首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since Mesozoic time, Java and Bali have formed part of an evolving system of island arcs comprising the Sunda arc of Indonesia. The present tectonic setting is relatively simple with subduction occurring at the Java Trench to the south. A north-dipping Benioff seismic zone delineates an underthrust lithospheric slab to depths of approximately 600 km beneath the Java Sea. Quaternary lavas of the normal island arc association range from tholeiites to high-K calc-alkaline lavas over Benioff zone depths from 120–250 km, respectively. More abundant calc-alkaline lavas lie between these extremes. High-K alkaline lavas are found over Benioff zone depths in excess of 300 km.Both within and between these groups of rocks there are consistent spatial variations in the observed geochemistry. For approximately 200 rocks, incompatible elements such as K, Rb, Cs, Sr, Ba, light REE, U and Th show an increase in abundance of almost an order of magnitude with increasing depth to the seismic zone. Abundances of compatible elements show little consistent variation and trace elements such as Ni, Co, Cr, and Sc are characteristically depleted except in some of the alkaline lavas. Major element abundances in rocks of the normal island arc association show little variation, except for K and P, which both increase in abundance across the arc and Al, which shows a relative decrease.The major and trace element data are inconsistent with the derivation of the analyzed rocks by partial melting of the crustal component of the subducted lithosphere. On the other hand, low Ni abundances (20 ppm) in the basalts suggest that most of the lavas are fractionated and few if any represent primary mantle-derived melts. The spatial variations in the geochemistry of erupted lavas across Java and Bali are best explained by a combination of two processes: melting of a geochemically zoned mantle source and smaller degrees of partial melting of that material at progressively greater depths. Primary tholeiitic magmas could be formed by 20–25% melting at depths of 30–40 km, primary high-K calc-alkaline magmas by 5–15% melting at 40–60 km depth, and primary alkaline magmas by 5% melting at depths of 80–90 km. The geochemical zoning in the mantle, which is also manifested by increasing 87Sr/86Sr ratios in lavas across the arc, is interpreted to result from the addition of a small melt fraction derived from the crustal component of the subducted lithosphere.  相似文献   

2.
Miguel Muoz 《Tectonophysics》2005,395(1-2):41-65
The Wadati–Benioff Zone (WBZ) is an approximate plane defined by earthquakes hypocentres observed in convergent plate boundaries and that usually dips at angles greater than 30°. In some areas of the Andes, where there are gaps in volcanic activity, and where heat flow is abnormally low, this plane in most studies has nearly horizontal dip at a depth of about 75–100 km, and it has been associated to flat subduction of the oceanic lithosphere. This situation has been taken as the present-day analogue of the Laramide orogeny of western North America for which a ‘flat-slab’ episode has been proposed in the past years. In this work, the observed low heat flow in areas of the Andes is assumed to be due to low radiogenic heat generation in geologically old and allochthonous terranes constituting large regions of western South America. On the basis of geotherms obtained for areas of Ecuador, Peru, Chile and Argentina, and of rheological results describing the partition between brittle and ductile regimes, the seismic activity observed both in the lower crust and at depths of about 75–100 km is thoroughly explained. At these depths, earthquakes occur within the subcontinental upper mantle, and then there is no flat WBZ associated to subduction of the oceanic lithosphere. There is evidence from recent seismological observations that the real WBZ lies not horizontally and deeper in the tectonosphere.  相似文献   

3.
The transfer of fluid and trace elements from the slab to the mantle wedge cannot be adequately explained by simple models of slab devolatilization. The eclogite-facies mélange belt of northern New Caledonia represents previously subducted oceanic crust and contains a significant proportion of talc and chlorite schists associated with serpentinite. These rocks host large quantities of H2O and CO2 and may transport volatiles to deep levels in subduction zones. The bulk-rock and stable isotope compositions of talc and chlorite schist and serpentinite indicate that the serpentinite was formed by seawater alteration of oceanic lithosphere prior to subduction, whereas the talc and chlorite schists were formed by fluid-induced metasomatism of a mélange of mafic, ultramafic and metasedimentary rocks during subduction. In subduction zones, dehydration of talc and chlorite schists should occur at sub-arc depths and at significantly higher temperatures (∼ 800°C) than other lithologies (400–650°C). Fluids released under these conditions could carry high trace-element contents and may trigger partial melting of adjacent pelitic and mafic rocks, and hence may be vital for transferring volatile and trace elements to the source regions of arc magmas. In contrast, these hybrid rocks are unlikely to undergo significant decarbonation during subduction and so may be important for recycling carbon into the deep mantle. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
In the Uasilau-Yau Yau intrusive complex of central New Britain,Papua New Guinea, there is a compositional continuum in intrusiverock-types from gabbro to granodiorite and K-Ar mineral agesof the most mafic and most felsic components are not significantlydifferent (29?0.6 Ma versus 28.3?0.5 Ma, respectively). Tonaliteporphyry, the progenitor of porphyry copper mineralization inthe complex, represents a significantly younger intrusive eventat 24 Ma. Relatively calcic (An95—50) plagioclase coresand salite to augite composition clinopyroxene are texturallyearly phases in the intrusive rocks. The main mafic mineral,calcic amphibole, generally has corroded clinopyroxene coresand may, like biotite, K-feldspar and quartz, generally be alate-stage, not a primary liquidus phase. Petrographic featuresindicate that the mafic minerals in the plutonic rocks crystallizedfrom melt, rather than being restite phases. The intrusive rocks cover an extensive silica range (45–75wt. per cent), do not exhibit simple straight-line variationon Harker diagrams for many elements (e.g. TiO2, FeO, P2O5 andSr), and most are relatively depleted in incompatible traceelements (Rb, Zr, and REE). Major and trace element modellingsupports derivation of the complex by shallow level fractionalcrystallization dominated by removal of the phases calcic plagioclase,clinopyroxene, and magnetite from a parental magma closely resemblingrecent basaltic rocks in New Britain. The fact that the plutonicrocks are almost chemically indistinguishable from late Cainozoiccalc-alkaline volcanic rocks of New Britain supports fractionalcrystallization as a viable mechanism for generating these island-arcvolcanic rocks and indicates an analogous origin for the initialmagma. Granites, such as those of the Uasilau-Yau Yau intrusive complex,which are probably generated by partial melting of subductedoceanic crust or the overlying mantle, may be termed mantleor M-type granites. Documentation of the characteristics ofM-type versus normal I-type granites may enable the recognitionof M-type plutonic rocks in older, possibly more deeply erodedgeologic terrains. This would, by analogy to their volcanicequivalents, be very helpful in tectonic interpretations. Also,such plutonic rocks have known potential for Cu-Au mineralization.  相似文献   

5.
Two groups of granitoids associated with gold mineralization in the Appalachian orogen of southwestern New Brunswick are recognized: a Late Silurian to Early Devonian (423–396 Ma) granodioritic to monzogranitic series (GMS), and a Late Devonian (370–360 Ma) granitic series (GS). The GMS granitoids are relatively low in silica, calc-alkaline, metaluminous to weakly peraluminous, and show characteristics of normal (oxidized) to reduced I-type granites depending on the properties of country rocks. They may have been derived from partial melting of lower crustal rocks triggered by underplated basaltic magmas; and country rocks bearing reduced organic carbon and/or graphite may have played an important role in the reduction of normal I-type intrusions to reduced I-type, which is essential in the formation of intrusion-related gold systems. In contrast, the GS granites, although calc-alkaline and metaluminous to peraluminous, are relatively rich in silica, incompatible elements, and high field strength elements. They are fractionated I-type granites, and are probably related to the coeval Mount Douglas granite in the Saint George batholith through fractional crystallization. Their parental magmas may have been derived from partial melting of quartzofeldspathic sources at relatively low temperatures. Both GMS and GS intrusions are orogenic, although some of them display the affinity of those emplaced into a within-plate environment. The origin of intrusion-related gold systems in this region appears to be controlled by several factors, including magma sources, magmatic processes, redox conditions (country-rock nature), and local structural regimes.  相似文献   

6.
The Carpathian–Pannonian Region contains Neogene to Quaternary magmatic rocks of highly diverse composition (calc-alkaline, shoshonitic and mafic alkalic) that were generated in response to complex microplate tectonics including subduction followed by roll-back, collision, subducted slab break-off, rotations and extension. Major element, trace element and isotopic geochemical data of representative parental lavas and mantle xenoliths suggests that subduction components were preserved in the mantle following the cessation of subduction, and were reactivated by asthenosphere uprise via subduction roll-back, slab detachment, slab-break-off or slab-tearing. Changes in the composition of the mantle through time are evident in the geochemistry, supporting established geodynamic models.Magmatism occurred in a back-arc setting in the Western Carpathians and Pannonian Basin (Western Segment), producing felsic volcaniclastic rocks between 21 to 18 Ma ago, followed by younger felsic and intermediate calc-alkaline lavas (18–8 Ma) and finished with alkalic-mafic basaltic volcanism (10–0.1 Ma). Volcanic rocks become younger in this segment towards the north. Geochemical data for the felsic and calc-alkaline rocks suggest a decrease in the subduction component through time and a change in source from a crustal one, through a mixed crustal/mantle source to a mantle source. Block rotation, subducted roll-back and continental collision triggered partial melting by either delamination and/or asthenosphere upwelling that also generated the younger alkalic-mafic magmatism.In the westernmost East Carpathians (Central Segment) calc-alkaline volcanism was simultaneously spread across ca. 100 km in several lineaments, parallel or perpendicular to the plane of continental collision, from 15 to 9 Ma. Geochemical studies indicate a heterogeneous mantle toward the back-arc with a larger degree of fluid-induced metasomatism, source enrichment and assimilation on moving north-eastward toward the presumed trench. Subduction-related roll-back may have triggered melting, although there may have been a role for back-arc extension and asthenosphere uprise related to slab break-off.Calc-alkaline and adakite-like magmas were erupted in the Apuseni Mountains volcanic area (Interior Segment) from15–9 Ma, without any apparent relationship with the coeval roll-back processes in the front of the orogen. Magmatic activity ended with OIB-like alkali basaltic (2.5 Ma) and shoshonitic magmatism (1.6 Ma). Lithosphere breakup may have been an important process during extreme block rotations (60°) between 14 and 12 Ma, leading to decompressional melting of the lithospheric and asthenospheric sources. Eruption of alkali basalts suggests decompressional melting of an OIB-source asthenosphere. Mixing of asthenospheric melts with melts from the metasomatized lithosphere along an east–west reactivated fault-system could be responsible for the generation of shoshonitic magmas during transtension and attenuation of the lithosphere.Voluminous calc-alkaline magmatism occurred in the Cãlimani-Gurghiu-Harghita volcanic area (South-eastern Segment) between 10 and 3.5 Ma. Activity continued south-eastwards into the South Harghita area, in which activity started (ca. 3.0–0.03 Ma, with contemporaneous eruption of calc-alkaline (some with adakite-like characteristics), shoshonitic and alkali basaltic magmas from 2 to 0.3 Ma. Along arc magma generation was related to progressive break-off of the subducted slab and asthenosphere uprise. For South Harghita, decompressional melting of an OIB-like asthenospheric mantle (producing alkali basalt magmas) coupled with fluid-dominated melting close to the subducted slab (generating adakite-like magmas) and mixing between slab-derived melts and asthenospheric melts (generating shoshonites) is suggested. Break-off and tearing of the subducted slab at shallow levels required explaining this situation.  相似文献   

7.
This paper reports detailed analyses of Nb and Ta concentrations of 19 eclogite samples and their principal mineral constituents from the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD) and nearby outcrops. We observe highly fractionated and overall suprachondritic Nb/Ta values in minerals, e.g., rutile (4.8–87), titanite (12–62) and amphibole (2.0–67). Amphiboles in amphibolites (retrograded from eclogite) can be classified into two groups: a low Nb/Ta group that bears higher Al contents and is thus of higher pressure origin, and a high Nb/Ta, lower pressure group. The former group was likely formed during subduction; the latter may have formed during exhumation in the presence of rutile and titanite. The significant Nb/Ta fractionation in rutile and other minerals may reflect early dehydration of the subducted slab at shallow depths before the formation of rutile, which occurs at depths ≥50 km. The dehydration, with amphiboles existing as the main Nb–Ta-bearing phase, would lead to Nb/Ta fractionation, i.e., forming subchondritic Nb/Ta ratios in the released fluids and, complementarily, suprachondritic Nb/Ta ratios in the residual phases. While a large proportion of the fluids may escape from the slab to the mantle wedge, considerable amounts of the fluids can be retained in hydrous minerals within the descending slab, thus forming hydrated cold eclogites with subchondritic Nb/Ta characteristics. As subduction continues to depths over 50 km, rutile appears and consequently controls the Nb–Ta budget. In the presence of rutile, melting of the hydrated cold eclogites with very low Nb/Ta ratios would form magmas with negative Nb, Ta anomalies and subchondritic Nb/Ta. Further dehydration of the continuously descending slab results in even more fractionated Nb/Ta ratios in subsequently released fluids and residues, providing a feasible explanation for the large Nb/Ta variation observed in the modern arc magmas and residual eclogites.  相似文献   

8.
The Manus Basin to the northeast of Papua New Guinea is an actively spreading/rifting back-arc basin in the Bismarck Sea located between the inactive Manus-Kilinailau trench on the Pacific-plate side and the active New Britain trench on the Solomon-plate side. Spreading/rifting in the Manus Basin takes place in the last 0.78 Myr or so. We present major and trace elements, and Sr–Nd–Pb isotope compositions of rock samples taken from the South East Rift (SER) at the eastern end of the Manus Basin. The strong enrichment of Pb and LILE (large ion lithophile elements) relative to HFSE (high field strength elements) and REE (rare earth elements) in the SER lava is also quite similar to other island arc lavas, suggesting that substantial amount of subduction components were present in its source mantle. To investigate the origin of the subduction components in SER lavas, we compare the geochemical data of SER lavas to published data from New Britain Arc (NBA) and Tabar–Lihir–Tanga–Feni (TLTF) island chain. The volcanism in NBA is related to presently active subduction of the Solomon slab, whereas the TLTF volcanism is located in the forearc area of New Ireland arc which was formed during a former subduction of the Pacific slab. In other words, the NBA and TLTF lavas were influenced by subduction components from the present and former subduction, respectively. We argue that the subduction components in SER lava were incorporated in the mantle lithosphere during the active arc volcanism on New Ireland because the amount of the subduction component in SER decreases with increasing in distance from New Ireland. On the other hand, no relationships are found with respect to New Britain. The Sr–Nd–Pb isotopes indicate that SER lavas contain little sediment component and less amount of fluid component derived from altered oceanic crust compared to the TLTF lavas. This is probably due to the fact that SER is located in backarc settings in contrast to TLTF which is located in forearc setting with respect to the Pacific slab. Thus it is likely that the sediment was removed from the slab in the forearc and/or arc areas, and therefore little or none was introduced in the backarc mantle, which is the source region for SER magmas at present. Fluid derived from altered oceanic crust also may have made its way into the sub-forearc region more effectively than backare region by shallow dehydration process.  相似文献   

9.
New geochemical and isotopic data for post-collisional Early Eocene and Late Miocene adakitic rocks from the eastern part of the Sakarya Zone, Turkey, indicate that slab and lower crustal melting, respectively, played key roles in the petrogenesis of these rocks. The Early Eocene Yoncal?k dacite (54.4 Ma) exhibits high Sr/Y and La/Yb ratios, low Y and HREE concentrations, moderate Mg# (44–65), and relatively high εNd and low ISr values, similar to adakites formed by slab melting associated with subduction. Geochemical composition of the Yoncal?k dacite cannot be explained by simple crystal fractionation and/or crustal contamination of andesitic parent magma, but is consistent with the participation of different proportions of melts derived from subducted basalt and sediments. Sr/Y correlates horizontally with Rb/Y, and Pb/Nd correlates vertically with Nd isotopic composition, indicating that Sr and Pb budgets are strongly controlled by melt addition from the subducting slab, whereas positive correlations between Th/Nd and Pb/Nd, and Rb/Y and Nb/Y point to some contribution of sediment melt. In addition to low concentrations of heavy rare earth elements (~2–3 times chondrite), a systematic decrease in their concentrations and Nb/Ta ratios with increasing SiO2 contents suggests that slab partial melting occurred in the garnet stability field and that these elements were mobilized by fluid flux. These geochemical and isotopic signatures are best explained by slab breakoff and fusion shortly after the initiation of collision. Although the Late Micone Tavda?? rhyolite (8.75 Ma) has some geochemical features identical to adakites, such as high Sr/Y and La/Yb ratios, low Y and HREE concentrations, other requirements, such as sodic andesite and/or dacite with relatively high MgO and Mg# (>50), relatively high Ni and Cr, low K2O/Na2O (<0.4), high Sr (>400 ppm), for slab-derived adakites are not provided. It is sodic in composition and shows no traces of fractionation from dacitic parent magma. Low Nd and high Sr isotope ratios suggest derivation by partial fusion of calc-alkaline, juvenile crust with high Sr/Y and La/Yb ratios.  相似文献   

10.
John Milsom   《Tectonophysics》2005,410(1-4):325-336
It is now widely, although not universally, accepted that the Carpathian orogen marks the site of an arc–continent collision that followed the subduction of a now vanished small ocean basin. Seismic tomography has defined a high-velocity anomaly in the upper mantle similar to those associated with subduction zones worldwide. There is, however, no recognisable Wadati–Benioff Zone (WBZ), and intermediate-depth seismicity is confined to a relatively small, roughly cylindrical and vertically elongated region beneath the extreme southeastern corner of the mountain chain. There is no consensus in the published studies as to the origin of this ‘Vrancea Zone’.

The Banda Sea region of eastern Indonesia has sometimes been cited as an analogue for the Pannonian/Transylvanian basin and the enclosing Carpathian orocline, but at first sight the patterns of seismicity appear very different. Intermediate depth seismic activity defines a subducted slab that dips north, south and west beneath the Banda Sea, a configuration explained as a consequence of the rapid expansion of the sea during roll-back subduction. If the similar scenario proposed for the Carpathians is correct, then it is the absence of a Carpathian WBZ that is actually anomalous. Closer examination of Banda Arc seismicity shows that it can be divided into two parts, these being a scoop-shaped WBZ and an adjacent ‘Damar Zone’ of much more intense intermediate-depth activity. At its eastern end the Damar Zone merges with the WBZ, but in the west there is evidence for separation from it. A plausible explanation of this pattern is that a lower layer of the downgoing slab is peeling away from the remainder.

The Banda/Australia collision is now almost complete and the activity in the WBZ proper can be expected to decrease. Damar Zone activity, on the other hand, may persist for a much longer period, migrating towards the foreland as the detaching layer separates from the remainder of the subducted lithosphere. In a few million years the seismicity of the Banda region could well resemble the present day seismicity of the Carpathian orogen.  相似文献   


11.
A selected suite of fresh volcanic rocks from the New Britain island arc has been analyzed for 143Nd/144Nd, 87Sr/86Sr, major and trace elements to investigate relationships between isotopes, trace elements and petrology, and depth to the underlying Benioff zone. From these relationships inferences about magma generation are made utilizing Nd and Sr isotope systematics in possible source materials. Lavas ranging in composition from basalt to rhyolite show minimal variation of 143Nd/144Nd. Small variations in 87Sr/86Sr do not correlate with depth to the Benioff zone, but are related to magma type. Nd-Sr isotopes suggest that island arc lavas in general are derived from a mixture of suboceanic mantle and hydrothermally altered mid-ocean ridge-type basalt, but the New Britain magma source appears homogeneous with little indication of either the involvement of oceanic crust or mantle inhomogeneity. Trace element patterns in New Britain lavas are not consistent with Nd isotope data for currently accepted petrologic and trace element models of magma genesis. Mafic lavas from New Britain and other island arcs have anomalously high Sr/Nd, possibly due to components derived from subducted oceanic crust.  相似文献   

12.
Geochemistry and origin of massif-type anorthosites   总被引:2,自引:0,他引:2  
Samples of Proterozoic anorthosite complexes from the Adirondack Mountains of New York, Burwash Area of Ontario, and the Nain Complex of Labrador, ranging in composition from anorthosite to anorthositic gabbro, have been analyzed for major elements, Rb, Sr, Ba and nine rare-earth elements (REE), in order to set limits on the compositions and origins of their parent magmas. Similar rock types from the different areas have similar major and trace element compositions. The anorthosites have high Sr/Ba ratios, low REE abundances (Ce about 10, Yb about 0.5–1.5 times chondrites) and large positive Eu anomalies. The associated anorthositic gabbros have lower Sr/Ba ratios, REE abundances nearly an order of magnitude higher than the anorthosites, and small to negligible positive Eu anomalies.Model calculations using the adcumulate rocks with the lowest REE abundances and published distribution coefficients yield parent liquids having REE abundances and patterns similar to those of the associated anorthositic gabbros with the highest REE abundances. Rocks with intermediate REE abundances are the result of incorporation of a liquid component by a plagioclase-rich cumulate similar to the adcumulate samples. The analytical data and model calculations both suggest parent liquids having compositions of 50–54% SiO2, greater than 20% Al2O3, about 1% K2O, atomic Mg/(Mg+Fe2+) ratios (Mg No.'s) of less than 0.4, 15–30 ppm Rb, 400–600 ppm Sr and 400–600 ppm Ba, 40–50 times chondrites for Ce and 8–10 times chondrites for Yb.The low atomic Mg/(Mg+Fe2+) values for these rocks combined with geophysical evidence suggesting there are not large quantities of ferromagnesian material at depth, indicate that the anorthositic masses are not products of fractional crystallization of mafic melt derived from melting of the mantle. Rather, it is suggested that they are a result of partial melting of tholeiitic compositions at depths shallower than the basalt-eclogite transformation, leaving a pyroxene-dominated residue.  相似文献   

13.
The Neoarchaean Tati granite–greenstone terrane occurs within the southwestern part of the Zimbabwe craton in NE Botswana. It comprises 10 intrusive bodies forming part of three distinct plutonic suites: (1) an earlier TTG suite dominated by tonalites, trondhjemites, Na-granites distributed into high-Al (Group 1) and low-Al (Group 2) TTG sub-suite rocks; (2) a Sanukitoid suite including gabbros and Mg-diorites; and (3) a younger high-K granite suite displaying I-type, calc-alkaline affinities.

The Group 1 TTG sub-suite rocks are marked by high Sr/Y values and strongly fractionated chondrite-normalized rare earth element (REE) patterns, with no Eu anomaly. The Group 2 TTG sub-suite displays higher LREE contents, negative Eu anomaly and small to no fractionation of HREE. The primordial mantle-normalized patterns of the Francistown TTGs are marked by negative Nb–Ti anomalies. The geochemical characteristics of the TTG rocks are consistent with features of silicate melts from partial melting of flat subducting slabs for the Group 1 sub-suite and partial melting of arc mafic magmas underplated in the lower crust for the Group 2 sub-suite. The gabbros and high-Mg diorites of the Sanukitoid suite are marked by Mg#>0.5, high Al2O3 (>>16%), low TiO2 (<0.6%) and variable enrichment of HFSE and LILE. Their chondrite-normalized REE patterns are flat in gabbros and mildly to substantially fractionated in high-Mg diorites, with minor negative or positive Eu anomalies. The primordial mantle-normalized diagrams display negative Nb–Ti (and Zr in gabbros) anomalies. Variable but high Sr/Y, Sr/Ce, La/Nb, Th/Ta and Cs/La and low Ce/Pb ratios mark the Sanukitoid suite rocks. These geochemical features are consistent with melting of a sub-arc heterogeneously metasomatised mantle wedge source predominantly enriched by earlier TTG melts and fluids from dehydration of a subducting slab. Melting of the mantle wedge is consistent with a steeper subduction system. The late to post-kinematic high-K granite suite includes I-type calc-alkaline rocks generated through crustal partial melting of earlier TTG material. The Neoarchaean tectonic evolution of the Zimbabwe craton is shown to mark a broad continental magmatic arc (and related accretionary thrusts and sedimentary basins) linked to a subduction zone, which operated within the Limpopo–Shashe belt at 2.8–2.65 Ga. The detachment of the subducting slab led to the uprise of a hotter mantle section as the source of heat inducing crustal partial melting of juvenile TTG material to produce the high-K granite suite.  相似文献   


14.
The Banda arc of eastern Indonesia manifests the collision of a continent and an intra-oceanic island arc. The presently active arc is located on what appears to be oceanic crust whereas the associated subduction trench is underlain by continental crust.Recent lavas from the Banda arc are predominantly andesitic and range from tholeiitic in the north through calc-alkaline to high-K calc-alkaline varieties in the southern islands. Defining this regular geochemical variation are significant increases in the abundances of K (2,600–21,000 ppm), Rb (10–90 ppm), Cs (0.5–7.0 ppm), and Ba (100–1,000 ppm) from tholeiitic to high-K calc-alkaline lavas. 87Sr/86Sr ratios in the tholeiites are relatively low, from 0.7045 to 0.7047. In the calc-alkaline lavas, 87Sr/86Sr ratios range from 0.7052 to 0.7095, and in the high-K calc-alkaline lavas from 0.7065 to 0.7080. There is no correlation between 87Sr/86Sr and major and trace element abundances, even among lavas from the same volcano. Late Cenozoic cordierite — bearing lavas from Ambon, north of the presently active arc, are highly enriched in K, Rb and Cs, which together with 87Sr/86Sr ratios of approximately 0.715 is consistent with their derivation from partial melting of pelitic material in the locally — thick crust.The high 87Sr/86Sr ratios in the Recent calc-alkaline lavas are interpreted to result from mixing of a sialic component with a mantle derived component. The most likely cause is subduction and subsequent melting of either sea-floor sediments or continental crust. However, it is probably unrealistic to model this type of deep contamination by simple two-component mixing. Such contamination implies that the volcanic rocks from the Banda arc are at least partly a manifestation of melting at or near the Benioff seismic zone. Temperatures of at least 750–800 ° C at the top of the subducted lithospheric slab at depths of approximately 150 km are also implied; temperatures very close to the solidus of hydrous basalt (eclogite) at such pressure. It is concluded that partial melting of the crustal component of the subducted lithospheric slab may play a significant role in island arc petrogenesis.This paper is the result of a cooperative project with the Geological Survey of Indonesia, Ministry of Mines and Energy  相似文献   

15.
Basanites and alkali basalts from Oberon, NSW, Australia contain variable abundances of small Cr-diopside lherzolite xenoliths. Despite a limited range in (metamorphic) textures and modal mineralogy, there is significant variation in mineral chemistry. Mineral thermometric data applied to the geotherm of O'Reilly and Griffin (1985) suggests equilibration over a narrow pressure interval corresponding to depths of 30–45 km. These data show that significant compositional variations exist over a small depth interval in the subcontinental mantle.Basaltic host rocks show near-primary chemical characteristics. Mildly and strongly incompatible element (i.e. D< 1 and D1 respectively) concentrations have been used to constrain the modal amounts of clinopyroxene and garnet in a presumed garnet peridotite mantle source. Estimated proportions of (ol+opx)=73%; cpx=16%; gar= 11% closely resemble source compositions for other basaltic rocks of eastern Australia. Batch partial melting of this source in the range F=9.5–15% applied to the available REE data suggests the source is enriched relative to chondrite 8–10 × La, 2.1–2.4 × Tb and 2.5–3.7 × Yb.  相似文献   

16.
High-pressure (HP) and ultra-high pressure (UHP) terranes are excellent natural laboratories to study subduction-zone processes. In this paper we give a brief theoretical background and we review experimental data and observations in natural rocks that constrain the nature and composition of the fluid phase present in HP and UHP rocks. We argue that a fluid buffered by a solid residue is compositionally well defined and is either an aqueous fluid (total amount of dissolved solids < 30 wt.%) or a hydrous melt (H2O < 35 wt.%). There is only a small temperature range of approximately 50–100 °C, where transitional solute-rich fluids exist. A review of available experimental data suggest that in felsic rocks the second critical endpoint is situated at 25–35 kbar and  700 °C and hence must be considered in the study of UHP rocks. Despite this, the nature of the fluid phase can be constrained by relating the peak metamorphic conditions of rocks to the position of the wet solidus even if the peak pressure exceeds the pressure where the wet solidus terminates at the second critical endpoint. Transitional solute-rich fluids are expected in UHP terrains (P > 30 kbar) with peak temperatures of about 700 ± 50 °C. At higher temperatures, hydrous granitic melts occur whereas at lower temperatures aqueous fluids coexists with eclogite-facies minerals. This argument is complemented by evidence on the nature of the fluid phase from high-pressure terrains. We show that in the diamond-bearing, high-temperature UHP rocks from the Kokchetav Massif there are not only hydrous felsic melts, but probably also carbonate and sulfide melts present.

Hydrous quartzo-feldspathic melts are mainly produced in high temperature UHP rocks and their composition is relatively well constrained from experiments and natural rocks. In contrast, constraining the composition of aqueous fluids is more problematic. The combined evidence from experiments and natural rocks indicates that aqueous fluids liberated at the blueschist to eclogite facies transition are dilute. They contain only moderate amounts of LILE, Sr and Pb and do not transport significant amounts of key trace elements such as LREE, U and Th. This indicates that there is a decoupling of water and trace element release in subducted oceanic crust and that aqueous fluids are unable to enrich the mantle wedge significantly. Instead we propose that fluid-present melting in the sediments on top of the slab is required to transfer significant amounts of trace elements from the slab to the mantle wedge. For such a process to be efficient, top slab temperature must be at least 700–750 °C at sub-arc depth. Slab melting is likely to be triggered by fluids that derive from dehydration of mafic and ultramafic rocks in colder (deeper) portions of the slab.  相似文献   


17.
Major elements, trace elements and 87Sr/86Sr data are reported for the Quaternary potassic alkaline rocks from the Mts. Ernici volcanic area (Southern Latium — Italy). These rocks are represented by primitive types which display high Mgv, low D.I., variable degrees of silica undersaturation and different K2O contents which allowed the distinction of a potassium series (KS) and a high potassium series (HKS). All the analyzed samples have high LIL element contents and high 87Sr/86Sr which ranges between 0.707–0.711. They also have fractionated REE patterns. The KS rocks have lower LIL element concentrations and 87Sr/86Sr ratios than the HKS rocks with a large compositional gap between the two series. Minor but still significant isotopic and trace element variations are also observed within both KS and HKS. The genesis cannot be completly explained either by crystal liquid fractionation, mixing or assimilation processes or by different degrees of equilibrium partial melting from a homogeneous source, thus indicating that both the KS and HKS consist of several geochemically and isotopically distinct magma types. The data suggest that the KS and HKS magmas originated by low degrees of melting of a garnet peridotite mantle heterogeneously enriched in LIL elements and radiogenic strontium, possibly accompanied by disquilibrium melting of some accessory phases. The occurrence of a geochemical anomaly within the mantle is believed to be due to fluid metasomatism probably generated by dehydration of a lithospheric slab subducted during the Late Tertiary development of the Apennine Chain.  相似文献   

18.
The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63–49) and relatively flat rare-earth element (REE) patterns that range from 20–8 x chondrites (Ce/YbN=0.8–1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46–29) and high total REE abundances that range from 70–40 x chondrites (Ce/YbN=1.8–3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79–63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are intercalated with sedimentary rocks and have been intruded by pre- and syntectonic granitoid rocks. However, the geochemistry of the mafic rocks does not correlate fully with that of mafic rocks in modern are evvironments. The low-TiO2 tholeiite is similar to both N-type mid-ocean-ridge basalt (MORB) and low-K tholeiite from immature marginal basins. The calc-alkaline basaltic andesite is like that of low-K calc-alkaline mafic volcanic rocks from oceanic volcanic arcs; however, the high-TiO2 tholeiite is most similar to modern E-type MORB, which occurs in oceanic rifts. The conundrum may be explained by: (1) rifting of a pre-existing immature arc system to produce the bimodal volcanic rocks and high-TiO2 tholeiite; (2) variable enrichment of a previously depleted Archean mantle, to produce both the low- and high-TiO2 tholeiite and the calc-alkaline basaltic andesite, and/or (3) enrichment of the parental rocks of the high-TiO2 tholeiite by crustal contamination.  相似文献   

19.
The enrichment of boron relative to similarly incompatible elements,such as Be, in arc volcanic rocks has been used as a proxy forthe involvement of slab flux in petrogenesis. New ion microprobeanalyses of single glass shards in tephra layers recovered bythe Ocean Drilling Program (ODP) in the Izu and NE Japan forearcbasins now allow the temporal variation in slab flux to be chartedsince 7 and 5 Ma, respectively. B/Be ratios are typically <70in NE Japan and <130 in Izu, with no single grain exceeding200. Although moderate to high for modern arcs, these valuesare much less than those recorded in the Marianas and Tongaat 3–4 Ma, shortly after the start of rifting of theirback-arc basins. This observation suggests that the peak B/Bevalues seen in Tonga and the Marianas are related to the tectonicsof slab roll-back and basin opening, rather than changes inthe dynamics of the Pacific Plate. There is no temporal trendto enrichment in the high field strength elements (HFSE) orrare earth elements (REE) in either Izu or NE Japan since 7Ma, although the two elemental groups do show clear positivecorrelation. A lack of correlation between REE, HFSE and B/Besuggests that slab flux is not the only control on melting inthese arcs.  相似文献   

20.
Boron isotope data are presented for Cenozoic Western Anatolia rocks, which define two main associations: (i) calc-alkaline, shoshonitic and ultra-potassic rocks (Early to Middle Miocene); and (ii) Late Miocene–Quaternary intraplate alkali basalts. Boron data, together with Sr–Nd isotope and other trace elements, are consistent with a progressive dehydration of the slab, producing fluid phases gradually depleted in B (and 11B). These fluids were added to the supraslab mantle, triggering a partial melting that gave rise to orogenic magmatism. The stretching and tearing of the slab caused by the faster convergence of Greece over Africa with respect to Anatolia facilitated an interaction of the upwelling subslab asthenosphere with residual slab-fluids during the Late Miocene followed by production of typical intraplate magmas during the Pleistocene–Holocene, whose relatively high δ11B (approximately −2‰) is considered representative of the local asthenosphere not affected by subduction contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号