首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The Balkhash metallogenic belt (BMB) in Kazakhstan is a famous porphyry Cu–Mo metallogenic belt in the Central Asian Orogenic Belt (CAOB). The late Palaeozoic granitoids in the BMB are mainly high-K calc-alkaline and I-type granites, with shoshonite that formed during a late stage. Geochemical analyses and tectonic discrimination reveal a change in the tectonic environment from syn-collision and volcanic arcs during the Carboniferous to post-collision during the Permian. The late Palaeozoic granitoids from the Borly porphyry Cu deposit formed in a classical island-arc environment, and those from the Kounrad and Aktogai porphyry Cu deposits and the Sayak skarn Cu deposit are adakitic. The εNd(t) values for the late Palaeozoic granitoids are between ?5.87 and +5.94, and the εSr(t) values range from ?17.16 to +51.10. The continental crustal growth histories are different on either side of the Central Balkhash fault. On the eastern side, the εNd(t) values of the granitoids from the Aktogai and Sayak deposits are very high, which are characteristic of depleted mantle and suggest that crustal growth occurred during the late Palaeozoic. On the western side, the εNd(t) values of the granitoids from the Borly and Kounrad deposits are slightly low, which suggests the presence of a Neoproterozoic basement and the mixing of crust and mantle during magmatism. The granitoids have initial 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of 18.335–20.993, 15.521–15.732, and 38.287–40.021, respectively, which demonstrate an affinity between the late Palaeozoic magmatism in the BMB and that in the Tianshan, Altai, and Junggar orogens.  相似文献   

2.
Geochemical and isotopic data for Cretaceous mafic rocks (basalt, gabbro, and diorite) from the Lower Yangtze region, northern Yangtze block, constrain the evolution of the lithospheric mantle. The mafic rocks, separated into the northeast and southwest groups, are alkaline and evolved, with low Mg# values (44–58) and variable SiO2 contents (47.6–57.4 wt%). Enriched LREEs, LILEs, and Pb, together with depleted Nb, Zr, and Ti, suggest that the mantle sources were metasomatized by slab-derived fluid/melt. All samples show high radiogenic 207Pb/204Pb(t) (15.41–15.65) and 208Pb/204Pb(t) (37.66–38.51) ratios at given 206Pb/204Pb(t) (17.65–19.00) ratios, consistent with the mantle sources having been metasomatized by ancient slab-derived material. Mafic rocks of the southwest group show enriched Sr–Nd isotopic characteristics, with 87Sr/86Sr(t) ranging from 0.7056 to 0.7071 and εNd(t) ranging from −5.3 to −8.3, indicating an origin from enriched lithospheric mantle. Mafic rocks of the northeast group, which record 87Sr/86Sr(t) ratios of between 0.7044 and 0.7050 and εNd(t) of −2.8 to −0.7, possibly formed by the mixing of melts from isotopically enriched lithospheric mantle and isotopically depleted asthenospheric mantle. Taking into consideration the geochemical and isotopic characteristics of Cretaceous mafic rocks, Cenozoic basalts, and basalt-hosted peridotite xenoliths from the Lower Yangtze region, we propose that an isotopically enriched, subduction-modified lithospheric mantle was replaced by or transformed into an isotopically depleted “oceanic-type” mantle. Such a process appears to have occurred in the eastern North China Craton as well as the eastern Yangtze block, probably in response to subduction of the paleo-Pacific plate beneath East Asia.  相似文献   

3.
Middle to Late Jurassic plutonic rocks in the central Mojave Desert represent the continuation of the Sierran arc south of the Garlock fault. Rock types range from calc-alkaline gabbro to quartz monzonite. Chemical and isotopic data indicate that petrologic diversity is attributable to mixing of crustal components with mantle melts. Evidence for magma mixing is scarce in most plutons, but emplacement and injection of plutons into preexisting wallrocks (e.g. pendants of metasedimentary rocks) suggests that assimilation may be locally important. Field and petrographic evidence and major and trace element data indicate that the gabbros do not represent pure liquids but are, at least partly, cumulates. The cumulate nature of the gabbros coupled with field evidence for open-system contamination means that trace element contents of gabbros cannot be used to fingerprint the Jurassic mantle source, nor can isotopic data be unequivocally interpreted to reflect the isotopic composition of the mantle. Correlation of Sr and Nd isotropic composition with bulk composition allows some constraints to be placed on the mantle isotopic signature. Gabbros and mafic inclusions from localities north of Barstow, CA have the most depleted mantle-like isotopic signatures (Sr ( i )≈0.705 and ɛNd (t)=≈0 to +1). However, these rocks have likely seen some contamination as well, so the mantle source probably has an even more depleted character. Gabbros with the lowest Sr( i ) and highest ɛNd (t) are also characterized by the highest 207Pb/204Pb and 206Pb/204Pb in the entire data set. This may be a feature of the mantle component in the Jurassic arc indicative of minor source contamination with subducted sediment as has been observed in modern continental arcs. Locally exposed Precambrian basement and metasedimentary rocks have appropriate Sr, Nd and Pb isotopic signatures for the crustal end members and are possible contaminants. Incorporation of these components through combined anatexis and assimilation can explain the observed spread in isotopic composition. Evidence for a depleted mantle component in these gabbros contrasts with the enriched subcontinental mantle component in Jurassic arc plutons further to the east and suggests there may have been a major mantle lithosphere boundary between the two areas as far back as the Late Jurassic. Crustal boundaries and isotopic provinces defined on the basis of initial isotopic composition (Sr( i )=0.706 isopleth) are difficult to delineate because of the correlation of bulk composition with Sr and Nd isotopic composition and because values may differ depending on the age of the rocks sampled within a given area. Data from plutons intruded into rocks known or inferred to be Precambrian are, however, shifted dramatically (highest Sr( i ) and lowest ɛNd(t)) toward Precambrian values. The least isotopically evolved rocks (lowest Sr( i ) and highest ɛNd(t)) occur within the eugeoclinal belt of the Mojave Desert. This zone has been previously identified as a Precambrian rift zone but more likely represents a zone where mantle magmas have been intruded into isotopically similar crustal rocks of the eugeocline with minor input from old Precambrian crust. Received: 12 August 1993/Accepted: 8 July 1994  相似文献   

4.
Studies of accreted oceanic plateau sections provide crucial information on their structures, compositions, and origins. We investigate the petrogenesis of ultramafic–mafic rocks in the Tangjia–Sumdo greenstone belt of southeast Tibet using petrography, whole-rock geochemistry, and U-Pb zircon geochronology. These rocks are divided into four groups based on geochemical characteristics that include depleted and tholeiitic mafic rocks, transitional mafic rocks, enriched and alkaline mafic rocks, and picritic ultramafic rocks. Depleted and tholeiitic mafic rocks have the oldest crystallization ages (~272 Ma), followed by picritic ultramafic rocks (~270 Ma), transitional mafic rocks (267–254 Ma), and enriched and alkaline mafic rocks (252–250 Ma). Hafnium and neodymium isotope ratios of depleted and tholeiitic mafic rocks (εHf(t) = +13.1–+16.9; εNd(t) = +6.9–+7.1), transitional mafic rocks (εHf(t) = +1.8–+16.9; εNd(t) = +0.8–+5.5), enriched and alkaline mafic rocks (εHf(t) = +0.5–+5.4; εNd(t) = ?1.5 to +1.9) and picritic ultramafic rocks (εHf(t) = +14.9–+17.2; εNd(t) = +7.8–+9.0) are similar to those of N-MORB, E-MORB, OIB and depleted-type picritic mafic rocks in other oceanic plateaus, respectively. The geochemical characteristics of the depleted and tholeiitic mafic rocks suggest that they formed by partial melting of depleted spinel lherzolite in a mid-ocean ridge setting, whereas the picritic ultramafic rocks suggest a high degree of partial melting of depleted lherzolite in a hot mantle plume head. The transitional mafic rocks formed by partial melting of moderately enriched garnet lherzolite. The youngest rocks (enriched and alkaline mafic rocks) formed by partial melting of a more enriched garnet lherzolite (compared to transitional mafic rocks) at relatively low temperatures. We propose that the depleted and tholeiitic mafic rocks represent normal oceanic crust of the Sumdo Paleo-Tethys Ocean and the transitional mafic rocks, enriched and alkaline mafic rocks and picritic ultramafic rocks are the fragments of the oceanic plateau, which were related to middle–late Permian mantle plume activity in the Sumdo Paleo-Tethys Ocean. We further suggest that the majority of the Tangjia–Sumdo greenstone belt represents a middle–late Permian oceanic plateau that reflects a previously unrecognized middle–late Permian mantle plume.  相似文献   

5.
Mesozoic mafic dikes in the Gan-Hang tectonic belt (GHTB) provide an opportunity to explore both the nature of their mantle source(s) and the secular evolution of the underlying Mesozoic lithospheric mantle in the region. The geochronology and primary geochemical and Sr–Nd–Pb isotopic compositions of Group 1 (middle section of GHTB) and Group 2 (the rest of the section) dolerite dikes spanning the GHTB were investigated. K–Ar ages indicate that dikes of both groups were emplaced during the Cretaceous (131–69 Ma). The dikes are doleritic in composition and are enriched in both large ion lithophile elements (LILEs; e.g. Rb, Ba, and Pb) and light rare earth elements (LREEs), with a wide range of Eu anomalies, but are depleted in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti) and heavy rare earth elements (HREEs). Dikes sampled in the middle section of the GHTB (Group 1) show more pronounced REE differentiation and a greater contribution from crustal material than those from the east and west sections (Group 2) and are similar to GHTB volcanic rocks in exhibiting a slight enrichment in LREEs. The dolerites are further characterized by a wide range in 87Sr/86Sr i ?=?0.7041–0.7110, 143Nd/144Nd i ?=?0.511951–0.512758, ?Nd t ?=?–10.4 to?+5.6, and Pb isotopic ratios (206Pb/204Pb i ?=?18.1–18.3, 207Pb/204Pb i ≈ 15.6, and 208Pb/204Pb i ?=?38.2–38.7). The dikes have undergone fractional crystallization of olivine, clinopyroxene, plagioclase, and Ti-bearing phases, except for dikes from the Anding area, which possibly experienced fractionation of plagioclase. Geochemically, all the dike samples originated from mantle sources ranging in composition from depleted to enriched that contained a component of foundered lower crust; crustal contamination during the ascent of these magmas was negligible. In the context of the late Mesozoic lithospheric extension across South China, mafic dike magmatism was likely triggered by the reactivation of deep faults, which promoted foundering of the lower crust and subsequent mantle upwelling in the GHTB.  相似文献   

6.
《Gondwana Research》2002,5(1):133-146
Trace, REE, Sr and Nd isotopic studies have been carried out on gabbro-pyroxenite intrusives (Rb-Sr isochron age ∼ 1619±38 Ma; Sri ∼ 0.70552±0.00002) of the Dalma volcanic belt from eastern Indian craton. Primitive mantle-normalised trace element patterns show a general depletion of high field strength elements and LREE but more or less flat pattern in most compatible elements. Chondrite-normalised REE plots show depleted LREE-flat HREE patterns [(SLREE/SHREE)N < 1, (Ce/Yb)N < 1] strikingly similar to the komatiitic and tholeiitic lavas from this belt. Nd isotopic data with mean fSm/Nd ∼ +0.2704 and high eNd (mean +7.8) values indicate that the source of these rocks was depleted in LREE for considerably long time. When plotted on the global eNd evolution path for the upper mantle the Dalma intrusives fall exactly around the depleted MORB-type mantle at 1.6 Ga.Enrichment in some LILE like Rb, Ba, Th is found both in the tholeiitic lavas and the residues indicating them to be source characteristics. Positive DNb values of most of the mafic-ultramafic units (including komatiitic lavas) of this belt indicate that they originated from a mantle plume with thick envelope of hot upper mantle producing MORB-like depleted komatiites, tholeiites and intrusives. The mid-Proterozoic plume eventually rifted the continent above, forming a rapidly subsiding basin which was subsequently collapsed and compressed. The plume also caused widespread thermal events recorded in charnockitisation, migmatisation and granitisation around 1.6 Ga. This was possibly part of a global ∼1.6 Ga thermal anomaly which affected the pre-existing large landmass comprising atleast Antarctica, Australia and India (Mawson continent?).  相似文献   

7.
《International Geology Review》2012,54(13):1641-1659
Eocene mafic volcanic rocks occurring in an E–W-trending, curvilinear belt along and north of the Izmir–Ankara–Erzincan suture zone (IAESZ) in northern Anatolia, Turkey, represent a discrete episode of magmatism following a series of early Cenozoic collisions between Eurasia and the Gondwana-derived microcontinents. Based on our new geochronological, geochemical, and isotope data from the Kartepe volcanic units in northwest Anatolia and the extant data in the literature, we evaluate the petrogenetic evolution, mantle melt sources, and possible causes of this Eocene volcanism. The Kartepe volcanic rocks and spatially associated dikes range from basalt and basaltic andesite to trachybasalt and basaltic trachyandesite in composition, and display calc-alkaline and transitional calc-alkaline to tholeiitic geochemical affinities. They are slightly to moderately enriched in large ion lithophile (LILE) and light rare earth elements (LREE) with respect to high-field strength elements (HFSE) and show negative Nb, Ta, and Ti anomalies reminiscent of subduction-influenced magmatic rocks. The analysed rocks have 87Sr/86Sr(i) values between 0.70570 and 0.70399, positive ?Nd values between 2.7 and 6.6, and Pb isotope ratios of 206Pb/204Pb(i) = 18.6–18.7, 207Pb/204Pb(i) = 15.6–15.7, and 208Pb/204Pb(i) = 38.7–39.1. The 40Ar/39Ar cooling ages of 52.7 ± 0.5 and 41.7 ± 0.3 Ma obtained from basaltic andesite and basalt samples indicate middle to late Eocene timing of this volcanic episode in northwest Anatolia. Calculated two-stage Nd depleted mantle model (TDM) ages of the Eocene mafic lavas range from 0.6 to 0.3 Ga, falling between the TDM ages of the K-enriched subcontinental lithospheric mantle of the Sakarya Continent (1.0–0.9 Ga) to the north, and the young depleted mantle beneath central Western Anatolia (0.4–0.25 Ga) to the south. These geochemical and isotopic features collectively point to the interaction of melts derived from a sublithospheric, MORB-like mantle and a subduction-metasomatized, subcontinental lithospheric mantle during the evolution of the Eocene mafic volcanism. We infer triggering of partial melting by asthenospheric upwelling beneath the suture zone in the absence of active subduction in the Northern Neotethys. The geochemical signature of the volcanic rocks changed from subduction- and collision-related to intra-plate affinities through time, indicating an increased asthenospheric melt input in the later stages of Eocene volcanism, accompanied by extensional deformation and rifting.  相似文献   

8.
Four types of pre-accretionary Early Cambrian lava sequences are distinguishable in the geological structure of the Ozernaya zone in western Mongolia: (I) close to N-MORB; (II) close to E-MORB; (III) enriched with trace elements and with HFSE minimums; (IV) depleted in trace elements and with HFSE minimums. All these lavas could have been formed in an island-arc?back-arc basin system. N-MORB basalts were melted from depleted magma sources with с εNd(t) = 10.0–11.5. Plume melts originated from mantle sources with εNd(t) = 4.8–9.7. The sources of island arc lavas were characterized by εNd(t) = 7.3–9.9.  相似文献   

9.
The Qinling Mountains in Central China mark a gigantic composite orogenic belt with a complex tectonic evolution involving multiple phases of rifting and convergence. This belt separates the North China and South China Blocks and consists of the South and North Qinling terranes separated by the Shangdan suture. The suture is marked by the Grenvillian Songshugou ophiolite along the southern margin of the North Qinling terrane, which is key to understanding the Proterozoic tectonic evolution of the belt. The ophiolite consists of highly metamorphosed ultramafic and mafic rocks. Three groups of meta-basalts are present: group 1 rocks are LREE depleted and have a MORB compositional affinity. Their low Ta/Yb ratios (<0.1) are consistent with high degrees of partial melting of a depleted asthenospheric mantle. Rocks of group 2 have higher TiO2 (1.63–2.08 wt%) and Ta/Yb ratios (>0.12), and display slight enrichment of LREE, suggesting that the original magmas were derived from a depleted mantle source mixed with some enriched material. Samples from group 3 are enriched in LREE and other incompatible elements (Ti, Zr, Ta, Nb), suggesting derivation from an enriched mantle source, possibly a plume. All the basalts have high εNd(t) (+4.2 to +6.9), variable εSr(t) and high 207Pb/204Pb and 208Pb/204Pb ratios for given 206Pb/204Pb ratios. These characteristics are compatible with formation at a mid-ocean ridge system above an anomalous Dupal mantle region. The mafic rocks have a Sm–Nd whole-rock isochron age of 1030 ± 46 Ma.The Songshugou ophiolite was emplaced onto the southern margin of the North Qinling terrane, an active continental margin from the Meso-Proterozoic to Neo-Proterozoic.  相似文献   

10.
Diabase dyke swarms are widespread in the East Tianshan and Beishan regions. LA-ICP-MS zircon U-Pb ages of these diabase vary from 305 Ma to 278 Ma, showing that these dykes were formed during Late Carboniferous-Early Permian magmatism. All diabase samples are subalkali calc-alkali, characterized by slight LREE and LILEs enrichment, and weak negative Ti, Nb and Ta anomalies. The diabase samples have positive εNd(t) values (>+3), high Sr isotopic compositions (initial 87Sr/86Sr values=0.7030-0.7097), and large variation of Pb isotopic compositions, indicating they were derived from a deplete mantle source. Regional geology and geochemistry evidences indicate that these diabase dyke swarms were generated in a lithosphere extensional setting and had the same magma sources. Initial magmas may be a mixture of depleted asthenosphere mantle and enriched lithospheric mantle during rapid magma ascending.  相似文献   

11.
Abstract: The Paleoproterozoic Lüliang Metamorphic Complex (PLMC) is situated in the middle segment of the western margin of the Trans-North China Orogen (TNCO), North China Craton (NCC). As the most important lithological assemblages in the southern part of the PLMC, Guandishan granitoids consist of early gneissic tonalities, granodiorites and gneissic monzogranites, and younger gneissic to massive monzogranites. Petrochemical features reveal that the early gneissic tonalities and granodiorites belong to the medium-K calc-alkaline series; the early gneissic monzogranites are transitional from high-K calc-alkaline to the shoshonite series; the younger gneissic to massive monzogranites belong to the high-k calc-alkaline series, and all rocks are characterized by right-declined REE patterns and negative Nb, Ta, Sr, P, and Ti anomalies in the primitive mantle normalized spidergrams. SHRIMP zircon U–Pb isotopic dating reveals that the early gneissic tonalities and granodiorites formed at ~2.17 Ga, the early gneissic monzogranites at ~2.06 Ga, and the younger gneissic to massive monzogranites at ~1.84 Ga. Sm–Nd isotopic data show that the early gneissic tonalities and granodiorites have εNd(t) values of +0.48 to ?3.19 with Nd-depleted mantle model ages (TDM) of 2.76–2.47 Ga, and early gneissic monzogranites have εNd(t) values of ?0.53 to ?2.51 with TDM of 2.61–2.43 Ga, and the younger gneissic monzogranites have εNd(t) values of ?6.41 to ?2.78 with a TDM of 2.69–2.52 Ga.These geochemical and isotopic data indicate that the early gneissic tonalities, granodiorites, and monzogranites were derived from the partial melting of metamorphosed basaltic and pelitic rocks, respectively, in a continental arc setting. The younger gneissic to massive monzogranites were derived by partial melting of metamorphosed greywackes within the continental crust. Combined with previously regional data, we suggest that the Paleoproterozoic granitoid magmatism in the Guandishan granitoids of the PLMC may provide the best geological signature for the complete spectrum of Paleoproterozoic geodynamic processes in the Trans-North China Orogen from oceanic subduction, through collisional orogenesis, to post-orogenic extension and uplift.  相似文献   

12.
This work considers geochemical and isotopic characteristics of the source of the Archean Panozero pluton derived from LILEand LREE-enriched lithospheric mantle. Sr and Nd isotopic data on clinopyroxenes and augites define a source with Sri = 0.7017 and ɛNd(t) varying within a narrow range from + 0.7 to + 1.4 (averaging + 1.1), which is close to previously obtained whole-rock isotopic data. Similar ɛNd(t) were obtained for the Archean alkaline rocks of Canada, whereas the Archean mafic rocks of the Baltic and Canadian Shields formed from depleted mantle have ɛNd(t) ∼2. Lead isotope measurements on K-feldspars (KFsp) and monzonite showed that the source of the pluton has μ = 8.98 for the Stacey-Kramers two-stage model, at low U/Pb and high Th/U ratios. Different lead isotope composition corresponding to μ = 10.43 was determined in KFsp from quartz monzonites. Diverse interpretations of obtained data have been proposed. It was noted that the Pb-Pb isotopic system was disturbed by a later (∼ 1.9 Ga) thermal event. The ratios of elements of similar compatibility were used to determine the geochemical specifics of source of the Panozero pluton. Their comparison with numerous literature data on metasomatized mantle xenoliths and minerals in them showed that the mantle source strongly differed from primitive mantle in ratios of elements, whose mineralmelt partitioning coefficients considerably differs from mineral-fluid partitioning, for instance, Nb/La. Mantle source that was responsible for geochemical peculiarities of the Panozero pluton was made up of Phl, CPx, and Ap.  相似文献   

13.
The Yandangshan syenite is a representative Late Cretaceous igneous pluton cropping out in SE China. U–Pb zircon dating using LA‐ICP‐MS yielded a crystallization age of 98±1 Ma for the syenite. Petrographically and geochemically of shoshonitic affinity, it is enriched in LREE and LILE, and has a pronounced Nb–Ta trough in the primitive mantle‐normalized trace element spider diagram. Zircon ?Hf(t) values vary from ?3.04 to ?7.71, displaying a unimodal distribution. The syenite also has high Sr [(87Sr/86Sr) i  = 0.7086–0.7089], low Nd [?Nd(t) = ?6.57 to ?7.64] isotopic ratios, plotting in the enriched mantle field on an ?Nd(t) versus (87Sr/86Sr) i diagram. We propose that the Yandangshan syenite was generated by pyroxene‐dominated high‐pressure fractional crystallization from basaltic magma that was derived from an enriched mantle source. Although coexisting Yandangshan rhyolites have Sr–Nd isotopic compositions similar to the Yandangshan syenite, they were not derived from the same source. Instead, the rhyolitic magma was produced by partial melting of crustal materials as a result of the underplating of basaltic magma. The crust‐like Sr–Nd–Hf isotopic signature of the Yandangshan syenite is ascribed to mantle sources that were enriched by subducted sediments. Formation of Yandangshan syenite may represent roll‐back of the subducting palaeo‐Pacific plate and migration of the arc front to the Yandangshan area at ~98 Ma.  相似文献   

14.
Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.  相似文献   

15.
The newly discovered Zhunuo porphyry Cu-Mo-Au deposit is located in the western part of the Gangdese porphyry copper belt in southern Tibet, SW China. The granitoid plutons in the Zhunuo region are composed of quartz diorite porphyry, diorite porphyry, granodiorite porphyry, biotite monzogranite and quartz porphyry. The quartz diorite porphyry yielded zircon U-Pb ages of 51.9±0.7 Ma(Eocene) using LA-ICP-MS, whereas the diorite porphyry, granodiorite porphyry, biotite monzogranite and quartz porphyry yielded ages ranging from 16.2±0.2 to 14.0±0.2 Ma(Miocene). CuMo-Au mineralization is mainly hosted in the Miocene granodiorite porphyry. Samples from all granitoid plutons have geochemical compositions consistent with high-K calc-alkaline series magmatism. The samples display highly fractionated light rare-earth element(REE) distributions and heavy REE distributions with weakly negative Eu anomalies on chondrite-normalized REE patterns. The trace element distributions exhibit positive anomalies for large-ion lithophile elements(Rb, K, U, Th and Pb) and negative anomalies for high-field-strength elements(Nb and Ti) relative to primitive mantlenormalized values. The Eocene quartz diorite porphyry yielded εNd(t) values ranging from-3.6 to-5.2,(~(87)Sr/~(86)Sr)i values in the range 0.7046–0.7063 and initial radiogenic Pb isotopic compositions with ranges of 18.599–18.657 ~(206)Pb/~(204)Pb, 15.642–15.673 ~(207)Pb/~(204)Pb and 38.956–39.199 ~(208)Pb/~(204)Pb. In contrast, the Miocene granitoid plutons yielded ε_(Nd)(t) values ranging from-6.1 to-7.3 and(87Sr/86Sr)i values in the range 0.7071–0.7078 with similar Pb isotopic compositions to the Eocene quart diorite. The Sr-Nd-Pb isotopic compositions of the rocks are consistent with formation from magma containing a component of remelted ancient crust. Zircon grains from the Eocene quartz diorite have ε_(Hf)(t) values ranging from-5.2 to +0.9 and two-stage Hf model ages ranging from 1.07 to 1.46 Ga, while zircon grains from the Miocene granitoid plutons have ε_(Hf)(t) values from-9.9 to +4.2 and two-stage Hf model ages ranging from 1.05–1.73 Ga, indicating that the ancient crustal component likely derives from Paleo- to Mesoproterozoic basement. This source is distinct from that of most porphyry Cu-Mo-Au deposits in the eastern part of the Gangdese porphyry copper belt, which likely originated from juvenile crust. We therefore consider melting of ancient crustal basement to have contributed significantly to the formation Miocene porphyry Cu-Mo-Au deposits in the western part of the Gangdese porphyry copper belt.  相似文献   

16.
ABSTRACT

Southeastern China is characterized by an extensive Late Mesozoic (Yanshanian) tectono-magmatic-metallogenic event. Although Late Cretaceous volcanism gradually weakened during the epilogue of the Yanshanian event, its petrogenesis and geodynamic processes remain unclear. In this study, we present new zircon U–Pb–Hf isotopic, whole-rock elemental, and Sr–Nd isotopic compositions data, for volcanic rocks from the Zhaixia Formation of the Shimaoshan Group in Fujian Province. The lower member of the Zhaixia Formation consists of basalts and rhyolites, and the upper member is only rhyolites. These volcanic rocks erupted in the early stage of Late Cretaceous, with basalts erupting earlier (ca. 99–98 Ma) than rhyolites (ca. 98–94 Ma). These basalts record high-K calc-alkaline to shoshonitic, light rare earth element (LREE)- and LILE-enrichment, high field strength element (HFSE)depletion with negligible Eu anomalies, and uniform whole-rock εNd(t) (–3 to –6) and zircon εHf(t) (–3.3 to –14.1) values. The overlying rhyolites record peraluminous and high-K calc-alkaline characteristics, LREE- and LILE-enrichment with negative Eu anomalies, and Nb–Ta depletion. The whole-rock εNd(t) and zircon εHf(t) values of these rhyolites both increase from the lower member (εNd(t), –1.5 to –4.7; εHf(t), –5.1 to –16.1) to the upper member (εNd(t), –0.5 to 0.1; εHf(t), –0.3 to –4.3). The features imply that these basalts were derived from the partial melting of the enriched lithospheric mantle and the overlying rhyolites from the melting of the crustal components, respectively. Data from the rhyolites in the upper member indicate that more juvenile, Nd–Hf isotopically depleted materials were injected into their source. During the Late Cretaceous, the new, fast rollback of the subducting slab triggered lithospheric extension and asthenospheric upwelling beneath the coastal regions, which induced the melting of lithospheric mantle and crustal components. As continued, the new round of basaltic underplating provided necessary heat to cause partial melting of the deep crust, including the younger, juvenile, and isotopically depleted crustal components.  相似文献   

17.
Mafic intrusive rocks (1.79–1.78 Ga) of the Transscandinavian Igneous Belt (TIB) and the c. 1.87 Ga Hedesunda Igneous Complex in the Fennoscandian Shield of south‐central Sweden were studied using whole‐rock and isotope geochemistry. Rock types vary from gabbros/norites (and leucogabbros) to quartz diorites, with Mg# between 76 and 49, and wt% SiO2 between 43.6 and 59.7, indicating some variation in evolutionary levels and variable cumulus components. Geochemical signatures are calc‐alkaline to shoshonitic, large ion lithophile elements and light rare earth elements enriched and high‐field strength elements depleted of continental‐arc type. εNd(t) ranges between +1.0 and +2.7, and 87Sr/86Sr(t) between 0.7020 and 0.7038. There is no systematic correlation between chemical parameters and isotope ratios. These isotopic data overlap with other mafic plutonic TIB rocks; samples from the Dala Province (DP) tend to overlap with the c. 1.7 Ga basic Dala lavas of TIB at slightly elevated relative Sr/Nd ratios. With two exceptions, the εNd(t) of +1 to +2 conform to an isotopically ‘mildly depleted’ source, typical for mafic TIB rocks and many Svecofennian rocks in the region. Reported values above εNd(t) +2.0 are scarce in the TIB. Mantle sources represent depleted mantle wedge material that was enriched by fluids/melts not long before (TDM c. 2.0 Ga), that is during subduction in the preceding Svecofennian (2.0–1.87 Ga) and/or during the TIB‐0&1 event (1.85–1.78 Ga). The palaeotectonic settings inferred are active continental margins; N–S‐directed convergence at 1.87 Ga and E–W‐directed at 1.79–1.78 Ga. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The 1.86 Ga Liangtun-Kuangdonggou complex (LKC) is one of the oldest alkaline syenite bodies so far discovered in China. This syenite suite has elevated contents of total alkali (K2O Na2O), with an average of 10.50%, and a mean Rittmann Index (σ) of 6.48. The intrusions have slightly higher concentrations of K2O than those of Na2O on a weight percent basis, indicating the rocks belong to potassium-rich alkaline syenite series. Total rare-earth element concentrations (∑REE ) of the rocks are relatively high, ranging from 324×10 -6 to 1314×10 -6, with a mean value of 666×10 -6. The REE patterns are subparallel and rightward steep with (La/Yb)N >33, showing mild negative to positive Eu anomalies (δEu: 0.63-1.15). All samples exhibit strong LILE and LREE enrichments and TNT (Nb, Ta, Ti) and P depletions in multi-element spidergrams. On the εSr(t)-εNd(t) correlation diagram, most analytical data points plot within the enriched mantle field with low ( 87Sr/86Sr)i ratios (0.7045-0.7051) and negative εNd(t) values (-3.72--3.97), falling among those kimberlites from Fuxian County, Liaoning Provinve, from Mengyin County, Shandong Province and the Ⅱ-type kimberlites from South Africa. These characteristics imply that the LKC-rocks may have the same source as the above-mentioned kimberlites, i.e., they have close connections to the materials derived from enriched mantle reservoirs, further revealing that the upper mantle beneath the northeastern part of the North China Plate had been highly enriched before 1.86 Ga. Geodynamically, the LKC-rocks were formed in a within-plate environment with close genetic connections to rift-related alkaline magma activities possibly controlled by ancient mantle plumes.  相似文献   

19.
The middle segment of the northern margin of the North China Craton (NCC) consists mainly of metamorphosed Archean Dantazi Complex, Paleoproterozoic Hongqiyingzi Complex and unmetamorphosed gabbro-anorthosite-meta-alkaline granite, as well as metamorphosed Late Paleozoic mafic to granitoid rocks in the Damiao-Changshaoying area. The -2.49 Ga Dantazi Complex comprises dioritic-trondhjemitic-granodoritic-monzogranitic gneisses metamorphosed in amphibolite to granulite facies. Petrochemical characteristics reveal that most of the rocks belong to a medium- to high-potassium calc-alkaline series, and display Mg^# less than 40, right-declined REE patterns with no to obviously positive Eu anomalies, evidently negative Th, Nb, Ta and Ti anomalies in primitive mantlenormalized spider diagrams, εNd(t)=+0.65 to -0.03, and depleted mantle model ages TDM=2.78-2.71 Ga. Study in petrogenesis indicates that the rocks were formed from magmatic mixing between mafic magma from the depleted mantle and granitoid magma from partial melting of recycled crustal mafic rocks in a continental margin setting. The 2.44-2.41 Ga Hongqiyingzi Complex is dominated by metamorphic mafic-granodioritic-monzogranitic gneisses, displaying similar petrochemical features to the Dantazi Complex, namely medium to high potassium calc-alkaline series, and the mafic rocks show evident change in LILEs, negative Th, Nb, Ta, Zr anomalies and positive P anomalies. And the other granitiod samples also exhibit negative Th, Nb, Ta, P and Ti anomalies. All rocks in the Hongqiyingzi Complex show right-declined REE patterns without Eu anomaly. The metamorphic mafic rocks with εNd(t) = -1.64 may not be an identical magmatic evolution series with granitoids that have εNd(t) values of +3.19 to +1.94 and TDM ages of 2.55-2.52 Ga. These granitic rocks originated from hybrid between mafic magma from the depleted mantle and magma from partial melting of juvenile crustal mafic rocks in an island arc setting. All the -311 Ma Late Paleozoic metamorphic mafic rocks and related granitic rocks show a medium-potassium calc-alkaline magmatic evolution series, characterized by high Mg^#, obviously negative Th, Nb, Ta anomalies and positive Sr anomalies, from no to strongly negative Ti anomalies and flat REE patterns with εNd(t) = +8.42, implying that the maflc magma was derived from the depleted mantle. However the other granitic rocks are characterized by right-declined REE patterns with no to evidently positive Eu anomalies, significantly low εNd(t) = -13.37 to -14.04, and TDM=1.97-1.96 Ga, revealing that the granitoid magma was derived from hybrid between maflc magma that came from -311 Ma depleted mantle and granitoid magma from Archean to Early Paleoproterozoic ancient crustal recycling. The geochemistry and Nd isotopic characteristics as well as the above geological and geochronological results indicate that the middle segment of the northern margin of the NCC mainly experienced four crustal growth episodes from Archean to Late Paleozoic, which were dominated by three continental marginal arc accretions (-2.49, -2.44 and 311 Ma), except the 1.76-1.68 Ga episode related to post-collisional extension, revealing that the crustal accretion of this segment was chiefly generated from arc accretion and amalgamation to the NCC continental block.  相似文献   

20.
~(40)Ar/~(39)Ar and zircon U-Pb geochronological and whole-rock geochemical analyses for the Laozanggou intermediate-acidic volcanic rocks from the western Qinling orogenic belt,Central China,constrain their petrogenesis and the nature of the Late Mesozoic lithospheric mantle.These volcanic rocks yield hornblende or whole-rock ~(40)Ar/~(39)Ar plateau ages of 128.3-129.7 Ma and zircon U-Pb age of131.3±1.3 Ma.They exhibit Si02 of 56.86-66.86 wt.%,K_2 O of 0.99-2.46 wt.% and MgO of 1.03-4.47 wt.%,with Mg# of 42-56.They are characterized by arc-like geochemical signatures with significant enrichment in LILE and LREE and depletion in HFSE.All the samples have enriched Sr-Nd isotopic compositions with initial ~(87)Sr/~(86)Sr ratios ranging from 0.7112 to 0.7149 and ε_(Nd)(t) values from 10.2 to 6.3.Such geochemical signatures suggest that these volcanic rocks were derived from enriched lithospherederived magma followed by the assimilation and fractional crystallization(AFC)process.The generation of the enriched lithospheric mantle is likely related to the modification of sediment-derived fluid in response to the Triassic subduction/collision event in Qinling orogenic belt.The early Cretaceous detachment of the lithospheric root provides a reasonable mechanism for understanding the petrogenesis of the Laozanggou volcanic sequence in the western Qinling orogenic belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号