting the peridotite slab, reveal that they were developed during three superposed stress tensors: the oldest one (E1) is characterized by NW–SE sub-horizontal compression; the intermediate one consists in NE–SW to ENE–WSW extension with orthogonal compression (E2); and the youngest one (E3) shows a sub-vertical maximum stress axis and NW–SE sub-horizontal extension. During serpentinization, maximum and minimum stress axes flip between a NW–SE horizontal position and a vertical one in the whole peridotite body (E1 and E3), while E2 represents an intermediate stress stage. Field relationships and previous petrological and geochronological data indicate that serpentinization and associated stress tensors are coeval with intrusive leucogranite dikes crosscutting the peridotites, thus constraining these processes to 19–22 Ma and occurring at upper continental crust depths (P < 4 kbar). Gravity data reveal that the average density of the Ronda mantle slab (~ 2.7–2.8 g/cm3) shows a negligible contrast with the surrounding crustal rocks, thus suggesting that the peridotite body is serpentinized in a great proportion. Our preferred tectonic model to account for the evolution of the Ronda peridotites in the upper crust considers that E1 compression was linked to the collision of the Alborán continental domain with the Iberian passive margin during the Gibraltar Arc formation. Subsequently, the sudden onset of extension recorded within the peridotite slab (E2 and E3) was favored by serpentinization-driven buoyancy.  相似文献   

3.
The NW–SE shortening between the African and the Eurasian plates is accommodated in the eastern Betic Cordillera along a broad area that includes large N‐vergent folds and kilometric NE–SW sinistral faults with related seismicity. We have selected the best exposed small‐scale tectonic structures located in the western Huércal‐Overa Basin (Betic Cordillera) to discuss the seismotectonic implications of such structures usually developed in seismogenic zones. Subvertical ESE–WNW pure dextral faults and E–W to ENE–ESW dextral‐reverse faults and folds deform the Quaternary sediments. The La Molata structure is the most impressive example, including dextral ESE–WNW Neogene faults, active southward‐dipping reverse faults and associated ENE–WSW folds. A molar M1 assigned to Mimomys savini allows for precise dating of the folded sediments (0.95–0.83 Ma). Strain rates calculated across this structure give ~0.006 mm a?1 horizontal shortening from the Middle Pleistocene up until now. The widespread active deformations on small‐scale structures contribute to elastic energy dissipation around the large seismogenic zones of the eastern Betics, decreasing the seismic hazard of major fault zones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The Alboran Sea constitutes a Neogene–Quaternary basin of the Betic–Rif Cordillera, which has been deformed since the Late Miocene during the collision between the Eurasian and African plates in the westernmost Mediterranean. NNE–SSW sinistral and WNW–ESE dextral conjugate fault sets forming a 75° angle surround a rigid basement spur of the African plate, and are the origin of most of the shallow seismicity of the central Alboran Sea. Northward, the faults decrease their transcurrent slip, becoming normal close to the tip point, while NNW–SSE normal and sparse ENE–WSW reverse to transcurrent faults are developed. The uplifting of the Alboran Ridge ENE–WSW antiform above a detachment level was favoured by the crustal layering. Despite the recent anticlockwise rotation of the Eurasian–African convergence trend in the westernmost Mediterranean, these recent deformations—consistent with indenter tectonics characterised by a N164°E trend of maximum compression—entail the highest seismic hazard of the Alboran Sea.  相似文献   

5.
Qiongdongnan Basin is a Cenozoic rift basin located on the northern passive continental margin of the South China Sea. Due to a lack of geologic observations, its evolution was not clear in the past. However, recently acquired 2-D seismic reflection data provide an opportunity to investigate its tectonic evolution. It shows that the Qiongdongnan Basin comprises a main rift zone which is 50–100 km wide and more than 400 km long. The main rift zone is arcuate in map view and its orientation changes from ENE–WSW in the west to nearly E–W in the east. It can be divided into three major segments. The generally linear fault trace shown by many border faults in map view implies that the eastern and middle segments were controlled by faults reactivated from NE to ENE trending and nearly E–W trending pre-existing fabrics, respectively. The western segment was controlled by a left-lateral strike-slip fault. The fault patterns shown by the central and eastern segments indicate that the extension direction for the opening of the rift basin was dominantly NW–SE. A semi-quantitative analysis of the fault cut-offs identifies three stages of rifting evolution: (1) 40.4–33.9 Ma, sparsely distributed NE-trending faults formed mainly in the western and the central part of the study area; (2) 33.9–28.4 Ma, the main rift zone formed and the area influenced by faulting was extended into the eastern part of the study area and (3) 28.4–20.4 Ma, the subsidence area was further enlarged but mainly extended into the flanking area of the main rift zone. In addition, Estimates of extensional strain along NW–SE-trending seismic profiles, which cross the main rift zone, vary between 15 and 39 km, which are generally comparable to the sinistral displacement on the Red River Fault Zone offshore, implying that this fault zone, in terms of sinistral motion, terminated at a location near the southern end of the Yinggehai Basin. Finally, these observations let us to favour a hybrid model for the opening of the South China Sea and probably the Qiongdongnan Basin.  相似文献   

6.
《Tectonophysics》2001,330(1-2):25-43
A detailed gravimetric study has been integrated with the most recent stratigraphic data in the area comprised between the Arno river and the foothills of the Northern Apennines, in northern Tuscany (central Italy). A Plio–Pleistocene basin lies in this area; its sedimentary succession can be subdivided from the bottom, in five allostratigraphic units: (1) Lower–Middle Pliocene shallow marine deposits; (2) Late Pliocene (?)–Early Pleistocene fluvio-lacustrine deposits; (3) late–Early Pleistocene–Middle Pleistocene alluvial to fluvial red conglomerates (Montecarlo Formation); (4) Middle Pleistocene alluvial to fluvial red conglomerates (Cerbaie and Casa Poggio ai Lecci Formations); (5) alluvial to fluvial deposits of Late Pleistocene age. The Bouguer anomaly map displays a strong minimum in the northeastern sector of the basin, and a gentle gradient from west to east. The map of the horizontal gradients permits to recognise three major fault zones, two of which along the southwestern and northeastern margins of the basin, and one along the southeastern edge of the Pisani Mountains. A 2.5D gravimetric modelling along a SW–NE section across the basin displays a thick wedge of sediments of density 2.25 g/cm3 (about 1700 m in the depocenter) overlying a layer of density 2.55 g/cm3, 1000 m thick, which rests on a basement of 2.72 g/cm3. The most of the sediment wedge is here referred to Upper Pliocene (?)–Lower Pleistocene, because borehole data show Pliocene marine deposits thinning northward close to the southern margin of the area. The layer below is referred to Ligurids and upper Tuscan Nappe units; the densest layer is interpreted as composed of Triassic evaporites, quartzites and Palaeozoic basement. According to Carmignani low-angle extensional tectonics began between Serravallian and early Messinian, thinning the Apennine nappe stack. At the end of Middle Pliocene, syn-rift deposition ceased in the Viareggio Basin (west of the investigated area) as demonstrated by Argnani and co-workers, and high-angle extensional tectonics migrated eastward up to the Monte Albano Ridge. A syn-rift continental sedimentary wedge developed in Late Pliocene–Early Pleistocene, until its hanging wall block was dismembered, during late Early Pleistocene, by NE-dipping faults, causing the uplift of its western portion (the Pisani Mountains). This breakup caused exhumation and erosion of Triassic units whose clastics where shed into the surrounding palaeo-Arno Valley in alluvial–fluvial deposits unconformably overlying the Lower Pleistocene syn-rift deposits. In the late Pleistocene SW–NE-trending fault systems created the steep southeastern edge of the Pisani Mountains and the resulting throw is recorded in Middle Pleistocene deposits across the present Arno Valley. This tectonic phase probably continues at present, offshore Livorno, as evidenced by the epicentres of earthquakes.  相似文献   

7.
The central Wassuk Range is ideally located to investigate the interplay of Basin and Range extension and Walker Lane dextral deformation along the western Nevada margin of the Basin and Range province. To elucidate the Cenozoic evolution of the range, the author conducted geologic mapping, structural data collection and analysis, geochemical analysis of igneous lithologies, and geochronology. This research delineates a three-stage deformational history for the range. A pulse of ENE–WSW-directed extension at high strain rates (~8.7 mm/yr) was initiated immediately after the eruption of ~15 Ma andesite flows; strain was accommodated by high-angle, closely spaced (1–2 km), east-dipping normal faults which rotated and remained active to low angles as extension continued. A post-12 Ma period of extension at low strain rates produced a second generation of normal faults and two prominent dextral strike–slip faults which strike NW, subparallel to the dextral faults of the Walker Lane at this latitude. A new pulse of ongoing extension began at ~4 Ma and has been accomodated primarily by the east-dipping range-bounding normal fault system. The increase in the rate of fault displacement has resulted in impressive topographic relief on the east flank of the range, and kinematic indicators support a shift in extension direction from ENE–WSW during the highest rates of Miocene extension to WNW–ESE today. The total extension accommodated across the central Wassuk Range since the middle Miocene is >200%, with only a brief period of dextral fault activity during the late Miocene. Data presented here suggest a local geologic evolution intimately connected to regional tectonics, from intra-arc extension in the middle Miocene, to late Miocene dextral deformation associated with the northward growth of the San Andreas Fault, to a Pliocene pulse of extension and magmatism likely influenced by both the northward passage of the Mendocino triple junction and possible delamination of the southern Sierra Nevada crustal root.  相似文献   

8.
North‐northwest normal faults intersect ENE normal faults in the vicinity of Querétaro City, in central México, affecting the Miocene–Pliocene northern‐central sector of the Mexican Volcanic Belt province. This intersection produced an orthogonal arrangement of grabens, half‐grabens and horsts that include the Querétaro graben. The NNW faults are part of the Taxco–San Miguel de Allende fault system, which is proposed here as part of the southernmost Basin and Range province in México. The ENE to E–W faults are part of the E–W oriented Chapala–Tula fault zone, which has been interpreted as an active intra‐arc fault system of the Mexican Volcanic Belt. Seventy‐four normal faults were mapped, of which the NNW faults are the largest and have the best morphological expression in the region. More numerous, although shorter, are the ENE faults. Total length of the ENE faults is greater than the total length of the NNW faults. Both sets are dominantly normal faults, indicating ENE extension for the NNW set and NNW extension for the ENE set. Field data indicate that displacement on the two fault sets has overlapped in time, as some NNW faults are younger than some ENE faults, which are supposed to be the younger ones. Seismicity in 1998 on a NNW fault indicates ENE active extension on the NNW faults. These observations support our interpretation that the northern Mexican Volcanic Belt lies on the boundary between the Basin and Range province, which is undergoing ENE extension, and the central Mexican Volcanic Belt province, which is undergoing northerly extension. The apparent overlap in space and time of displacements on the two fault sets reflects the difference in stress regime between the two provinces. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Qinshui basin has abundant coal-bed methane resources and has been undergoing intensive intracontinental rifting and extensional tectonics since the Late Mesozoic. Some fractures, which were previously considered as conjugate shear fractures, are interpreted as joint sets with extension characteristics, for the first time in the Qinshui basin. The widely distributed joint sets with stable attitudes can be divided into four sets. This paper presents updated results of fault-slip datasets collected in different zones of the Qinshui basin and addresses the changes in the direction of extensional stresses since the Late Mesozoic. Based on the analysis results of the slickenline of normal faults, joint sets in the field, and focal mechanism solutions data from the Shanxi Province, we identified four main directions of extension since the Late Mesozoic in the Qinshui basin: (1) Early Cenozoic ENE–WSW (85 ± 15°) extension; (2) Palaeogene NNE–SSW (30 ± 5°) extension; (3) Miocene NW–SE (135 ± 15°) extension; and (4) Late Pliocene–quaternary NNW–SSE (170 ± 5°) extension. The principal extension directions in the Qinshui basin seem to have undergone a counterclockwise rotation from the Early Cenozoic to the Miocene. We prefer that the extension deformation events in the Qinshui basin since the Late Mesozoic were mainly related to the back-arc spreading induced by westward subduction of the paleo-Pacific plate under the Eurasian continent.  相似文献   

10.
The evolution and the internal architecture of an estuary type sand ridge has been studied with a set of bathymetric data recorded during the last two centuries and with a dense grid of recent very high resolution seismic profiles. Bathymetric data of the so-called, Longe de Boyard sand ridge, displays sand losts due to wave and tide erosion. Internal geometry, through seismic profile analysis, indicates two main phases of deposition recording both, a recent high energy environment and an older low energy one, respectively. Such an evolution is believed to record changes in sedimentation processes mainly related to the end of the Holocene transgression (8 000–5 000 yr BP). To cite this article: É. Chaumillon et al., C. R. Geoscience 334 (2002) 119–126.  相似文献   

11.
The Paleozoic Pataz–Parcoy gold mining area is located in a right-stepping jog on the regional Cordillera Blanca fault, in northern Peru. Most of the 8 million ounces of gold production from this area has come from quartz–carbonate–sulfide veins hosted by the Pataz batholith. Despite a subduction zone setting since at least the Cambrian, the area records several periods of extension and its present structure is that of a rift and graben terrain. The Pataz district (the northern part of the Pataz–Parcoy area) is dominated structurally by northwest to north northwest-striking (NW–NNW) faults and northeast to east northeast-striking (NE–ENE) lineaments, both of which have been active periodically since at least the Mississippian (Early Carboniferous). NW–NNW faults control the margins of a central horst that exposes basement schist and the Pataz batholith, and step across NE–ENE lineaments. The Lavasen graben, to the east of the central horst, contains the Lavasen Volcanics, and the Chagual graben, to the west, contains an allochthonous sedimentary sequence derived from the Western Andean Cordillera.New SHRIMP zircon geochronological data indicate emplacement of the Pataz batholith during the Middle Mississippian, at around 338–336 Ma, approximately 10 Ma earlier than previous estimates based on 40Ar/39Ar geochronology. The calc-alkaline, I-type batholith comprises diorite and granodiorite, the latter being the major component of the batholith, and was emplaced as a sill complex within the moderately NE-dipping sequence of the Eastern Andean Cordillera. Moderate- to high-temperature ductile deformation took place on the batholith contacts during or shortly after emplacement. Following emplacement of the batholith, differential uplift occurred along NW–NNW faults forming the Lavasen graben, into which the Lavasen Volcanics were deposited. SHRIMP U–Pb in zircon ages for the Lavasen Volcanics and the Esperanza subvolcanic complex, which was intruded into the western margin of the graben, are within error of one another at ca 334 Ma. The ductile batholith contacts were cut by renewed movement on NW–NNW faults such that the margins of the batholith are now controlled by these steep brittle-ductile faults. The NW–NNW faults were oriented normal to the principal axis of regional shortening (ENE–WSW) during formation of the batholith-hosted, gold-bearing quartz–carbonate–sulfide veins. The misoriented faults were unable to accommodate significant displacement, leading to high fluid pressures, vertical extension in the competent batholith and formation of gold-bearing veins. Brittle failure of the batholith was most extensive in the northern Pataz district where the fault-controlled western contact of the batholith is offset by a swarm of NE–ENE lineaments.The timing of vein formation is not established, despite published 40Ar/39Ar ages of 312 to 314 Ma for metasomatic white mica, which are interpreted as minimum ages of formation. Gold-bearing veins formed during or shortly after uplift of the Pataz batholith and formation of the Lavasen graben; they were therefore broadly coeval with deposition of the Lavasen Volcanics and emplacement of the Esperanza subvolcanic complex. These K-rich, weakly alkalic, ferroan (A-type) magmas may provide a viable source for the ore fluid that deposited gold in the Pataz batholith.  相似文献   

12.
Palaeomagnetic and magnetomineralogical results are reported from charnockites in basement terrane at the eastern sector of the WSW–ENE granulite belt of South India. Magnetite is the dominant ferromagnet identified by rock magnetic and optical study; it is present in several phases including large homogeneous titanomagnetites and disseminated magnetite in microfractures linked to growth stages ranging from primary charnockite formation to uplift decompression and exhumation within the interval ~2500–2100 Ma. Several components of magnetization are resolved by thermal demagnetization and summarized by four pole positions; in the northern (Pallavaram) sector these are P1 (33°N, 99°E, dp/dm = 8/9°) and P2 (79°N, 170°E, dp/dm = 3/6°), and in the southern (Vandallur) sector they are V1 (23°N, 116°E, dp/dm = 8/9°) and V2 (26°S, 136°E, dp/dm = 5/10°). These magnetizations are linked to uplift cooling of the basement and unblocking temperature spectra suggest acquisition sequences P1  P2 and V1  V2 in each case implying movement of the shield from higher to lower palaeolatitudes sometime between 2500 and 2100 Ma. Palaeomagnetic poles from the cratonic nuclei of Africa, Australia and India all identify motion from higher to lower palaeolatitudes in Early Palaeoproterozoic times, and this is dated ~2400 and ~2200 Ma in the former two shields. The corresponding apparent polar wander (APW) segments match the magnetization record within the charnockite basement terranes of southern India to yield a preliminary reconstruction of the ‘Ur’ protocontinent, the oldest surviving continental protolith with origins prior to 3000 Ma. Although subject to later relative movements these nuclei seem to have remained in proximity until the Mesozoic break-up of Gondwana.  相似文献   

13.
From a large collection (more than 300 oriented cores) of Baja California Mio-Pliocene volcanic units, sampled for magnetostratigraphy and tectonics, 46 samples were selected for Thellier paleointensity experiments because of their low viscosity index, stable remanent magnetization and close to reversible continuous thermomagnetic curves. 19 samples, coming from 4 individual basaltic lava flows, yielded reliable paleointensity estimates with the flow-mean virtual dipole moments (VDM) ranging from 3.6 to 6.2 ×1022 A m2. Our results, although not numerous, are of high technical quality and comparable to other paleointensity data recently obtained on younger lava flows. The NRM fractions used for paleointensity determination range from 38 to 79% and the quality factors vary between 4.8 and 16.7, being normally greater than 5. The combination of Baja California data with the available comparable quality Plio-Plesitocene paleointensity results yields a mean VDM of 6.3 ×1022 A m2, which is almost 80% of the present geomagnetic axial dipole. Reliable paleointensity results for the last 5 Ma are still scarce and of dissimilar quality, which makes it hard to draw any firm conclusions regarding the Pliocene and Early/Middle Pleistocene evolution of the geomagnetic field. To cite this article: J. Morales et al., C. R. Geoscience 335 (2003).  相似文献   

14.
The mean sea surface temperature anomalies (SSTA) of the Mediterranean Sea during the past 150 years (1856–2000) are analysed. The first empirical orthogonal function (EOF) of the covariance matrix of the SSTA explains more than 45% of the variance, suggesting that the temporal variation of the Mediterranean Sea is largely in phase over the whole basin. The mean variability of Mediterranean SSTA from 1856 to 2000 superposes a main irregular oscillation (period of 60–70 years and mean amplitude of 0.4–0.5 °C) and a weak long-term positive trend (equivalent to an increase of +0.1 °C per century). The last warm phase, which is strongest in the western basin, is not warmer than the decade 1935–1945 or the ending part of the 1960s. The mean temporal evolution of the North Hemisphere is close to the variation of the Mediterranean Sea, except that the long-term increase is more intense in the North Hemisphere. To cite this article: V. Moron, C. R. Geoscience 335 (2003).  相似文献   

15.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place.  相似文献   

16.
The present article is the first time reporting of a paleoearthquake that occurred during Late Pleistocene time along the Nalagarh Thrust (NT) in the Pinjaur Dun in northwestern sub-Himalaya. Using CORONA satellite photographs, multi-spectral IRS satellite data, and aerial photographs, a prominent active fault has been identified at Nalagarh in Pinjaur Dun. This fault in the alluvial fan is located very close to the NT which borders the topographic front of the Tertiary rocks against Quaternary deposits. A trench excavation survey was carried out at Nalagarh for detailed paleoseismic studies across this thrust fault. Displacing all the lithologic units of the fan sequence, the fault plane has an average dip of 30° due ENE and a vertical displacement of 1.6 m and slip of ~2.5 m along the fault. The lithological units, consisting of alternating sand and gravel, show back tilting and asymmetrical tight folding. Based on Optically Stimulated Luminescence (OSL) ages, the oldest litho-unit in the trench is 85.83 ± 7.2 ka and the youngest is 67.05 ± 8.4 ka. The OSL age of the sample collected from the easterly exposure of the fault shows an age of 20 ka. The faulting and associated induced deformation features suggest occurrence of a Late Pleistocene large magnitude earthquake along NT in the Nalagarh region of the Pinjaur Dun following the deposition of the Quaternary sedimentary units. The Late Pleistocene fault substantiates the seismic potential of Pinjaur Dun and calls for more exhaustive study of paleoearthquakes in this fast developing industrial belt and highly populous mountainous region.  相似文献   

17.
Abstract

During the Neogene (uppermost Aquitanian-Lower Burdigalian, Tortonian and Pliocene), three successive marine episodes took place in the present-day Malaga Basin. The first of these affected a wide area of the Belic Internal Zones and was brought to an abrupt conclusion by the westward displacement of these Zones, together with important horizontal movements associated with N70-100 direction strike-slip faults and the superposition of materials from the Campo de Gibraltar. The two other marine episodes were clearly controlled by vertical movements of NW-SE and NK-SW faults, caused by a clear E-W distension which, according to regional data, was associated with some compression in an approximately N-S direction. The area has also been affected, although to a lesser extent, by the uplift of the Betic Cordillera from the Upper Miocene to the present day.  相似文献   

18.
Intracratonic South Rewa Gondwana Basin occupies the northern part of NW–SE trending Son–Mahanadi rift basin of India. The new gravity data acquired over the northern part of the basin depicts WNW–ESE and ENE–WSW anomaly trends in the southern and northern part of the study area respectively. 3D inversion of residual gravity anomalies has brought out undulations in the basement delineating two major depressions (i) near Tihki in the north and (ii) near Shahdol in the south, which divided into two sub-basins by an ENE–WSW trending basement ridge near Sidi. Maximum depth to the basement is about 5.5 km within the northern depression. The new magnetic data acquired over the basin has brought out ENE–WSW to E–W trending short wavelength magnetic anomalies which are attributed to volcanic dykes and intrusive having remanent magnetization corresponding to upper normal and reverse polarity (29N and 29R) of the Deccan basalt magnetostratigrahy. Analysis of remote sensing and geological data also reveals the predominance of ENE–WSW structural faults. Integration of remote sensing, geological and potential field data suggest reactivation of ENE–WSW trending basement faults during Deccan volcanism through emplacement of mafic dykes and sills. Therefore, it is suggested that South Rewa Gondwana basin has witnessed post rift tectonic event due to Deccan volcanism.  相似文献   

19.
The contemporary structure of the West Sakhalin Terrane started to form in the Pleistocene and the process of its formation continues up to now in a setting of ENE (60°–90°) shortening. Evidence of the preceding NE (30°–45°) compression was revealed during the study. This compression prevailed in the Eocene–Pliocene. Under the settings of NE (30°–45°) compression, dextral displacements occurred along the West Sakhalin and Tym’–Poronai fault systems, bounding the West Sakhalin Terrane.  相似文献   

20.
The Beni Bousera peridotite massif and its metamorphic surrounding rocks have been analyzed by the fission track (FT) method. The aim was to determine the cooling and uplift history of these mantle and associated crustal rocks after the last major metamorphic event that dates back to the Lower Miocene–Upper Oligocene time (~22–24 Ma). The zircon FT analyses give an average cooling—i.e., below 320 °C—age of ~19.5 Ma. In addition, the apatite FT data give an average cooling—i.e., below 110 °C—age of ~15.5 Ma. Taking into account the thermal properties of the different thermochronological systems used in this work, we have estimated a rate of cooling close to 50 °C/Ma. This cooling rate constrains a denudation rate of about ~2 mm year?1 from 20 to 15 Ma. These results are similar to those determined in the Ronda peridotite massif of the Betic Cordilleras documenting that some ultrabasic massifs of the internal zones of the two segments of the Gibraltar Arc have a similar evolution. However, Burdigalian sediments occur along the Betic segment (Alozaina area, western Betic segment) unconformably overlying peridotite. At this site, ultramafic rock was exposed to weathering at ages ranging from 20.43 to 15.97 Ma. Since the Beni Bousera peridotite was still at depth until 15.5 Ma, we infer that no simple age projection from massif to massif is possible along the Gibraltar Arc. Moreover, the confined fission track lengths data reveal that a light warming (~100 °C) has reheated the massif during the Late Miocene before the Pliocene–Quaternary tectonic uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号