首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Nikolay Bonev  Grard Stampfli 《Lithos》2008,100(1-4):210-233
In the eastern Bulgarian Rhodope, mafic extrusive rocks and underlying greenschists are found in the Mesozoic low-grade unit, which represents the northern extension of similar sequences including the Evros ophiolites in Thrace (Greece). Both rock types define a suite of low-Ti tholeiitic basalts to transitional boninitic basaltic andesites and andesites and associated metapyroclastites (greenschists), intruded at its base by diorite dikes of a boninitic affinity. Mafic lavas and greenschists display large ion lithophile element (LILE) enrichment relative to high-field strength elements (HFSE), flat REE patterns of a slight light REE depletion, a strong island arc tholeiite (IAT) and weak MORB-like signature. All these rocks are characterized by negative Nb anomalies ascribed to arc lavas. They have positive Ndi values in the range of + 4.87 to + 6.09, approaching the lower limit of MORB-like source, and relatively high (207Pb/204Pb)i (15.57–15.663) at low (206Pb/204Pb)i (18.13–18.54) ratios. The Nd isotopic compositions coupled with trace element data imply a dominantly depleted MORB-like mantle source and a contribution of subduction modified LILE-enriched component derived from the mantle wedge. The diorite dike has a low Ndi value of − 2.61 and is slightly more Pb radiogenic (207Pb/204Pb)i (15.64) and (206Pb/204Pb)i (18.56), respectively, reflecting crustal contamination. Petrologic and geochemical data indicate that the greenschists and mafic extrusive rocks represent a magmatic assemblage formed in an island arc setting. The magmatic suite is interpreted as representing an island arc–accretionary complex related to the southward subduction of the Meliata–Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. Magmatic activity appears to have initiated in the north during the inception of the island arc system by the Early–Middle Jurassic time in the eastern Rhodope that most likely graded to back-arc spreading southwards as represented by the Late Jurassic MORB-type Samothraki Island ophiolites. This tectonic scenario is further constrained by paleotectonic reconstructions. The arc–trench system collided with the Rhodope in the Late Jurassic times.  相似文献   

2.
Abstract

The Gangdese batholith, Tibet, records the opening and closing of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. The Mesozoic magmatic rocks play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. This study focuses on Jurassic intrusive rocks in the Xietongmen area of the southern margin of the Lhasa terrane adjacent to the Yarlung–Tsangpo suture. Zircon U–Pb dating yielded Middle Jurassic dates for ca 170?Ma hornblende gabbro and ca 173?Ma granodiorite intrusions. All of the samples are medium- to high-K calc-alkaline, and the majority are metaluminous and enriched in the large ion lithophile elements and depleted in the high-field-strength elements. This indicates the magma was generated in a subduction-related tectonic setting. The intrusive rocks have high and positive εHf(t) values (hornblende gabbro: 13.3–18.7; granodiorite: 14.2–17.6) that yield Hf model ages younger than 312?Ma. These new data, combined with the results of previous research, suggest that the Jurassic igneous rocks were derived from a metasomatised region of an asthenospheric mantle wedge. Extremely depleted Sr–Nd–Pb–Hf isotope compositions are similar to the Yarlung ophiolite and igneous rocks within other intra-oceanic island arcs. Together with the existence of sandstone that is identified as the product of the oceanic island arc environment, we suggest formation in an intra-oceanic island arc.
  1. The new zircon U–Pb dating has yielded Middle Jurassic ages for the ca 170?Ma hornblende gabbro and ca 173?Ma granodiorite phases of the Xietongmen intrusion.

  2. Jurassic igneous rocks formed from a metasomatised asthenospheric mantle wedge by northward subduction of the Neo-Tethys oceanic crust beneath the southern margin of the Lhasa terrane.

  3. Late Triassic–Jurassic igneous rocks, which are characterised by highly depleted isotopic compositions within the Southern Lhasa sub-terrane, record residual intra-oceanic island arcs in the eastern Tethyan belt.

  相似文献   

3.
《International Geology Review》2012,54(12):1523-1540
The Sanandaj–Sirjan Zone (SSZ) of western Iran is characterized by numerous granitoids of mainly calc-alkaline affinities. Several leucogranite and monzonite bodies crop out in the eastern Sanandaj. Whole-rock Rb–Sr isochrons demonstrate that the Mobarak Abad monzonite (MAM) formed in two phases at 185 and 131 Ma. Low 87Sr/86Sr(i) (i represents initial) and high 143Nd/144Nd(i) ratios, resulting in positive ?t Nd, imply that the source magma originated from a depleted mantle; large ion lithophile element (LILE) and light rare earth element (LREE) enrichments imply that slab fluid was involved in the evolution of the parent magma. Geochemical characteristics of the MAM rocks show an affinity with I- and A-type granites, and the positive values of ?t Nd (+2 to +6), confirm that the MAM represents juvenile granite. Therefore, the MAM rocks are different from Himalayan, Hercynian, and Caledonian granites. Based on the geology of granitic host rocks that form the protoliths of metamorphic rocks, it is likely that the mafic part of the MAM formed in an island arc setting on Neo-Tethyan oceanic crust during Early to Middle Jurassic time. Subsequent collision of the island arc with the western part of the SSZ occurred in the Late Jurassic to Early Cretaceous. Metamorphism, accompanied by partial melting, occurred during collision. Finally, leucogranite magmas of the young Mobarak Abad dikes and the Suffi Abad body were generated in this collision zone. This new model suggests a Late Jurassic–Early Cretaceous arc–continental collision before final closing of the Neo-Tethys.  相似文献   

4.
The polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu deposits in the Kapan, Alaverdi and Mehmana mining districts of Armenia and the Nagorno–Karabakh region form part of the Tethyan belt. They are hosted by Middle Jurassic rocks of the Lesser Caucasus paleo-island arc, which can be divided into the Kapan Zone and the Somkheto–Karabakh Island Arc. Mineralization in Middle Jurassic rocks of this paleo-island arc domain formed during the first of three recognized Mesozoic to Cenozoic metallogenic epochs. The Middle Jurassic to Early Cretaceous metallogenic epoch comprises porphyry Cu, skarn and epithermal deposits related to Late Jurassic and Early Cretaceous intrusions. The second and third metallogenic epochs of the Lesser Caucasus are represented by Late Cretaceous volcanogenic massive sulfide (VMS) deposits with transitional features towards epithermal mineralization and by Eocene to Miocene world-class porphyry Mo–Cu and epithermal precious metal deposits, respectively.The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are poorly understood and previous researchers named them as copper–pyrite, Cu–Au or polymetallic deposits. Different genetic origins were proposed for their formation, including VMS and porphyry-related scenarios. The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are characterized by diverse mineralization styles, which include polymetallic veins, massive stratiform replacement ore bodies at lithological contacts, and stockwork style mineralization. Sericitic, argillic and advanced argillic alteration assemblages are widespread in the deposits which have intermediate to high-sulfidation state mineral parageneses that consist of tennantite–tetrahedrite plus chalcopyrite and enargite–luzonite–colusite, respectively. The ore deposits are spatially associated with differentiated calc-alkaline intrusions and pebble dykes are widespread. Published δ34S values for sulfides and sulfates are in agreement with a magmatic source for the bulk sulfur whereas published δ34S values of sulfate minerals partly overlap with the isotopic composition of contemporaneous seawater. Published mineralization ages demonstrate discrete ore forming pulses from Middle Jurassic to the Late Jurassic–Early Cretaceous boundary, indicating time gaps of 5 to 20 m.y. in between the partly subaqueous deposition of the host rocks and the epigenetic mineralization.Most of the described characteristics indicate an intrusion-related origin for the ore deposits in Middle Jurassic rocks of the Lesser Caucasus, whereas a hybrid VMS–epithermal–porphyry scenario might apply for deposits with both VMS- and intrusion-related features.The volcanic Middle Jurassic host rocks for mineralization and Middle to Late Jurassic intrusive rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone show typical subduction-related calc-alkaline signature. They are enriched in LILE such as K, Rb and Ba and show negative anomalies in HFSE such as Nb and Ta. The ubiquitous presence of amphibole in Middle Jurassic volcanic rocks reflects magmas with high water contents. Flat REE patterns ([La/Yb]N = 0.89–1.23) indicate a depleted mantle source, and concave-upward (listric-shaped) MREE–HREE patterns ([Dy/Yb]N = 0.75–1.21) suggest melting from a shallow mantle reservoir. Similar trace element patterns of Middle Jurassic rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone indicate that these two tectonic units form part of one discontinuous segmented arc. Similar petrogenetic and ore-forming processes operated along its axis and Middle Jurassic volcanic and volcanosedimentary rocks constitute the preferential host for polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu mineralization, both in the Somkheto–Karabakh Island Arc and the Kapan Zone.  相似文献   

5.
Our study presents preliminary biostratigraphic results from the Jurassic siliceous series of northwestern Tunisia. For the first time, radiolarians are extracted from the Jédidi formation and provide a direct age determination. They are the first radiolarian fauna documented from Tunisia. Two age assignments are comprised within the following intervals: (1) Late Bathonian–Early Callovian, (2) Late Bathonian–Early Oxfordian. These ages are compatible with recent stratigraphic synthesis proposed for the Jurassic series of Tunisia. The data suggest the correlation of the Jédidi formation with siliceous series of Middle–Late Jurassic age from the external zone of the Maghrebides belt rather than with true oceanic units from the Maghrebian flyschs or the internal zones of western Tethys. To cite this article: F. Cordey et al., C. R. Geoscience 337 (2005).  相似文献   

6.
The Middle Jurassic plutonism of the Central High Atlas (Morocco) was emplaced in N45° trending anticlinal ridges. It is characterised by various petrographic facies including mafic rocks (troctolites), intermediate rocks (diorites, monzodiorites), and evolved rocks (syenites), together with heterogeneous facies resulting from mixing between acidic and the intermediate magmas. Mineralogical and chemical data show (i) the transitional character of the Jurassic magmatic series of the Central High Atlas and (ii) the implication of continental crust as a contaminant during fractional crystallization. To cite this article: R. Zayane et al., C. R. Geoscience 334 (2002) 97–104.  相似文献   

7.
The tectonic evolution of the Rhodope massif involves Mid-Cretaceous contractional deformation and protracted Oligocene and Miocene extension. We present structural, kinematic and strain data on the Kesebir–Kardamos dome in eastern Rhodope, which document early Tertiary extension. The dome consists of three superposed crustal units bounded by a low-angle NNE-dipping detachment on its northern flank in Bulgaria. The detachment separates footwall gneiss and migmatite in a lower unit from intermediate metamorphic and overlying upper sedimentary units in the hanging wall. The high-grade metamorphic rocks of the footwall have recorded isothermal decompression. Direct juxtaposition of the sedimentary unit onto footwall rocks is due to local extensional omission of the intermediate unit. Structural analysis and deformational/metamorphic relationships give evidence for several events. The earliest event corresponds to top-to-the SSE ductile shearing within the intermediate unit, interpreted as reflecting Mid-Late Cretaceous crustal thickening and nappe stacking. Late Cretaceous–Palaeocene/Eocene late-tectonic to post-tectonic granitoids that intruded into the intermediate unit between 70 and 53 Ma constrain at least pre-latest Late Cretaceous age for the crustal-stacking event. Subsequent extension-related deformation caused pervasive mylonitisation of the footwall, with top-to-the NNE ductile, then brittle shear. Ductile flow was dominated by non-coaxial deformation, indicated by quartz c-axis fabrics, but was nearly coaxial in the dome core. Latest events relate to brittle faulting that accommodated extension at shallow crustal levels on high-angle normal faults and additional movement along strike-slip faults. Radiometric and stratigraphic constraints bracket the ductile, then brittle, extensional events at the Kesebir–Kardamos dome between 55 and 35 Ma. Extension began in Paleocene–early Eocene time and displacement on the detachment led to unroofing of the intermediate unit, which supplied material for the syn-detachment deposits in supra-detachment basin. Subsequent cooling and exhumation of the footwall unit from beneath the detachment occurred between 42 and 37 Ma as indicated by mica cooling ages in footwall rocks, and extension proceeded at brittle levels with high-angle faulting constrained at 35 Ma by the age of hydrothermal adularia crystallized in open spaces created along the faults. This was followed by Late Eocene–Oligocene post-detachment overlap successions and volcanic activity. Crustal extension described herein is contemporaneous with the closure of the Vardar Ocean to the southwest. It has accommodated an earlier hinterland-directed unroofing of the Rhodope nappe complex, and may be pre-cursor of, and/or make a transition to the Aegean back-arc extension that further contributed to its exhumation during the Late Miocene. This study underlines the importance of crustal extension at the scale of the Rhodope massif, in particular, in the eastern Rhodope region, as it recognizes an early Tertiary extension that should be considered in future tectonic models of the Rhodope and north Aegean regions.  相似文献   

8.
New structural, petrological, chemical, isotope, and paleomagnetic data have provided clues to the Late Riphean–Paleozoic history of the Uda–Vitim island arc system (UVIAS) in the Transbaikalian sector of the Paleoasian ocean, as part of the Transbaikalian zone of Paleozoids. The island arc system consists of three units corresponding to main evolution stages: (i) Upper Riphean (Late Baikalian), (ii) Vendian–Lower Paleozoic (Caledonian), and (iii) Middle–Upper Paleozoic (Hercynian). The earliest stage produced the base of the system composed of Late Riphean ophiolite (971–892 Ma, U-Pb) and volcanic (837–789 Ma, U-Pb) and sedimentary rocks (hemipelagic siliceous sediments and dolerite sills) which represent the Barguzin–Vitim oceanic basin and the Kelyana island arc. The main event of the second stage was the formation of the large UVIAS structure (over 150,000 km2) which comprised the Transbaikalian oceanic basin, the forearc and backarc basins, and the volcanic arc itself, and consisted of many volcanic-tectonic units exceeding 100 km2 in area (Eravna, Oldynda, Abaga, etc.). Lithology, stratigraphy, major–element compositions, and isotope ages of Vendian–Cambrian volcanic rocks and associated sediments indicate strong differentiation of calc-alkaline series and the origin of the island arc system upon oceanic crust, in a setting similar to that of the today’s Kuriles–Kamchatka island arc system. The Middle–Upper Paleozoic stage completed the long UVIAS history and left its imprint in sedimentary and volcanic rocks in superposed trough basins. The rocks were studied in terms of their biostratigraphic and isotope age constraints, as well as major- and trace-element compositions, and were interpreted as products of weathering and tectonic-magmatic rework of the UVIAS units.  相似文献   

9.
The building-up of the Andean Range is linked to the subduction of the Pacific lithosphere beneath the South American plate. However, the formation of the Central Andes is marked by continental crustal shortening, whereas accretion and underplating of exotic oceanic terranes occurred in the northern Andes. The study of various magmatic and metamorphic rocks exhumed in the Western Cordillera of Ecuador by Miocene transpressive faults enables us to constrain the nature and thermal evolution of the crustal root of this part of Ecuador. These rocks are geochemically similar to oceanic plateau basalts. The thermobarometric peak conditions of a granulite and an amphibolite indicate temperatures of 800–850?°C and pressures less than 6–9 kbar (lack of garnet). The abnormally high geothermal gradient (≈40?°C?km?1) is probably due to the activity of the magmatic arc, which developed on the accreted oceanic terranes after Late Eocene times, and may have provoked the re-mobilisation of deeply underplated oceanic material during the genesis of the Neogene to Recent arc. To cite this article: É. Beaudon et al., C. R. Geoscience 337 (2005).  相似文献   

10.
This study presents new zircon U–Pb geochronology, geochemistry, and zircon Hf isotopic data of volcanic and subvolcanic rocks that crop out in the Bayanhushuo area of the southern Great Xing’an Range (GXR) of NE China. These data provide insights into the tectonic evolution of this area during the late Mesozoic and constrain the evolution of the Mongol–Okhotsk Ocean. Combining these new ages with previously published data suggests that the late Mesozoic volcanism occurred in two distinct episodes: Early–Middle Jurassic (176–173 Ma) and Late Jurassic–Early Cretaceous (151–138 Ma). The Early–Middle Jurassic dacite porphyry belongs to high-K calc-alkaline series, showing the features of I-type igneous rock. This unit has zircon εHf(t) values from +4.06 to +11.62 that yield two-stage model ages (TDM2) from 959 to 481 Ma. The geochemistry of the dacite porphyry is indicative of formation in a volcanic arc tectonic setting, and it is derived from a primary magma generated by the partial melting of juvenile mafic crustal material. The Late Jurassic–Early Cretaceous volcanic rocks belong to high-K calc-alkaline or shoshonite series and have A2-type affinities. These volcanics have εHf(t) and TDM2 values from +5.00 to +8.93 and from 879 to 627 Ma, respectively. The geochemistry of these Late Jurassic–Early Cretaceous volcanic rocks is indicative of formation in a post-collisional extensional environment, and they formed from primary magmas generated by the partial melting of juvenile mafic lower crust. The discovery of late Mesozoic volcanic and subvolcanic rocks within the southern GXR indicates that this region was in volcanic arc and extensional tectonic settings during the Early–Middle Jurassic and the Late Jurassic–Early Cretaceous, respectively. This indicates that the Mongol–Okhotsk oceanic plate was undergoing subduction during the Early–Middle Jurassic, and this ocean adjacent to the GXR may have closed by the Late Middle Jurassic–Early Late Jurassic.  相似文献   

11.
This paper reports the characteristics of granitoids from the Pacific slope of the Kuril island arc system, which were discovered by the authors during geological and geophysical operations in three cruises of the R/V Akademik M. Lavrent’ev. The major and trace element compositions of these rocks were determined, their role in the formation of the submarine Vityaz Ridge was evaluated, and they were compared with granitoids from the Brouton group of submarine volcanoes and xenoliths from Simushir Island and the Sea of Okhotsk. Granitoids from various structures of the basement of the Kuril island arc system are hypabyssal rocks derived from andesite magmas. Their common features are related to the formation on the continental crust under convergent geodynamic conditions involving compression due to the movement and subduction of the Pacific plate beneath the Asian continent. The problem of the basement of the Kuril island arc system was discussed, the composition and age of its rocks were determined, and the history of the geologic development of the Pacific slope of the arc starting from the Late Mesozoic was briefly described.  相似文献   

12.
The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic–metamorphic complex in the Coast Mountains; the Glacier Bay–Chichagof plutonic–metamorphic complex in the central part of the Alexander Archipelago; and the Chugach plutonic–metamorphic complex in the northern outer islands. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast plutonic–metamorphic complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay–Chichagof plutonic–metamorphic complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach plutonic–metamorphic complex is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. The Coast plutonic–metamorphic complex records both dynamothermal and regional contact metamorphic events related to widespread plutonism within several juxtaposed terranes. Widespread moderate-P/T dynamothermal metamorphism affected most of this complex during the early Late Cretaceous, and local high-P/T metamorphism affected some parts during the middle Late Cretaceous. These events were contemporaneous with low- to moderate-P, high-T metamorphism elsewhere in the complex. Finally, widespread high-P–T conditions affected most of the western part of the complex in a culminating late Late Cretaceous event. The eastern part of the complex contains an older, pre-Late Triassic metamorphic belt that has been locally overprinted by a widespread middle Tertiary thermal event. The Glacier Bay–Chichagof plutonic–metamorphic complex records dominantly regional contact-metamorphic events that affected rocks of the Alexander and Wrangellia terranes. Widespread low-P, high-T assemblages occur adjacent to regionally extensive foliated granitic, dioritic and gabbroic rocks. Two closely related plutonic events are recognized, one of Late Jurassic age and another of late Early and early Late Cretaceous age; the associated metamorphic events are indistinguishable. A small Late Devonian or Early Mississippian dynamothermal belt occurs just north-east of the complex. Two older low-grade regional metamorphic belts on strike with the complex to the south are related to a Cambrian to Ordovician orogeny and to a widespread Middle Silurian to Early Devonian orogeny. The Chugach plutonic–metamorphic complex records a widespread late Late Cretaceous low- to medium/high-P, moderate- T metamorphic event and a local transitional or superposed early Tertiary low-P, high-T regional metamorphic event associated with mesozonal granitic intrusions that affected regionally deformed and metamorphosed rocks of the Chugach terrane. The Chugach complex also includes a post-Late Triassic to pre-Late Jurassic belt with uncertain relations to the younger belts.  相似文献   

13.
Geologic evolution of Bulgaria in light of plate tectonics   总被引:1,自引:0,他引:1  
The Balkanide is a mobile belt within a micro-continent, which included both the Moesian Platform and Rhodope Massif. This micro-continent was rotated counter-clockwise during the Jurassic mainly in response to the sea-floor spreading of the Vardar ophiolite trough. The rotation led to the consumption of Triassic Tethys along the Dobrogea—Crimea—Caucasus Trend, producing the Cimmerian orogenic belt. Cretaceous rotation of the Italo-Dinaridian micro-continent led to the consumption of the Vardar ophiolites. An island arc (Macedonia—Rhodope—North Anatolia) was present at the consuming plate margin. Middle and Late Cretaceous marginal basins behind this arc included the Srednogorie and the Black Sea. Submarine volcanics, radiolarian cherts, and hemipelagic marls were deposited in the Srednogorie “eugeosyncline”. This sequence was folded during the early Tertiary Alpine orogeny, when the front of the Rhodope Massif was overthrust onto the Balkanides. The Black Sea meanwhile remained undeformed and can thus be considered a fossilized Cretaceous marginal basin.  相似文献   

14.
西藏东巧北尕苍见岛弧的厘定及地质意义   总被引:8,自引:0,他引:8       下载免费PDF全文
在班公错—怒江小洋盆内晚侏罗世存在向南的俯冲已被许多学者所证实,近期在班—怒带中部的东巧蛇绿岩带北侧发现一套晚侏罗世火山岩——尕苍见(组)火山岩,该套火山岩以内部变形微弱而明显有别于东巧蛇绿岩带,其地球化学特点反映具有岛弧性质,并具有初期为拉斑玄武质-钙碱性岩浆喷发,尔后以钙碱性火山活动为主,至晚期岛弧演化成熟,发生岛弧橄榄安粗质火山喷发活动,并伴有富Nb岛弧玄武岩产出。证明在班怒小洋盆内晚期也曾存在向北的俯冲作用。这一发现对完整重溯班—怒带构造演化和构建青藏高原大地构造格局具有重要意义。  相似文献   

15.
Abstract

The transition from the Alpine tectonic assembly to the exhumation of the units in the Rhodope metamorphic province in northernmost Greece has been refined by 40Ar/39Ar laserprobe mica analyses. Preservation of pre-Alpine (~ 280 Ma and 145 Ma) muscovite cooling ages at the western margin of the Rhodope indicate that subsequent events failed to reset the argon system thermally in white mica in the outcropping basement of this region. The central and eastern Rhodope are characterized by white mica cooling ages of 40–35 Ma with ages gradually decreasing to ca. 15 Ma near the eastern margin of the Strymon Valley. The Eo-Oligocene ages reflect the regional exhumation of the metamorphosed units to shallow crustal levels, with corresponding temperatures below ca. 350 °C, by 40–35 Ma. The younger cooling ages are attributed to the initiation and subsequent operation of the Strymon-Thasos detachment system since ca. 30 Ma. This study provides a crucial contribution to future regional tectonic models for the Rhodope region as it recognizes an early stage of development of the Strymon-Thasos detachment system, and has constrained the regional exhumation of the Rhodope metamorphic province since 40 Ma indicating that the regionally observed amphibolite facies metamorphism had terminated by this time. © 2000 Editions scientifiques et médicales Elsevier SAS  相似文献   

16.
The Kurosegawa zone in southwest Japan is a 600 km long serpentinite mélange in the Chichibu terrains. It runs generally E-W but is slightly oblique to the subparallel arrangement of the Ryoke, Sanbagawa and Chichibu belts of Southwest Japan. A variety of geological units occurs in the Kurosegawa zone:
1. (1) granodiorite, gneiss and amphibolite of ca. 400 Ma,
2. (2) Siluro-Devonian formations,
3. (3) Upper Carboniferous to Jurassic formations,
4. (4) Upper Jurassic to Lower Cretaceous formations,
5. (5) serpentinite and
6. (6) low- to medium-grade metamorphic rocks of various baric types (ages, 220, 320, 360 and 420 Ma by K-Ar).
The most widespread is a high-pressure intermediate group of metamorphic rocks. Serpentinite is emplaced along the faults between and within the constituent units.Rocks of the Kurosegawa zone represent a mature orogenic belt along a continental margin or an island arc. Its original site as constrained by paleomagnetism was near the equatorial area. Here, 400 Ma old paired metamorphism and related magmatism took place. The island arc or microcontinent migrated northward to collide with the Eurasia plate during Late Jurassic, thus consuming the intervening ocean.  相似文献   

17.
The composite Guerrero Terrane of western Mexico records much of the magmatic evolution of southwestern North America during Late Mesozoic time. The Guerrero includes three distinctive subterranes characterized by unique stratigraphic records, structural evolutions, and geochemical and isotopic features that strongly suggest they evolved independently. The eastern Teloloapan Subterrane represents an evolved intra-oceanic island arc of Hauterivian to Cenomanian age, which includes a high-K calc-alkaline magmatic suite. The central Arcelia–Palmar Chico Subterrane represents a primitive island arc-marginal basin system of Albian to Cenomanian age, consisting of an oceanic suite and a tholeiitic arc suite. The western Zihuatanejo–Huetamo Subterrane comprises three components that represent an evolved island arc-marginal basin-subduction complex system of Late Jurassic (?) –Early Cretaceous age built on a previously deformed basement. The Zihuatanejo Sequence includes a thick high-K calc-alkaline magmatic suite. The Las Ollas Complex consists of tectonic slices containing exotic blocks of arc affinity affected by high-pressure/low-temperature metamorphism included in a sheared matrix. The Huetamo Sequence consists mainly of volcanic-arc derived sedimentary rocks, including large pebbles of tholeiitic, calc-alkaline, and shoshonitic lavas. These sequences are unconformably underlain by the Arteaga Complex, which represents the subvolcanic basement. On the basis of available geology, geochemistry, geochronology, and isotopic data, we suggest that Late Mesozoic volcanism along the western margin of southern North America developed in broadly contemporaneous but different intra-oceanic island arcs that constitute a complex fossil arc-trench system similar to the present-day western Pacific island arc system.  相似文献   

18.
The present-day North Chilean Coastal Cordillera between 18°30′S and 22°S records an important part of the magmatic evolution of the Central Andes during the Jurassic. Calc-alkaline to subordinate tholeiitic members from four rock groups with biostratigraphically constrained age display incompatible element pattern characteristic of convergent plate-margin volcanism, whereas alkaline basalts of one group occurring in the Precordillera show OIB-type trace element signatures. The correlation of biostratigraphic ages, regional distribution, and composition of the volcanic rocks provides a basis for the discussion on geochemical evolution and isotope ratios.Major and trace element distributions of the volcanic rocks indicate their derivation from mantle-derived melts. LILE and LREE enrichments in calc-alkaline basaltic andesites to dacites and some of the tholeiites hint at the involvement of hydrous fluids during melting and mobile element transport processes. A part of the Early Bajocian to ?Lower Jurassic and Oxfordian andesites and dacites are adakite-like rocks with a substantial participation of slab melt and are characterized by high Sr/Y ratios and low HREE contents. The Middle Jurassic tholeiitic and calc-alkaline basalts and basaltic andesites have been transported and partly stored within a system of deep-seated feeder fissures and crustal strike-slip faults before eruption.The isotopic composition of Sr (87Sr/86Sri=0.7032-0.7056) and Nd (εNdi=2.2-7.1) of the Jurassic volcanic rocks mostly fall in the range characteristic for mantle melts although some crustal components may have been involved. A few samples show slightly more radiogenic Sr isotopic composition, which is probably due to interaction with ancient sea-water. The Pb isotopic composition of the arc rocks is uncoupled from the isotopic composition of Sr and Nd and is dominated by the crustal component. Since the Cretaceous and Modern arc volcanic rocks show Pb isotopic compositions that can be largely explained by in situ Pb isotope growth of Jurassic arc volcanic rocks, we argue that the various Andean arc systems between 18°30′S and 22°S formed on the same type of basement.Most of the investigated samples have high Ba, Zr, and Th concentrations compared to island arc mafic volcanic rocks. About 20% of the Jurassic arc volcanics comprise of dacitic to rhyolitic rocks. These characteristics combined with the Pb isotopic composition that shows the influence of a Palaeozoic (or partly older) basement point to a continental margin setting for the North Chilean Jurassic arc. The distribution of the magmatic rocks throughout time, their textures, and the character of intercalated sedimentary rocks reflect westward movement of the magma sources and of the arc/back-arc boundary relative to the current coast line during the Early Bajocian on a broad front between 19°30′ and 21°S.  相似文献   

19.
Graywackes and shales of the Bols’shoi Lyakhov Island originally attributed to the Mesozoic were subsequently considered based on microfossils as the Late Proterozoic in age. At present, these sediments in the greater part of the island are dated back to the Permian based on palynological assemblages. In the examined area of the island, this siliciclastic complex is intensely deformed and tectonically juxtaposed with blocks of oceanic and island-arc rocks exhumed along the South Anyui suture. The complex is largely composed of turbidites with members displaying hummocky cross-stratification. The studied mineral and geochemical characteristics of the rocks defined three provenances of clastic material: volcanic island arc, sedimentary cover and/or basement of the ancient platform, and exotic blocks of oceanic and island-arc rocks such as serpentinites and amphibolites. All the rock associations represent elements of an orogenic structure that originated by collision of the New Siberian continental block with the Anyui-Svyatoi Nos island arc. Flyschoid sediments accumulated in a foredeep in front of the latter structure in the course of collision. The Late Jurassic volcanics belonging to the Anyui-Svyatoi Nos island arc determine the lower age limit of syncollision siliciclastic rocks. Presence of Late Jurassic zircons in sandstones of the flyschoid sequence in Bols’shoi Lyakhov Island is confirmed by the fission-track dating. The upper age limit is determined by the Aptian-Albian postcollision granites and diorites intruding the siliciclastic complex. Consequently, the flyschoid sequence is within stratigraphic range from the terminal Late Jurassic to Neocomian. It appears that Permian age of sediments suggested earlier is based on redeposited organic remains. The same Late Jurassic-Neocomian age and lithology are characteristic of fossiliferous siliciclastic sequences of the Stolbovoi and Malyi Lyakhov islands, the New Siberian Archipelago, and of graywackes in the South Anyui area in Chukchi Peninsula. All these sediments accumulated in a spacious foredeep that formed in the course the late Cimmerian orogeny along the southern margin of the Arctic continental block.  相似文献   

20.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号