首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This detailed quantitative basin analysis of fluvial deposits in a subsiding Namurian structural basin is aimed at discovering underlying statistical relationships between numbers of fluvial cycles, bulk lithological composition and net subsidence which could be used as a background to future sophisticated computer simulation experiments and would also facilitate comparison with other ancient basins. The succession studied lies between two widespread marine bands, one of Arnsbergian (E2) and one of Kinderscoutian (R1) age, and is dominated by upward-fining cycles: 94% of the semi-cycles containing sand, here termed grain-size cycles, are upward-fining and the ratio of fine members (mudstone+siltstone) to coarse members ranges from 0·23 to 5·0. Trend-surface analysis reveals basement structures, which influenced sedimentation, including a Caledonoid graben. Correlation coefficient values and results of principal component analysis demonstrate that the numbers of rooty horizons and grain-size cycles, together with the total thicknesses of sandstone and of mudstone+siltstone, all tend significantly towards a linear relationship with the total thickness of strata and hence net subsidence. The average thickness of grain-size cycles tends towards an inverse linear relationship with net subsidence. This probably reflects the presence of stacked, relatively thin, channel-fills within persistent channel belts. These belts tend to be localized in the areas of greatest subsidence within the basin and follow courses basically similar to channels already discovered in the underlying deltaic sediments. The highest concentrations of mudstone+siltstone tend to lie on the flanks of the basin, but high local sand concentrations found at points on the margin where channels entered the basin from the NW and NE and left to the SW, effectively disrupt any significant relationship between net subsidence and the proportion of sand. Coal has been selectively preserved on the flanks of the basin and the number of rooty horizons is greatest in an area of low subsidence which lay somewhat remote from the main channel belts.  相似文献   

2.
Total thickness of strata and coal cycle parameters of the three formations, i.e. Karharbari, Barakar, and Barren Measures of the Damuda Group of the Talchir Gondwana basin were subjected to bivariate and multivariate statistical analyses. Polynomial regression lines were fitted to data sets consisting of total thickness of strata, number of coal cycles, and average thickness of coal cycles of the three formations of the Damuda Group. A significant direct relationship is observed between total thickness (net subsidence) of strata and number of coal cycles, while a significant inverse relationship exists between the number of coal cycles and their average thickness. Principal component and multiple regression analyses suggest that lithological parameters of the coal bearing strata reflect the dynamic of the basin subsidence. The sedimentary distributive mechanism in the form of lateral migration of streams or drainage diversion caused in response to differential subsidence of the depositional surface seem to be appropriate mechanisms for the development of coal cycles and peat swamps in the Talchir basin. Often during Karharbari sedimentation, peat accumulated in abandoned channels was scoured away by high energy migrating channels. On the other hand, Barakar peat swamps developed in a distal part of the flood plain, as a result of which many of the coal seams could be of appreciable thickness. The advent of arid climatic condition retarded the growth of vegetation to a larger extent that prevented profuse development of coal seams during the Barren Measures Formation.  相似文献   

3.
The discovery of whale fossils from Eocene strata in the Fayum Depression has provoked interest in the life and lifestyle of early whales. Excellent outcrop exposure also affords the dataset to develop sedimentological and stratigraphic models within the Eocene strata. Previous work generally asserts that the thick, sand‐rich deposits of the Fayum Depression represent shoreface and barrier island successions with fine‐grained lagoonal and fluvial associations capping progradational successions. However, a complete absence of wave‐generated sedimentary structures, a preponderance of thoroughly bioturbated strata and increasingly proximal sedimentary successions upwards are contrary to accepted models of the local sedimentological and stratigraphic development. This study considers data collected from two Middle to Upper Eocene successions exposed in outcrop in the Wadi El‐Hitan and Qasr El‐Sagha areas of the Fayum Depression to determine the depositional affinities of Fayum strata. Based on sedimentological and ichnological data, five facies associations (Facies Association 1 to Facies Association 5) are identified. The biological and sedimentological characteristics of the reported facies associations indicate that the whale‐bearing sandstones (Facies Association 1) record distal positions in a large, open, quiescent marine bay that is abruptly succeeded by a bay‐margin environment (Facies Association 2). Upwards, marginal‐marine lagoonal and shallow‐bay parasequences (Facies Association 3) are overlain by thick deltaic distributary channel deposits (Facies Association 4). The capping unit (Facies Association 5) represents a transgressive estuarine depositional environment. The general stratigraphic evolution resulted from a regional, tectonically controlled second‐order cycle, associated with northward regression of the Tethys. Subordinate cycles (i.e. third‐order and fourth‐order cycles) are evidenced by several Glossifungites‐ichnofacies demarcated discontinuities, which were emplaced at the base of flooding surfaces. The proposed depositional models recognize the importance of identifying and linking ichnological data with physical–sedimentological observations. As such – with the exception of wave‐generated ravinement surfaces – earlier assertions of wave‐dominated sedimentation can be discarded. Moreover, this study provides important data for the recognition of (rarely reported) completely bioturbated sand‐dominated offshore to nearshore sediments (Facies Association 1) and affords excellent characterization of bioturbated inclined heterolithic stratification of deltaic deposits. Another outcome of the study is the recognition that the whales of the Fayum Depression are restricted to the highstand systems tracts, and lived under conditions of low depositional energy, low to moderate sedimentation rates, and (not surprisingly) in fully marine waters characterized by a high biomass.  相似文献   

4.
鹤岗盆地晚侏罗世石头河子组沉积环境及幕式聚煤作用   总被引:3,自引:0,他引:3  
鹤岗盆地是一中-新生代内陆盆地,主要含煤地层上侏罗统石头河子组是一套非海相含煤地层,充填于盆地底部,自下而上可划分为三个岩性段,五个亚段和26个含煤旋回。底部第一亚段沉积期以冲积扇、辫状河环境为主;第二亚段以河流环境为主;第三亚段以河流-三角洲-湖泊环境为主;第四亚段演化为河流环境;第五亚段则以河流、冲积扇环境为主。垂向上五个亚段对应于盆地的填平补齐-扩张-稳定沉降-差异沉降-收缩五个演化阶段。富煤带位于同沉积中心的侧翼,一般含砂率60%~70%的区域含煤性最好。含煤旋回受控于盆地周期性地快-慢沉降,聚煤作用发育于每期幕式沉降的缓慢稳定沉降阶段。厚-特厚煤层都与湖泊三角洲冲积平原大面积沼泽化有关。  相似文献   

5.
渤海新近系浅水三角洲沉积体系与大型油气田勘探   总被引:32,自引:8,他引:24  
新近纪渤海具有构造稳定、沉降缓慢、湖泊水域范围大、内部无分割、地形平缓、坡度小等特点,广泛发育浅水三角洲,从而形成渤海海域新近系良好的储盖组合和优越的油气成藏条件。浅水三角洲砂岩储层由于受河流作用的控制,砂体具有明显的方向性,存在明显的分叉现象,与曲流河相比,砂体连通性较好,砂体等厚图呈典型的朵叶状。湖相厚层泥岩普遍发育,与浅水三角洲砂体组成多套垂向优质储盖组合。浅水三角洲发育于渤海新近纪至今处于生烃的峰期主力富烃凹陷的有利区带,新构造运动造成新近纪以来凹陷主力源岩生烃峰期与新构造运动的同步耦合,为渤海大型浅水三角洲成因的优质储层油气成藏创造了优越条件,可以形成大型油气田。因此,重视并充分挖掘渤海浅水三角洲储层类型油气藏的勘探潜力将是追求浅层优质油藏、进一步增储上产的方向所在。  相似文献   

6.
A palynological and sedimentological study has been carried out on the Cretaceous fluvial and deltaic Atane Formation of West Greenland. Two localities, Skansen and Igdlunguaq on the southern coast of Disko island, have been studied. The sediments are divided into two genetic facies associations interpreted as representing deposition in fluvial channels and on a floodplain. The facies indicate that most of the sediments on the floodplain accumulated in swamps or shallow lakes, whereas abundant spores and pollen indicate the presence of vegetated land nearby. The palynomorph assemblages recovered consist of 72 species of spores and pollen grains of bryophytes, pteridophytes, gymnosperms and angiosperms. The palynomorphs from Skansen and most of those from Igdlunguaq indicate a maximum age-range from late Albian to Cenomanian for the successions sampled, although a mid Cenomanian age seems most likely. The highest horizon examined at Igdlunguaq may, however, be late Cenomanian or Turonian in age. The assemblages compare well with palynofloras from North America and Northwest Europe.  相似文献   

7.
Integrated fluvial sequence stratigraphic and palaeosol analysis can be used to better reconstruct depositional systems, but these approaches have not been combined to examine halokinetic minibasins. This study characterizes the temporal and spatial patterns of lithofacies and palaeosols in a sequence stratigraphic framework to reconstruct a model of minibasin evolution and identify halokinetic influences on fluvial deposition. This research documents fluvial cycles and stratigraphic hierarchy, palaeosol maturity and apparent sediment accumulation rates in the Chinle Formation within the Big Bend minibasin. This study also uses palaeosols to help identify fluvial aggradational cycle (FAC) sets. The Chinle is divided into two hectometre‐scale (102 m) fluvial sequences, six decametre‐scale (101 m) FAC sets, and variable numbers of metre‐scale FACs depending on proximity to the minibasin. Ten pedotypes representing 225 palaeosol profiles are recognized. The pedotypes include palaeosols similar to modern Entisols, Inceptisols, Aridisols, Vertisols and Alfisols. A maturity index (1–5) is assigned to each pedotype to assess its variability in palaeosol development. Estimated palaeosol development time is used to approximate apparent sediment accumulation rates. Increased subsidence resulted in a greater number and thicker FACs, thicker FAC sets and fluvial sequence sections, and lithofacies associations reflecting more rapid sedimentation along the minibasin axis. Palaeocurrent indicators converge towards the minibasin axis and indicate that it formed and drifted through time. Relative palaeosol maturity is inversely related to stratal thickness, and decreases towards the minibasin where episodic burial by fluvial sediment was more frequent. Metre‐scale FACs are most abundant towards the minibasin axis, and locally have Entisols and Inceptisols developed upon their upper boundaries reflecting increased sediment accumulation rates. Areas outside the minibasin are characterized by fewer FACs that are associated with more mature palaeosols. Palaeosol‐derived apparent sediment accumulation rates are as much as two orders of magnitude greater within the minibasin than in marginal areas. The combined stratigraphic, palaeocurrent and palaeosol evidence is used to develop a model for the evolution of the Big Bend minibasin that illustrates the halokinetic affect on fluvial and landscape processes.  相似文献   

8.
The influence of palaeodrainage characteristics, palaeogeography and tectonic setting are rarely considered as controls on stratigraphic organization in palaeovalley or incised valley systems. This study is an examination of the influence of source region vs. downstream base level controls on the sedimentary architecture of a set of bedrock-confined palaeovalleys developed along the distal margin of the Alpine foreland basin in south-eastern France. Three distinct facies associations are observed within the palaeovalley fills. Fluvial facies association A is mainly dominated by poorly sorted, highly disorganized, clast-to-matrix-supported cobble-to-boulder conglomerates that are interpreted as streamflood deposits. Facies association B comprises mainly yellow siltstones and is interpreted as recording deposition in an estuarine basin environment. Estuarine marine facies association C comprises interstratified estuarine siltstones and clean, well-sorted washover sandstones. The sedimentary characteristics of the valley fill successions are related to the proximity of depositional sites to sediment source areas. Palaeovalleys located proximal to structurally controlled basement palaeohighs are entirely dominated by coarse fluvial streamflood deposits. In contrast, distal palaeovalley segments, which are located several kilometres downstream, contain successions showing upward transition from coarse fluvial facies into estuarine central basin fines, and finally into estuarine-marginal marine facies. Facies distributions suggest that the fluvial deposits form wedge-shaped, downstream-thinning sediment bodies, whereas the estuarine deposits form an upstream-thinning wedge. The vertical stacking of fluvial to estuarine to marginal marine depositional environments records the fluvial aggradation and subsequent transgression of relatively small bedrock-confined river valleys, which drained a rugged, upland terrain. Facies geometries suggest that a fluvial sediment wedge initially prograded downvalley, in response to high bed load sediment yields. Subsequently, palaeovalleys became drowned during the passage of a marine transgression, with the establishment of estuarine conditions. Initial fluvial aggradation and subsequent marine flooding of the palaeovalleys is a consequence of the interaction of high local rates of sediment supply and relative sea-level rise driven by flexural subsidence of the basin.  相似文献   

9.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

10.
古水深确定是沉积学分析中难点问题,目前主要依据“标志物-水深”的定性-半定量方法确定,但存在原始样品获取难、预测精度低等诸多问题。该方法依据滨线轨迹迁移规律获取在点物源背景条件下一个三级层序内可容纳空间与沉积物供给速率之间变化关系或定量函数,进而采用回剥法和正演法相结合获取不同点原始沉积物厚度和相应的可容空间,其中回剥法获取每个单元原始沉积厚度,正演法获取每个单元随沉积物覆盖后顶层可容空间增量。三角洲平原区为补偿区,其原始沉积物厚度等于可容纳空间增量,三角洲前缘区为欠补偿区,其水深等于可容空间增量与原始沉积物厚度之差。这一新方法不仅考虑到不同点构造沉降差异,而且还考虑了三级层序内沉积物供给速率的变化趋势,因而,较为准确地预测三角洲区的古水深变化。该方法成功地应用于东营地区三角洲沉积区水深变化,该区沙三中(Es3-2)共发育9期进积体,最大水深为180 m,出现于t3时刻。该方法揭示了9期三角洲朵体发育时期水深变化,为该区沉积体空间展布预测提供了有效的定量预测方法。  相似文献   

11.
Many studies of foreland basins have recognized a hierarchical organization in the stacking of sequences deposited by axial‐deltaic and alluvial fan systems. The hierarchy is often explained in terms of the competing control of eustasy and pulsed tectonic subsidence and the different frequencies at which these processes operate. Unravelling the relative contributions of tectonic and eustatic controls on the sequence stacking pattern is a fundamental question in foreland basin analysis, yet this is difficult because of the lack of independent stratigraphic evidence. In this study, a three‐dimensional numerical model is presented, which aids in the interpretation of alluvial successions in foreland basins filled by transverse and axial depositional systems, under conditions of variable tectonism and eustatic sea‐level change. The tectono‐sedimentary model is capable of simulating the hierarchical stratigraphic response to both eustatic and tectonic forcing, and is of higher resolution than previous models of foreland basin filling. Numerical results indicate that the onset of tectonic activity is reflected by rapid retrogradation of both depositional systems and by widespread flooding and onlap of carbonate sediments. Syntectonic fluvial patterns on the axial‐deltaic plain are dominated by bifurcating channels, swiftly relocating in response to the general rise in relative sea level induced by flexural subsidence. The resulting surface morphology of the axial delta is convex upwards. Syntectonic eustatic sea‐level fluctuations result in parasequence‐scale packages of retrograding and prograding fan and delta sediments bounded by minor flooding surfaces and type 2 sequence boundaries. Incised channels are rare within the syntectonic parasequences and are formed only during phases of tectonic quiescence when eustatic falls are no longer compensated by the subsidence component in the rise in relative sea level. Suites of amalgamating, axial channels corresponding to multiple eustatic falls delineate the resulting type 1 unconformities. Coarse‐grained, incised‐channel fills are found in the zone between the alluvial fan fringes and the convex‐upward body of the axial delta, as the axial streams tend to migrate towards this zone of maximum accommodation.  相似文献   

12.
The Tropic Shale and correlative Tununk Shale Member of the Mancos Shale accumulated during Cenomanian-Turonian time, within prodeltaic environments near the western margin of the Western Interior Seaway of North America. Stratigraphical and sedimentological analysis has revealed a detailed history of relative sea level change in the thick, fine grained succession. The Tropic and Tununk shales were deposited during the Greenhorn second-order sea level cycle, over a time span of about 2–5 million years. In southern Utah, six depositional sequences are superposed upon the record of this long term sea level change. The sequences developed during third-order relative sea level cycles of hundreds of thousands of years duration and are composed of at least 37 parasequences, arranged in retrogradational, aggradational and progradational parasequence sets. The Tropic Shale and Tununk Shale Member accumulated just basinward of the axis of maximum subsidence of a foreland basin. Stratal geometries and facies distribution patterns in the succession indicate that in southern Utah the Greenhorn cycle was tectonically controlled. During the Greenhorn transgression and highstand, rapid rates of tectonic subsidence trapped terrigenous sediment to the west of the study area, in the more proximal foreland. At this time, hemipelagic facies accumulated at relatively slow rates in southern Utah and type 2 sequences developed during third-order sea level cycles. In contrast, during the Greenhorn regression rates of thrust-induced subsidence in the proximal foreland basin evidently slowed, and deltaic clinoforms prograded across the study area. At least one forced regression occurred in southern Utah at this time, and type 1 sequences developed. The formation of type 1 sequence boundaries in the upper part of the Tropic Shale and Tununk Shale Member points to episodes of base level fall and indicates that the six third-order sea level cycles recorded in the succession were not the result of changes in sediment supply alone. The third-order cycles may have been a consequence of episodic tectonism. The timing of these cycles, however, suggests that development of sequences and parasequences in the Tropic Shale and Tununk Shale Member may have been related to orbital forcing in the Milankovitch band. Glacioeustasy or climatically related fluctuations in the amount of groundwater stored on continents may explain these high frequency sea level changes.  相似文献   

13.
The Kleszczów Graben in central Poland was formed by late Oligocene to Middle Pleistocene extensional tectonics. During the Pleistocene it was infilled with a 200 m thick sequence of predominantly glacial sediments. Four distinct formations of Elsterian and Saalian age are identified, each containing 15–40 m of glaciolacustrine strata. The boundaries between formations are marked by erosional surfaces and, in part, by angular discordances caused by tectonism. Glaciolacustrine sedimentation was tectonically controlled: the thickness of the sequences in the graben are three to five times greater than outside the area of fault-controlled subsidence. Deposition in the proglacial lakes was controlled by differential subsidence rates within the basin: deep-lake facies (varved clays) were deposited in sub-basins with high subsidence rates and deltaic to shallow-water facies accumulated in areas of moderate subsidence or occasional uplift. These variations led to the development of a very complex, ‘mosaic’ of lateral facies relationships, suggesting that several sub-basins with differing subsidence rates were present. The Vertical successions show proximal-distal sequences typical of glacier-fed lakes that have limited contact with the ice sheet. However, gravity flow facies are very common, and occur both in the shallow- and deep-water deposits. These deposits are interpreted to have been formed adjacent to active fault scarps which bordered the lake basin. Although several distinct phases of glaciolacustrine sedimentation occurred during the history of trough infilling, the location of the areas of high subsidence varied through time.  相似文献   

14.
Abstract The Joggins Formation was deposited in the Cumberland Basin, which experienced rapid mid‐Carboniferous subsidence on bounding faults. A 600 m measured section of coastal and alluvial plain strata comprises cycles tens to hundreds of metres thick. The cycles commence with coal and fossiliferous limestone/siltstone intervals, interpreted as widespread flooding events. These intervals are overlain by coarsening‐upward successions capped by planar‐based sandstone mounds, up to 100 m in width that represent the progradation of small, river‐generated delta lobes into a standing body of open water developed during transgression. The overlying strata contain sand‐rich heterolithic packages, 1–8 m thick, that are associated with channel bodies 2–3 m thick and 10–50 m wide. Drifted plant debris, Calamites groves and erect lycopsid trees are preserved within these predominantly green‐grey heterolithic sediments, which were deposited on a coastal wetland or deltaic plain traversed by channel systems. The cycles conclude with red siltstones, containing calcareous nodules, that are interbedded with thin sandstones and associated with both single‐storey channel bodies (1–1·5 m thick and 2–3 m wide) and larger, multistorey channels (3–6 m thick) with incised margins. Numerous channel bodies at the same level suggest that multiple‐channel, anastomosed river systems were developed on a well‐drained floodplain. Many minor flooding surfaces divide the strata into parasequences with dominantly progradational and aggradational stacking patterns. Multistorey channel bodies are relatively thin, fine grained and modestly incised, and palaeosols are immature and cumulative. The abundance and prominence of flooding surfaces suggests that base‐level rise was enhanced, whereas the lack of evidence for abrupt basinward stepping of facies belts, coupled with the absence of strong fluvial incision and mature palaeosols, suggests that base‐level fall was suppressed. These architectural features are considered to reflect a tectonic architectural signature, in accordance with the high‐subsidence basinal setting. Evidence for restricted marine influence and variation in floral assemblages suggests modulation by eustatic and climatic effects, although their relative importance is uncertain.  相似文献   

15.
The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad–Arizaro, Río Blanco, and Calingasta–Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial–postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian–Early Cisuralian) shows the maximum extension of glacial–postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions (including turbiditic successions). In the Late Cisuralian (stage 4), important differences in sedimentation patterns are registered for the western arc-related basins and eastern intraplate basins. The former were locally dominated by volcaniclastic sediments or marine deposits, and the intraplate basins are characterized by shallow marine conditions punctuated by several episodes of deltaic progradation. Finally, in the Late Permian (stage 5), volcanism and volcaniclastic sedimentation dominated in basins located along the western South American margin. The intraplate basins in turn were characterized by T–R cycles composed of shallow marine, deltaic, and fluvial siliciclastic deposits.  相似文献   

16.
The Upper Jurassic Guará Formation comprises an 80–200 m thick continental succession exposed in the western portion of the Rio Grande do Sul State (Brazil). It comprises four distinct facies associations: (i) simple to locally composite crescentic aeolian dune sets, (ii) aeolian sand sheets, (iii) distal floodflows, and (iv) fluvial channels. The vertical stacking of the facies associations defines several 5–14 m thick wetting-upward cycles. Each cycle starts with aeolian dune sets followed by aeolian sand sheets deposits and culminating in either fluvial channels or distal flood strata. Within some cycles, aeolian sand sheets are absent and fluvial deposits rest directly above aeolian dune facies. The transitions from one facies association to another are abrupt and marked by erosive surfaces that delineate distinct episodes of sediment accumulation. The origin of both the wetting-upward cycles and the erosive surfaces was controlled by the ground-water table level, dry sand availability and aeolian and fluvial sediment transport capacity variations, related to climatic fluctuations between relatively arid and humid conditions. Preservation of the fluvial–aeolian deposits reflects an overall relative water table rise driven by subsidence.  相似文献   

17.
Many published interpretations of ancient fluvial systems have relied on observations of extensive outcrops of thick successions. This paper, in contrast, demonstrates that a regional understanding of palaeoriver kinematics, depositional setting and sedimentation rates can be interpreted from local sedimentological measurements of bedform and barform strata. Dune and bar strata, channel planform geometry and bed topography are measured within exhumed fluvial strata exposed as ridges in the Ruby Ranch Member of the Cretaceous Cedar Mountain Formation, Utah, USA. The ridges are composed of lithified stacked channel belts, representing at least five or six re-occupations of a single-strand channel. Lateral sections reveal well-preserved barforms constructed of subaqueous dune cross-sets. The topography of palaeobarforms is preserved along the top surface of the outcrops. Comparisons of the channel-belt centreline to local palaeotransport directions indicate that channel planform geometry was preserved through the re-occupations, rather than being obscured by lateral migration. Rapid avulsions preserved the state of the active channel bed and its individual bars at the time of abandonment. Inferred minimum sedimentation durations for the preserved elements, inferred from cross-set thickness distributions and assumed bedform migration rates, vary within a belt from one to ten days. Using only these local sedimentological measurements, the depositional setting is interpreted as a fluvial megafan, given the similarity in river kinematics. This paper provides a systematic methodology for the future synthesis of vertical and planview data, including the drone-equipped 2020 Mars Rover mission, to exhumed fluvial and deltaic strata.  相似文献   

18.
为了深入认识河流相储层分布规律,通过地层对比、沉积相、主控断裂特征等分析对饶阳凹陷留北地区新近系河流相砂体展布特征及影响因素进行了研究.结果表明:饶阳凹陷新近系各超短期旋回的砂体在平面上呈带状展布,砂体主要延伸方向与边部控洼断层大致平行.留北地区的NE向及NEE向主控断裂在新近纪仍表现为继承性生长的特征,受NE及NEE向近平行于盆地轴向的盆缘继承性主控断裂的影响,在下降盘形成大致平行于其轴向的河谷洼地、斜坡或山脊复合古地貌体系,断层上盘发育的沉降中心沿轴向延伸,地层厚度呈NE向展布.盆缘断层附近发育高梯度扇体或河流沉积,以沉积物的横向搬运体系为主.远离物源区,在主控断层下降盘,来自短轴物源的横向河流或冲积扇的影响变弱,河流向着轴向倾斜下端方向(最大斜坡方向)改道,汇聚形成轴向搬运沉积体系,平行于主要断层边界走向的方向延伸.  相似文献   

19.
笔者通过胜利油区惠民凹陷南坡地区古生代地层的沉积相发育与分布特点的研究,并结合区域构造运动,揭示了该地区古生代奥陶纪到中生代侏罗纪的构造和沉积体系发展演化规律。结果表明,整个研究区在早古生代发育了一套碳酸盐潮坪体系,晚古生代为海陆过渡的三角洲沉积体系,中生代为一套陆相河流体系。三角洲体系又包括了石炭纪的海相三角洲和二叠纪的陆相湖泊三角洲。该区在古生代和中生代经历着多期次、多类型的构造-沉积演化,从整个演化过程来看,总体上体现了从海到陆的过程。在空间上,除了在早古生代沉积相对稳定外,晚 古生代和中生代均表现了较明显的沉降差异性。  相似文献   

20.
This study focuses on the lowstand and early transgressive systems tracts of a basin-fill sequence of lower Pliocene nearshore deposits in the Val d'Orcia Basin of the Northern Apennines, Italy. The basin at that time was a semi-enclosed marine embayment, and, in the study area, its margin was subject to highly variable subsidence along the depositional strike, attributed to a decrease in tectonic displacement. The nearshore succession in the more rapidly-subsiding segment of the basin is around 20 m thick, comprising three storeys of laterally-stacked Gilbert-type delta lobes overlain by a shoal-water delta, whereas the nearshore succession in the adjacent, more slowly-subsiding segment, is up to 9 m thick. This succession is characterised by alternation of shoreface and offshore deposits, moderately wave-worked and covered by shoal-water deltaic facies.These coeval nearshore successions consist of several transgressive-regressive cyclothems. The development and lateral variation of the cyclothems was controlled by the local subsidence rate and coastal topographic gradient. Some of the cyclothems are considered to be higher-order sequences and others to be parasequences, with the former passing laterally into the latter in the area where the sea-level fall was countered by fast local subsidence. Some of the bounding surfaces are of limited lateral extent, with two parasequences passing laterally into a single one.Coastal topography controlled particularly the thickness of transgressive deposits. In the low-gradient setting of a delta plain, the relative sea-level rises caused major landward shifts of the shoreline and reduced fluvial sediment supply, with the formation of a transgressive lag in sediment-starved conditions. In the high-gradient coastal setting of the non-deltaic zone, the shoreline shift was minimal and had relatively little impact on local sediment supply, which promoted an accretionary transgression.At the end of the lowstand stage, the rate of sediment accumulation in the non-deltaic nearshore zone was lower, allowing the onset of subsequent transgression to be recorded considerably earlier than in the deltaic nearshore zone. This diachroneity suggests that facies criteria alone may not necessarily be a reliable basis for the recognition of systems tract boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号