首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Petrochemical characteristics of igneous, sedimentary, and metasomatic rocks; chemical and isotopic compositions of minerals and fluids; and PT parameters of mineral formation at the Nezhdaninsky deposit are reported. A model of hydrothermal system formation is developed on this basis. In addition to decreasing Ba/Rb and Li/Mg ratios in the course of the hydrothermal process, resulting in the formation of ore-bearing metasomatic rocks, increasing K/Ba and diminishing K/Cs ratios indicate the probable participation of magmatic fluid in the ore deposition. The agreement of the K/Rb and K/Ba ratios with the values typical of the main trend of igneous rocks (MT) implies that the K, Rb, and Ba contents were distributed in the ore-forming hydrothermal fluid according to the ratios in the source magmatic chamber. The K/Rb ratios in metasomatic rocks correspond to the MT and approach the pegmatitic-hydrothermal trend and the composition of orthomagmatic fluid of Mo-W greisen. Similar REE patterns of igneous and terrigenous rocks do not allow the REE source to be constrained unequivocally. The lithological control of lithophile element distribution testifies to the supply of host rock components to the hydrothermal system. All studied rocks and minerals are enriched in LREE. The REE total and the contribution of HREE decrease from preore to synore metasomatic rocks, from preore to regenerated carbonates, and from older to younger scheelite. A similar tendency is noted in granitoids of the Kurum pluton. The δ18O values of quartz range from +10.3 to +12.6‰ in Au-Mo-W zones, from +15.9 to +16.4‰ in metasomatic rocks, from +14.8 to +16.6‰ in gold-ore veins, and from +13.5 to +16.9‰ in silver-base-metal ore mineralization. The estimates of \(\delta ^{18} O_{H_2 O} \) suggest that water was supplied from a magmatic source (δ18O = +(5.5?9.0‰)) and as a product of sedimentary rock dehydration. High-temperature (up to 390°C) and highly concentrated (up to 31 wt % NaCl equiv) fluids participated in the mineral formation. The phase separation of the fluid into H2O-CO2 liquid and predominantly carbon dioxide gas was combined with mixing of a high-temperature and relatively highly concentrated chloride solution with a low-temperature and poorly mineralized fluid. The redox conditions varied from equilibrium with CH4-bearing fluid at the gold-molybdenum-tungsten stage to equilibrium with CO2-bearing fluid during the gold-ore stage.  相似文献   

2.
Despite the key importance of altered oceanic mantle as a repository and carrier of light elements (B, Li, and Be) to depth, its inventory of these elements has hardly been explored and quantified. In order to constrain the systematics and budget of these elements we have studied samples of highly serpentinized (>50%) spinel harzburgite drilled at the Mid-Atlantic Ridge (Fifteen-Twenty Fracture zone, ODP Leg 209, Sites 1272A and 1274A). In-situ analysis by secondary ion mass spectrometry reveals that the B, Li and Be contents of mantle minerals (olivine, orthopyroxene, and clinopyroxene) remain unchanged during serpentinization. B and Li abundances largely correspond to those of unaltered mantle minerals whereas Be is close to the detection limit. The Li contents of clinopyroxene are slightly higher (0.44-2.8 μg g−1) compared to unaltered mantle clinopyroxene, and olivine and clinopyroxene show an inverse Li partitioning compared to literature data. These findings along with textural observations and major element composition obtained from microprobe analysis suggest reaction of the peridotites with a mafic silicate melt before serpentinization. Serpentine minerals are enriched in B (most values between 10 and 100 μg g−1), depleted in Li (most values below 1 μg g−1) compared to the primary phases, with considerable variation within and between samples. Be is at the detection limit. Analysis of whole rock samples by prompt gamma activation shows that serpentinization tends to increase B (10.4-65.0 μg g−1), H2O and Cl contents and to lower Li contents (0.07-3.37 μg g−1) of peridotites, implying that—contrary to alteration of oceanic crust—B is fractionated from Li and that the B and Li inventory should depend essentially on rock-water ratios. Based on our results and on literature data, we calculate the inventory of B and Li contained in the oceanic lithosphere, and its partitioning between crust and mantle as a function of plate characteristics. We model four cases, an ODP Leg 209-type lithosphere with almost no igneous crust, and a Semail-type lithosphere with a thick igneous crust, both at 1 and 75 Ma, respectively. The results show that the Li contents of the oceanic lithosphere are highly variable (17-307 kg in a column of 1 m × 1 m × thickness of the lithosphere (kg/col)). They are controlled by the primary mantle phases and by altered crust, whereas the B contents (25-904 kg/col) depend entirely on serpentinization. In all cases, large quantities of B reside in the uppermost part of the plate and could hence be easily liberated during slab dehydration. The most prominent input of Li into subduction zones is to be expected from Semail-type lithosphere because most of the Li is stored at shallow levels in the plate. Subducting an ODP Leg 209-type lithosphere would mean only very little Li contribution from the slab. Serpentinized mantle thus plays an important role in B recycling in subduction zones, but it is of lesser importance for Li.  相似文献   

3.
Zoning patterns of light lithophile elements (the LLE: Li, Be, and B) in pyroxenes of some Martian basaltic meteorites have been used to suggest that the parent basalts were saturated in water and exsolved an aqueous fluid phase. Here, we examine LLE zoning in the augites of a quickly cooled Martian basalt that was not water-saturated—the Northwest Africa (NWA) 817 nakhlite. Analyses for LLE were by secondary ion mass spectrometry (SIMS), supported by EMP analyses of major and minor elements. In NWA 817, zoning of Be and B is consistent with igneous fractionations while Li abundances are effectively constant across wide ranges in abundance of other incompatible elements (Be, B, Ti, and Fe*). The lack of strong zoning in Li can be ascribed to intracrystalline diffusion, despite the rapid cooling of NWA 817. Most other nakhlites, notably Nakhla and Lafayette, cooled more slowly than did NWA 817 [Treiman, A.H., 2005. The nakhlite Martian meteorites: augite-rich igneous rock from Mars. Chem. Erde65, 203-270]. In them Li abundances are constant across augite, as are abundances of other elements. In Nakhla pyroxenes, all the LLE have effectively constant abundances across significant ranges in Fe* and Ti abundance. Lafayette is more equilibrated still, and shows constant abundances of LLE and nearly constant Fe*. A pyroxene in the NWA480 shergottite has constant Li abundances, and was interpreted to represent mineral fractionation coupled with exsolution of aqueous fluid. A simple quantitative model of this process requires that the partitioning of Li between basalt and aqueous fluid, LiDaq/bas, be 15 times larger than its experimentally determined value. Thus, its seems unlikely that the Li zoning pattern in NWA480 augite represents exsolution of aqueous fluid. Late igneous or sub-solidus diffusion seems more likely as is suggested by Li isotopic studies [Beck, P., Chaussidon, M., Barrat, J.-A., Gillet, Ph., Bohn, M., 2005. An ion-microprobe study of lithium isotopes behavior in nakhlites. Meteorit. Planet. Sci.40, Abstract #5118; Beck, P., Chaussidon, M., Barrat, J.-A., Gillet, Ph., Bohn, M., 2006. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim. Cosmochim. Acta70, in press]. Pyroxenes of the Shergotty and Zagami meteorites have nearly constant abundances of B, and Li that decreases core-to-rim. Applying the quantitative model to the constant B in these pyroxenes requires that BDaq/bas be 25 times larger than experimentally constrained values. Li abundances in pigeonite can be fit by the model of crystal fractionation and fluid loss, but only if LiDaq/bas is 30 times the experimentally constrained value. The Li abundance pattern in augite cannot be modeled by simple fractionation, suggesting some strong crystal-composition effects. Thus, Li and B distributions in Shergotty and Zagami pyroxenes cannot be explained by igneous fractionation and exsolution of aqueous vapor. Intracrystalline diffusion, complete for B and incomplete for Li, seems more consistent with the observed zoning patterns.  相似文献   

4.
The Totalp-Platta-Malenco ophiolites in the Eastern Central Alps offer a unique opportunity to study the behaviour of Li, Be and B in ultramafic rocks in response to serpentinization and to progressive Alpine metamorphism. These units represent the remnants of a former ocean-continent transition that was intensely serpentinized during exposure on the Jurassic seafloor of the Ligurian Tethys. From north to the south, three isograd reactions (lizardite⇒antigorite+brucite;lizardite+talc⇒antigorite;lizardite+tremolite⇒antigorite+diopside) have been used to quantify the evolution of the light element content of metamorphic minerals. We determined the Li, Be and B concentrations in major silicate minerals from the ultramafic bodies of Totalp, Platta and Malenco by secondary ion mass spectrometry. Mantle minerals have Be concentrations (e.g. <0.001-0.009 μg/g in olivine) similar to the metamorphic minerals that replace them (e.g. <0.001-0.016 μg/g in serpentine). The mantle signature of Be is thus neither erased during seafloor alteration nor by progressive metamorphism from prehnite-pumpellyite to epidote-amphibolite facies. In contrast, the Li and B inventories of metamorphic minerals are related to the lizardite-to-antigorite transition. Both elements display higher concentrations in the low-temperature serpentine polymorph lizardite (max. 156 μg/g Li, max. 318 μg/g B) than in antigorite (max. 0.11 μg/g Li, max. 12 μg/g B). Calculated average B/Li ratios for lizardite (∼1395) and antigorite (∼115) indicate that Li fractionates from B during the lizardite-to-antigorite transition during prograde metamorphism in ultramafic rocks. In subduction zones, this signature is likely to be recorded in the B-rich nature of forearc fluids.Relative to oceanic mantle the Be content of mantle clinopyroxene is much higher, but similar to Be values from mantle xenoliths and subduction-related peridotite massifs. These data support previous hypothesis that the mantle rocks from the Eastern Central Alps have a subcontinental origin. We conclude that Be behaves conservatively during subduction metamorphism of ultramafic rocks, at least at low-temperature, and thus retains the fingerprint of ancient subduction-related igneous events in mantle peridotites.  相似文献   

5.
Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks from the island of Syros (Greece) were studied, using secondary ion mass spectrometry, inductively coupled plasma optical emission spectrometry and prompt gamma neutron activation analysis. Partitioning between coexisting mineral phases was found to be rather constant and independent of element concentrations. For several mineral pairs, apparent partition coefficients vary in a narrow range, while concentrations vary by more than an order of magnitude. Hence, it was possible to establish sets of inter-mineral partition coefficients for Li, Be and B among 15 different high-pressure minerals. This data set provides important information on the behaviour of the light elements in different lithologies within subducting slabs from the onset of metamorphism to the eclogite stage. It is essential for modelling trace-element and isotope fractionation during subduction and dehydration of oceanic crust.  相似文献   

6.
The abundances of F, Cl and S in arc magmas are systematically higher than in other mantle‐derived magmas, suggesting that these elements are added from the slab along with H2O. We present ion probe microanalyses of F, Cl and S in serpentine minerals that represent the P–T evolution of the oceanic lithosphere, from its serpentinization at the ridge, to its dehydration at around 100 km depth during subduction. F, Cl and S are incorporated early into serpentine during its formation at mid‐ocean ridges, and serpentinized lithosphere then carries these elements to subduction zones. More than 50% of the F, Cl and S are removed from serpentine during the prograde metamorphic lizardite/antigorite transition. Due to the low solubility of F in water, and to the low amount of water released during this phase transition, the fluids mobilizing these elements must be dominated by SOX rather than H2O.  相似文献   

7.
In order to better understand the role of fluids during subduction and subsequent exhumation, we have investigated whole-rock and mineral chemistry (major and trace elements) and Li, B as well as O, Sr, Nd, Pb isotopes on selected continuous drill-core profiles through contrasting lithological boundaries from the Chinese Continental Scientific Drilling Program (CCSD) in Sulu, China. Four carefully selected sample sets have been chosen to investigate geochemical changes as a result of fluid mobilization during dehydration, peak metamorphism, and exhumation of deeply subducted continental crust. Our data reveal that while O and Sr-Nd-Pb isotopic compositions remain more or less unchanged, significant Li and/or B isotope fractionations occur between different lithologies that are in close contact during various metamorphic stages. Samples that are supposed to represent prograde dehydration as indicated by veins formed at high pressures (HP) are characterized by element patterns of highly fluid-mobile elements in the veins that are complementary to those of the host eclogite. A second sample set represents a UHP metamorphic crustal eclogite that is separated from a garnet peridotite by a thin transitional interface. Garnet peridotite and eclogite are characterized by a >10% difference in MgO, which, together with the presence of abundant hydroxyl-bearing minerals and compositionally different clinopyroxene grains demonstrate that both rocks have been derived from different sources that have been tectonically juxtaposed during subduction, and that hydrous silicate-rich fluids have been added from the subducting slab to the mantle. Two additional sample sets, comprising retrograde amphibolite and relatively fresh eclogite, demonstrate that besides external fluids, internal fluids can be responsible for the formation of amphibolite. Li and B concentrations and isotopic compositions point to losses and isotopic fractionation during progressive dehydration. On the other hand, fluids with isotopically heavier Li and B are added during retrogression. On a small scale, mantle-derived rocks may be significantly metasomatized by fluids derived from the subducted slab. Our study indicates that during high-grade metamorphism, Li and B may show different patterns of enrichment and of isotopic fractionation.  相似文献   

8.
Migmatites from Cone Peak, California, USA and the Satnur-Sangam road, Southern Karnataka, India contain coarser grained orthopyroxene-bearing leucosomes with subordinate biotite in finer grained hornblende-biotite-pyroxene-bearing hosts. At both localities the leucosomes are enriched in quartz and feldspar and have a higher ratio of pyroxene to hornblende + biotite compared to the host rocks. Biotite grains in leucosomes along the Satnur-Sangam road are concentrated at the margins of orthopyroxene grains and have lower abundances of Ti, Fe, and Cl and a higher abundance of F than biotite grains from the host rock. Fluorapatite grains in all rocks from both localities contain monazite inclusions similar to those produced experimentally by metasomatically induced dissolution and reprecipitation. Some fluorapatite grains at both localities are partially rimmed by allanite. The only compositional differences found between fluorapatite grains in the leucosomes and host rocks were higher concentrations of Cl in grains in leucosomes from Cone Peak. The mineralogies of the rocks suggest that the leucosomes formed by dehydration melting reactions that consumed feldspar, quartz, hornblende, and biotite and produced orthopyroxene. Allanite rims at the margins of fluorapatite grains may have formed by the later retrogression of monazite rims formed by incongruent dissolution of fluorapatite in the melt. Biotite grains at the margins of orthopyroxene crystals in the leucosomes from the Satnur-Sangam road apparently formed by retrogression of orthopyroxene upon the solidification of the anatectic melt. A similar high-grade retrogression did not affect orthopyroxene crystals at Cone Peak, indicating that H2O was removed from the crystallizing leucosomes probably in a low H2O activity fluid. Compositional differences between the paleosome and neosomes at Cone Peak are best explained by metasomatic interaction with concentrated brines while elevated Cl concentrations in fluorapatites in the leucosome suggest interaction with a Cl-bearing fluid. Brines may have been responsible for an exchange of elements between the host rock along the Satnur-Sangam road and zones of melt generation now marked by leucosomes, but fluid flow appears to have been less vigorous than at Cone Peak.  相似文献   

9.
The inter- and intragrain distribution of Li and Be in the subduction-related ultrahigh-pressure (UHP) garnet peridotite from Alpe Arami, Central Swiss Alps, was studied using secondary ion mass spectrometry. The data indicate substantial Li infiltration during exhumation of this ultramafic body. Orthopyroxene porphyroclasts and neoblasts are characterised by low Li contents (0.11-0.36 µg/g) typical of depleted peridotites, whereas Li zonation profiles across porphyroclasts of garnet and clinopyroxene document a metasomatic addition of Li. Small clinopyroxene grains in the matrix contain extremely high and variable abundances of Li (4-16 µg/g). In marked contrast to the behaviour of Li, the abundances of Be (77-134 ng/g) are similar in all textural types of clinopyroxene. Olivine porphyroclasts and neoblasts are characterised by somewhat elevated Li contents (0.95-1.79 µg/g), typical of fertile lherzolites. All textural types of clinopyroxene in the Alpe Arami peridotite are enriched in Li, providing evidence for infiltration of Li-rich and Be-poor aqueous solutions after the peak of UHP metamorphism. The lack of Li enrichment in orthopyroxene is consistent with orthopyroxene dissolution and formation of secondary olivine and clinopyroxene during metasomatism. Cr-diopside pyroxenite veins and boudins within the peridotite show low abundances of Li, with 0.7-2.5 µg/g in clinopyroxene and 1.1-1.5 µg/g in olivine. These pyroxenites likely represent precipitates from aqueous solutions which infiltrated the host peridotite after Li enrichment of the peridotite. A slab-derived nature of the metasomatic agent is suggested by the general lack of Ti enrichment in the Alpe Arami rocks.  相似文献   

10.
赵一鸣  李大新 《地球学报》1987,9(2):237-252
我国个旧锡矿是闻名中外最大的锡矿床之一,矿床中除含锡外,还伴生铜、钴、锌、钨、铋、铍及稀有元素。矿化主要产于燕山期花岗岩接触带及其附近的三叠纪碳酸盐围岩中的交代岩。本文着重讨论含锡花岗岩接触带交代岩的类型。矿物组合、分带性、岩石化学特征及其与矿化的关系,把各类含矿交代建造作为一个有成团联系的统一体——交代系列来考虑。  相似文献   

11.
ABSTRACT

Metaconglomerates in the lawsonite–blueschist facies unit of the Catalina Schist (California) contain gabbroic and dioritic clasts exhibiting evidence for extensive metasomatism during high-P/T metamorphism. We performed whole-rock and in situ analyses of these metaconglomerate clasts to better constrain the composition of infiltrating fluids and to elucidate the history of chemical alteration. Petrographic evidence for this alteration includes replacements of plagioclase by phengite and sodic amphibole rims developed on igneous hornblende. These observations regarding mineral replacement are reinforced by corresponding shifts in chemical compositions. Relative to compositions of presumed protoliths, whole-rock compositions of the metaconglomerate clasts show enrichments in elements that are relatively mobile in aqueous fluids (LILE: K, Rb, Cs, and Ba; Li, B, N), and elevated δ15N, and show depletions in Ca and Sr. Electron and ion microprobe data, and analyses of mineral separates, show that phengite and sodic amphibole are enriched in LILE and Li and B, respectively, relative to the igneous phases they have replaced. Oxygen and C isotope compositions of finely disseminated calcite in the clasts, and of calcite in veins cross-cutting or mantling the clasts, are consistent with crystallization from fluids previously equilibrated with metasedimentary rocks within the same unit. The same fluids are implicated as the source for the Li, B, N, and LILE enrichments. These metaconglomerate clasts provide unique records of forearc metasomatism due to the presumed extremely low and well-constrained concentrations of fluid-mobile elements in their protoliths and the previously published, larger-scale fluid–rock context into which the observed metasomatic changes can be placed.  相似文献   

12.
Skarns, ores and hydrothermally metasomatic rocks associated with some major skarn iron deposits in China contain abundant volatile components, such as F, Cl and H2O. Alkaline (sodic or potassic) metasomatism is obviously evident in the magmatic and other alumo-silicate wall rocks. They may serve as important ore-searching indicators. In this paper, the probable source of iron fluids, transport forms of iron and conditions of precipitation of magnetite are also discussed. From the studies of major skarn iron deposits in China, the authors hold that volatile components, such as F, Cl, H2O, etc., and alkaline (K, Na) metasomatism play a very important role in the formation of this type of iron deposits[1, 2, 3].  相似文献   

13.
The lower Austroalpine orthogneiss-micachist complex of the Sopron-Fertörákos area of W. Hungary contains Mg-chlorite-muscovite-quartzphyllites (leuco- phyllite) and Mg-chlorite-bearing kyanite quartzites whose chemical compositions differ greatly from their surrounding rocks. Formation of leucophyllites took place in shear zones and was associated with depletion in alkalies and iron and enrichment of magnesium and H2O. Mg-zonation of relict igneous muscovites of leucophyllites and changes in the whole rock chemical compositions suggest Mg-metasomatism. Material gains and losses have been assessed using the composition-volume relationship approach. Proceeding from metagranite through transition rocks to leucophyllites, MgO, H2O, FeO, and alkalies show continuously increasing dispersion in isocon plots with Mg-enrichment even in sheared gneiss not in contact with leucophyllite. The metasomatic processes that formed the Mg-rich rocks may be similar to those responsible for the formation of high pressure whiteschists in the Central and Western Alps. The geochemical characteristics of the Dora Maira whiteschists (Italy) and their country gneisses are very similar to those of the Sopron leucophyllites, supporting the theory that Mg-metasomatism produced the whiteschist chemistry. On the basis of oxygen isotope compositions of relict igneous muscovites, the precursor granitic rock had a δ18O value around 13‰ proving its crustal anatectic origin. The leucophyllites have whole rock oxygen isotope compositions around 8.5‰ which is in conflict with the theory of an Mg-rich sedimentary protolith. Rather, the low δ18O values reflect fluid/rock interaction with a low δ18O fluid. Quartz-mineral oxygen isotope fractionations yield a metamorphic temperature of 560 ± 30 °C which agrees with earlier estimates from mineral stabilities. Silicon contents of phengites correspond to a metamorphic pressure of ~13 GPa at this temperature indicating eclogite facies metamorphism. The fluids in equilibrium with leucophyllites had oxygen isotope compositions around 7.9‰, similar to those calculated for the ultrahigh pressure Dora Maira whiteschists (7.6‰), further supporting the genetic link between the leucophyllites and whiteschists. Hydrogen isotope compositions of mixed white mica + chlorite samples from leucophyllites range from ?40 to ?35‰, correlating with chlorite contents. The calculated endmember chlorite and white mica have δD values of ?30 and ?40‰, respectively. The similar δD values of the white micas in leucophyllites, gneisses and metagranites suggest an overall equilibration with respect to H isotopes. The calculated δD value of the fluid is approximately 0‰, suggesting a seawater origin. This conclusion was also reached for the Dora Maira whiteschists. A possible fluid source that satisfies both metasomatic and isotopic data is dehydration of hydrothermally altered oceanic crust. The mafic–ultramafic complex of the Alpine Penninic unit underlying the Austroalpine nappes is a likely candidate. The subduction and subsequent dehydration of the ophiolite series would supply the Mg-rich fluids whose migration brought about the metasomatic alteration of the overlying gneiss-micaschist complexes.  相似文献   

14.
Multiple origins of zircons in jadeitite   总被引:1,自引:1,他引:0  
Jadeitites form from hydrothermal fluids during high pressure metamorphism in subduction environments; however, the origin of zircons in jadeitite is uncertain. We report ion microprobe analyses of δ18O and Ti in zircons, and bulk δ18O data for the jadeitite whole-rock from four terranes: Osayama serpentinite mélange, Japan; Syros mélange, Greece; the Motagua Fault zone, Guatemala; and the Franciscan Complex, California. In the Osayama jadeitite, two texturally contrasting groups of zircons are identified by cathodoluminescence and are distinct in δ18O: featureless or weakly zoned zircons with δ18O = 3.8 ± 0.6‰ (2 SD, VSMOW), and zircons with oscillatory or patchy zoning with higher δ18O = 5.0 ± 0.4‰. Zircons in phengite jadeitite from Guatemala and a jadeitite block from Syros have similar δ18O values to the latter from Osayama: Guatemala zircons are 4.8 ± 0.7‰, and the Syros zircons are 5.2 ± 0.5‰ in jadeitite and 5.2 ± 0.4‰ in associated omphacitite, glaucophanite and chlorite-actinolite rinds. The δ18O values for most zircons above fall within the range measured by ion microprobe in igneous zircons from oxide gabbros and plagiogranites in modern ocean crust (5.3 ± 0.8‰) and measured in bulk by laser fluorination of zircons in equilibrium with primitive magma compositions or the mantle (5.3 ± 0.6‰). Titanium concentrations in these zircons vary between 1 and 19 ppm, within the range for igneous zircons worldwide. Values of δ18O (whole-rock) ≅ δ18O (jadeite) and vary from 6.3 to 10.1‰ in jadeitites in all four areas.  相似文献   

15.
Volatile element, major and trace element compositions were measured in glass inclusions in olivine from samples across the Kamchatka arc. Glasses were analyzed in reheated melt inclusions by electron microprobe for major elements, S and Cl, trace elements and F were determined by SIMS. Volatile element–trace element ratios correlated with fluid-mobile elements (B, Li) suggesting successive changes and three distinct fluid compositions with increasing slab depth. The Eastern Volcanic arc Front (EVF) was dominated by fluid highly enriched in B, Cl and chalcophile elements and also LILE (U, Th, Ba, Pb), F, S and LREE (La, Ce). This arc-front fluid contributed less to magmas from the central volcanic zone and was not involved in back arc magmatism. The Central Kamchatka Depression (CKD) was dominated by a second fluid enriched in S and U, showing the highest S/K2O and U/Th ratios. Additionally this fluid was unusually enriched in 87Sr and 18O. In the back arc Sredinny Ridge (SR) a third fluid was observed, highly enriched in F, Li, and Be as well as LILE and LREE. We argue from the decoupling of B and Li that dehydration of different water-rich minerals at different depths explains the presence of different fluids across the Kamchatka arc. In the arc front, fluids were derived from amphibole and serpentine dehydration and probably were water-rich, low in silica and high in B, LILE, sulfur and chlorine. Large amounts of water produced high degrees of melting below the EVF and CKD. Fluids below the CKD were released at a depth between 100 and 200 km due to dehydration of lawsonite and phengite and probably were poorer in water and richer in silica. Fluids released at high pressure conditions below the back arc (SR) probably were much denser and dissolved significant amounts of silicate minerals, and potentially carried high amounts of LILE and HFSE. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
We compiled a database containing more than 480000 determinations for 73 elements in melt inclusions in minerals and quenched glasses of volcanic rocks. These data were used to estimate the mean contents of major, volatile, and trace elements in igneous melts from main geodynamic settings. The following settings were distinguished: (I) oceanic spreading zones (mid-ocean ridges); (II) zones of mantle plume activity on oceanic plates (oceanic islands and plateaus); (III) and (IV) settings related to subduction processes, including (III) zones of island-arc magmatism generated on the oceanic crust and (IV) magmatic zones of active continental margins involving the continental crust into magma generation processes; (V) intracontinental rifts and continental hot spots; and (VI) back-arc spreading centers. The histogram of SiO2 contents in the natural igneous melts of all geodynamic settings exhibits a bimodal distribution with two maxima at SiO2 contents of 50–52 wt % and 72–74 wt %. The range 62–64 wt % SiO2 comprises the minimum number of determinations. Primitive mantle-normalized spidergrams were constructed for average contents of elements in the igneous melts of basic, intermediate, and acidic compositions from settings I–V. The diagrams reflect the characteristic features of melt compositions for each geodynamic setting. On the basis of the analysis of data on the composition of melt inclusions and glasses of rocks, average ratios of incompatible trace and volatile components (H2O/Ce, K2O/Cl, Nb/U, Ba/Rb, Ce/Pb, etc.) were estimated for the igneous melts of all of the settings. Variations of these ratios were determined, and it was shown that, in most cases, the ratios of incompatible elements are significantly different between settings. The difference is especially pronounced for the ratios of elements with different degrees of incompatibility (e.g., Nb/Yb) and for some ratios with volatile components (e.g., K2O/H2O).  相似文献   

17.
The present study documents that the trace-element distribution in granitic quartz is highly sensitive to CAFC processes in granitic melts. Igneous quartz efficiently records both the origin and the evolution of the granitic pegmatites. Aluminium, P, Li, Ti, Ge and Na in that order of abundance, comprises >95% of the trace elements. Most samples feature >1 ppm of any of these elements. The remnant 5% includes K, Fe, Be, B, Ba and Sr whereas the other elements are present at concentrations lower than the detection limit. Potassium, Fe, Be and Ti are relatively compatible hence obtain the highest concentrations in early formed quartz. Phosphorous, Ge, Li and Al are relatively incompatible and generally obtain the highest concentrations in quartz that formed at lower temperatures from more evolved granitic melts. The Ge/Ti, the Ge/Be, the P/Ge and the P/Be ratios of quartz are strongly sensitive to the origin and evolution of the granitic melts and similarly the Rb/Sr and the Rb/K ratios of K-feldspars may be utilised in petrogenetic interpretations. However, the quartz trace element ratios are better at distinguishing similarities and differences in the origin and evolution of granitic melts. After evaluating the different trace element ratios, the Ge/Ti ratio appears to be most robust during subsolidus processes in the igneous systems, hence probably should be the preferred ratio for analysing and understanding petrogenetic processes in granitic igneous rocks.Editorial responsibility: J. Hoefs  相似文献   

18.
 The parameters which control the behaviour of isovalent trace elements in magmatic and aqueous systems have been investigated by studying the distribution of yttrium, rare-earth elements (REEs), zirconium, and hafnium. If a geochemical system is characterized by CHArge-and-RAdius-Controlled (CHARAC) trace element behaviour, elements of similar charge and radius, such as the Y-Ho and Zr-Hf twin pairs, should display extremely coherent behaviour, and retain their respective chondritic ratio. Moreover, normalized patterns of REE(III) should be smooth functions of ionic radius and atomic number. Basic to intermediate igneous rocks show Y/Ho and Zr/Hf ratios which are close to the chondritic ratios, indicating CHARAC behaviour of these elements in pure silicate melts. In contrast, aqueous solutions and their precipitates show non-chondritic Y/Ho and Zr/Hf ratios. An important process that causes trace element fractionation in aqueous media is chemical complexation. The complexation behaviour of a trace element, however, does not exclusively depend on its ionic charge and radius, but is additionally controlled by its electron configuration and by the type of complexing ligand, since the latter two determine the character of the chemical bonding (covalent vs electrostatic) in the various complexes. Hence, in contrast to pure melt systems, aqueous systems are characterized by non-CHARAC trace element behaviour, and electron structure must be considered as an important additional parameter. Unlike other magmatic rocks, highly evolved magmas rich in components such as H2O, Li, B, F, P, and/or Cl often show non-chondritic Y/Ho and Zr/Hf ratios, and “irregular” REE patterns which are sub-divided into four concave-upward segments referred to as “tetrads”. The combination of non-chondritic Y/Ho and Zr/Hf ratios and lanthanide tetrad effect, which cannot be adequately modelled with current mineral/melt partition coefficients which are smooth functions of ionic radius, reveals that non-CHARAC trace element behaviour prevails in highly evolved magmatic systems. The behaviour of high field strength elements in this environment is distinctly different from that in basic to intermediate magmas (i.e. pure silicate melts), but closely resembles trace element behaviour in aqueous media. “Anomalous” behaviour of Y and REEs, and of Zr and Hf, which are hosted by different minerals, and the fact that these minerals show “anomalous” trace element distributions only if they crystallized from highly evolved magmas, indicate that non-CHARAC behaviour is a reflection of specific physicochemical properties of the magma. This supports models which suggest that high-silica magmatic systems which are rich in H2O, Li, B, F, P, and/or Cl, are transitional between pure silicate melts and hydrothermal fluids. In such a transitional system non-CHARAC behaviour of high field strength elements may be due to chemical complexation with a wide variety of ligands such as non-bridging oxygen, F, B, P, etc., leading to absolute and relative mineral/melt or mineral/aqueous-fluid partition coefficients that are extremely sensitive to the composition and structure of this magma. Hence, any petrogenetic modelling of such magmatic rocks, which utilizes partition coefficients that have not been determined for the specific igneous suite under investigation, may be questionable. But Y/Ho and Zr/Hf ratios provide information on whether or not the evolution of felsic igneous rocks can be quantitatively modelled: samples showing non-chondritic Y/Ho and Zr/Hf ratios or even the lanthanide tetrad effect should not be considered for modelling. However, the most important result of this study is that Y/Ho and Zr/Hf ratios may be used to verify whether Y, REEs, Zr, and Hf in rocks or minerals have been deposited from or modified by silicate melts or aqueous fluids. Received: 4 September 1995 / Accepted: 30 October 1995  相似文献   

19.
Based on the generalization of data on melt inclusions and quenched glasses, the average compositions of subduction (island arc and active continental margin settings) basic magmas were estimated. The main geochemical features of the average composition of these magmas are significant depletion in Nb and Ta, less significant depletion in Ti, Zr, and Sm, and enrichment in Cl, H2O, F, and P in the primitive mantlenormalized patterns. The average normalized contents of moderately incompatible HREE in these magmas are close to those in the basic magmas of other geodynamic settings. Subduction basic magmas exhibit negative correlation of Li, Y, Dy, Er, Yb, Lu, and Ti contents with MgO content. Most of incompatible elements (Nb, Ta, U, Th, LREE) do not correlate with MgO, but correlate with each other and K2O. Variations in element contents are related to crystallization differentiation, magma mixing, and possibly, participation of several sources. The water content in the island arc basic magmas varies from almost zero value to more than 6 wt %. Most compositions are characterized by weak negative correlation between H2O and MgO contents, but some compositions define a negative correlation close to that in magmas of mid-ocean ridges (MOR). Considered magmas demonstrate distinct positive correlation between MgO content and homogenization temperature, practically coinciding with that of MOR magmas. Modeling of phase equilibria revealed widening of crystallization field of olivine in the magmas of subduction zones compared to MOR magmas. This can be related to the high water content in subduction magmas. Simultaneous liquidus crystallization of olivine and clinopyroxene in subduction magmas occurs at pressure approximately 5 kbar higher than that of MOR magmas. Based on the average ratios of trace element to K2O content, we determined the average compositions for subduction magma sources. Relative to depleted mantle, they are enriched in all incompatible elements, with positive anomalies of U, Rb, Ba, B, Pb, Cl, H2O, F, and S, and negative anomalies of Th, K, Be, Nb, Ta, Li, Nd, Pb, and Ti. A general elevated content of incompatible elements indicates a reworking of the rocks of mantle wedge by fluids and melts that were released from the upper layers of subducted plate.  相似文献   

20.
The geologic position, development stages, age, and geochemical features of metasomatic and felsic igneous rocks along the southern edge of the Siberian craton are compared. The comparison shows that all the studied metasomatic rocks are confined to the faults feathering the main suture zone of the craton. From Biryusa zone in the southwest and farther northeast, from Primor’e zone to Davan shear zone and Katugino-Ayan zone in the Aldan area, the metasomatic rocks are of similar composition but show higher mineralization. The process begins with blastocataclasis (barren stage). During the second stage, ore-bearing (Nb, Zr, Hf, and REE) potassic solutions circulate along the blastocataclastic zones. They form metasomatic potassic rocks of the early alkaline stage, expressed in subalkaline granitization. The next (acid) stage is marked by the formation of greisens with Sn, Be, Th, U, and W mineralization. The igneous stage might precede or follow the metasomatism. At the time of ongoing tectonic movements, it produces rapakivi-like granites rich in the same elements. Also, a huge volcanoplutonic belt develops along the craton edge during this time. The geochemical features of its felsic volcanics are close to those of the metasomatic rocks and granites. The age of all these rocks is within 2.1-1.6 Ga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号