首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
Physical and chemical parameters were measured in a subtropical estuary with a blind river source in southwest Florida, United States, to assess seasonal discharge of overland flow and groundwater in hydrologic mixing. Water temperature, pH, salinity, alkalinity, dissolved inorganic carbon (DIC), δ18O, and δ13CDIC varied significantly due to seasonal rainfall and climate. Axial distribution of the physical and chemical parameters constrained by tidal conditions during sampling showed that river water at low tide was a mixture of freshwater from overland flow and saline ground-water in the wet season and mostly saline groundwater in the dry season. Relationships between salinity and temperature, δ18O, and DIC for both the dry and wet seasons showed that DIC was most sensitive to seawater mixing in the estuary as DIC changed in concentration between values measured in river water at the tidal front to the most seaward station. A salinity-δ13CDIC model was able to describe seawater mixing in the estuary for the wet season but not for the dry season because river water salinity was higher than that of seawater and the salinity gradient between seawater and river water was small. A DIC-δ13CDIC mixing model was able to describe mixing of carbon from sheet flow and river water at low tide, and river water and seawater at high tide for both wet and dry seasons. The DIC-δ13CDIC model was able to predict the seawater end member DIC for the wet season. The model was not able to predict the seawater end member DIC for the dry season data due to secondary physical and biogeochemical processes that altered estuarine DIC prior to mixing with seawater. The results of this study suggest that DIC and δ13CDIC can provide additional insights into mixing of river water and seawater in estuaries during periods where small salinity gradients between river water and seawater and higher river water salinities preclude the use of salinity-carbon models.  相似文献   

2.
Net ecosystem metabolism (NEM) was measured in the Piauí River estuary, NE Brazil. A mass balance of C, N, and P was used to infer its sources and sinks. Dissolved inorganic carbon (DIC) concentrations and fluxes were measured over a year along this mangrove dominated estuary. DIC concentrations were high in all estuarine sections, particularly at the fluvial end member at the beginning of the rainy season. Carbon dioxide concentrations in the entire estuary were supersaturated throughout the year and highest in the upper estuarine compartment and freshwater, particularly at the rainy season, due to washout effects of carbonaceous soils and different organic anthropogenic effluents. The estuary served as a source of DIC to the atmosphere with an estimated flux of 13 mol CO2 m?2 year?1. Input from the river was 46 mol CO2 m?2 year?1. The metabolism of the system was heterotrophic, but short periods of autotrophy occurred in the lower more marine portions of the estuary. The pelagic system was more or less balanced between auto- and heterotrophy, whereas the benthic and intertidal mangrove region was heterotrophic. Estimated annual NEM yielded a total DIC production in the order of 18 mol CO2 m?2 year?1. The anthropogenic inputs of particulate C, N, and P, dissolved inorganic P (DIP), and DIC were significant. The fluvial loading of particulate organic carbon and dissolved inorganic nitrogen (DIN) was largely retained in two flow regulation and hydroelectric reservoirs, promoting a reduction of C:N and C:P particulate ratios in the estuary. The net nonconservative fluxes obtained by a mass balance approach revealed that the estuary acts as a source of DIP, DIN, and DIC, the latter one being almost equivalent to the losses to the atmosphere. Mangrove forests and tidal mudflats were responsible for most of NEM rates and are the main sites of organic decomposition to sustain net heterotrophy. The main sources for this organic matter are the fluvial and anthropogenic inputs. The mangrove areas are the highest estuarine sources of DIP, DIC, and DIN.  相似文献   

3.
Groundwater may be highly enriched in dissolved carbon species, but its role as a source of carbon to coastal waters is still poorly constrained. Exports of deep and shallow groundwater-derived dissolved carbon species from a small subtropical estuary (Korogoro Creek, Australia, latitude ?31.0478°, longitude 153.0649°) were quantified using a radium isotope mass balance model (233Ra and 224Ra, natural groundwater tracers) under two hydrological conditions. In addition, air-water exchange of carbon dioxide and methane in the estuary was estimated. The highest carbon inputs to the estuary were from deep fresh groundwater in the wet season. Most of the dissolved carbon delivered by groundwater and exported from the estuary to the coastal ocean was in the form of dissolved inorganic carbon (DIC; 687 mmol m?2 estuary day?1; 20 mmol m?2 catchment day?1, respectively), with a large export of alkalinity (23 mmol m?2 catchment day?1). Average water to air flux of CO2 (869 mmol m?2 day?1) and CH4 (26 mmol m?2 day?1) were 5- and 43-fold higher, respectively, than the average global evasion in estuaries due to the large input of CO2- and CH4-enriched groundwater. The groundwater discharge contribution to carbon exports from the estuary for DIC, dissolved organic carbon (DOC), alkalinity, CO2, and CH4 was 22, 41, 3, 75, and 100 %, respectively. The results show that CO2 and CH4 evasion rates from small subtropical estuaries surrounded by wetlands can be extremely high and that groundwater discharge had a major role in carbon export and evasion from the estuary and therefore should be accounted for in coastal carbon budgets.  相似文献   

4.
Natural and anthropogenic impacts on karst ground water, Zunyi, Southwest China, are discussed using the stable isotope composition of dissolved inorganic carbon and particulate organic carbon, together with carbon species contents and water chemistry. The waters can be mainly characterized as HCO3–Ca type, HCO3 · SO4–Ca type, or HCO3 · SO4–Ca · Mg type, according to mass balance considerations. It is found that the average δ13CDIC values of ground waters are higher in winter (low-flow season) than in summer (high-flow season). Lower contents of dissolved inorganic carbon (DIC) and lower values of δ13CDIC in summer than in winter, indicate that local rain events in summer and a longer residence time of water in winter play an important role in the evolution of ground water carbon in karst flow systems; therefore, soil CO2 makes a larger contribution to the DIC in summer than in winter. The range of δ13CDIC values indicate that dissolved inorganic carbon is mainly controlled by the rate of carbonate dissolution. The concentrations of dissolved organic carbon and particulate organic carbon in most ground water samples are lower than 2.0 mg C L−1 and 0.5 mg C L−1, respectively, but some waters have slightly higher contents of organic carbon. The waters with high organic carbon contents are generally located in the urban area where lower δ13CDIC values suggest that urbanization has had an effect on the ground water biogeochemistry and might threaten the water quality.  相似文献   

5.
A “snap shot” survey of the Mississippi estuary was made during a period of low river discharge, when the estuarine mixing zone was within the deltaic channels. Concentrations of H+, Ca2+, inorganic phosphorus and inorganic carbon suggest that the waters of the river and the low salinity (<5‰) portion of the estuary are near saturation with respect to calcite and sedimentary calcium phosphate. An input of oxidized nitrogen species and N2O was observed in the estuary between 0 and 4‰ salinity. The concentrations of dissolved NH4 + and O2, over most of the estuary, appeared to be influenced by decomposition of terrestrial organic matter in bottom sediments. The estuarine bottom also appears to be a source of CH4 which has been suggested to originate from petroleum shipping and refining operations. Estuarine mixing with offshore Gulf waters was the dominant influence on distributions of dissolved species over most of the estuary (i.e., from salinities >5‰). The phytoplankton abundance (measured as chlorophylla) increased as the depth of the mixed layer decreased in a manner consistent with that expected for a light-limited ecosystem. Fluxes of NO3 ?+NO2 ? and soluble inorganic phosphorus to the Gulf of Mexico were estimated to be 3.4±0.2×103 g N s?1 and 1.9±0.2 g P s?1 respectively, at the time of this study.  相似文献   

6.
Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC?+?TOC) to the ocean during outgoing tides ranged from ??1.8±0.5?×?103 to 9.5±0.7?×?103?mol C h?1 during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10±4?×?106?mol C year?1. Following a major rain event (36 mm rain in 3 days), FDIC?+?TOC increased and reached values as high as 29.0 ±?0.7?×?103?mol C h?1. Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 ±?4?×?106?mol C year?1. These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.  相似文献   

7.
We report measurements of pH, total dissolved inorganic carbon (DIC), total or titration alkalinity (TAlk), Ca2+, Mg2+, sulfate, and sulfide data at the seawater-freshwater interface in a shallow groundwater aquifer in North Inlet, South Carolina. These measurements and a diagenetic modeling analysis indicate that the groundwaters at North Inlet are mixtures of seawater and freshwater end-members and are seriously modified by carbon dioxide inputs from organic carbon degradation via SO42− reduction across the entire salinity range and fermentation and CaCO3 dissolution in the low-salinity region. DIC and TAlk are several times higher than the theoretical dilution line, whereas Ca2+ is slightly higher and SO42− is somewhat lower than the dilution line. Partial pressure of CO2 in the groundwater is extremely high (0.05 to 0.12 atm). These deviations are consistent with theoretical predictions from known diagenetic reactions. Estimated groundwater DIC fluxes to the South Atlantic Bight from either the surficial aquifer (via salt marshes) or the Upper Floridan Aquifer (direct input) are significant when compared to riverine flux in this area.  相似文献   

8.
 The concentrations of N, P and Fe in surface sediments and interstitial and overlying (bottom and surface) waters of the Ashtamudi estuary located in the southwest coast of India are reported along with the various chemical species of N (NO2–N, NO3–N, NH3–N and total N) and P (organic P, inorganic P and total P) in interstitial and overlying waters and discussed in terms of the physico-chemical environment of the system. The interstitial water exhibits higher salinity values compared to bottom and surface waters, indicating the coupled effects of salt-wedge phenomena and gravitational convection of more saline-denser marine water downward through surface sediments. N, P and Fe as well as their chemical forms are enriched in the interstitial water compared to bottom and surface waters. However, the dissolved oxygen (DO) shows an opposite trend. The marked enrichment of NH3–N in the interstitial water and its marginal presence in bottom and surface waters, together with the substantial decrease in the DO concentrations of bottom water and consequent increase in the concentrations of NO2–N and NO3–N in interstitial and bottom waters, points to the nitrification process operating in the sediment-water interface of the Ashtamudi estuary. The enrichment of total N, P and Fe in the interstitial water compared to the overlying counterparts and the positive correlation of sediment N, P and Fe with mud contents as well as organic carbon indicate that these elements are liberated during the early diagenetic decomposition of organic matter trapped in estuarine muds. Received: 5 Oktober 1998 · Accepted: 9 February 1999  相似文献   

9.
The hydrogeochemical and carbon isotope characteristics of the Krka River, Slovenia, were investigated to estimate the carbon transfer from the land ecosystem in the watershed. During the 3-year sampling period (2008–2010), temperature, pH, electrical conductivity, major ion content, dissolved inorganic carbon (DIC) and dissolved organic carbon content, and the isotopic composition of DIC (δ13CDIC) were monitored in the main stream of the Krka River and its tributaries. The major solute composition of analysed waters is dominated by an input of HCO3 ?, Ca2+ and Mg2+ originating from carbonate dissolution. The Mg2+/Ca2+ and Mg2+/HCO3 ? molar ratio values ranging from 0.24 to 0.71 and 0.05 to 0.30, respectively, indicate a high degree of dolomite dissolution relative to calcite. Dissolved CO2 concentrations in the river were up to tenfold supersaturated relative to the atmosphere, resulting in supersaturation with respect to calcite and degassing of CO2 downstream. The δ13C values in river water range from ?15.6 to ?9.4 ‰ and are controlled by the input of tributaries, exchange with atmospheric CO2, degradation of organic matter, and dissolution of carbonates. The mass balance calculations for riverine DIC suggest that the contribution from carbonate dissolution and degradation of organic matter have major influence, whereas the exchange with atmospheric CO2 has minor influence on the inorganic carbon pool in the Krka River.  相似文献   

10.
An ephemeral estuarine turbidity maximum (ETM) occurs at high water in the macrotidal Taf estuary (SW Wales, United Kingdom). A new mechanism of ETM formation, due to resuspension and advection of material by flood tidal currents, is observed that differs from classical mechanisms of gravitational circulation and tidal pumping. The flood tide advances across intertidal sand flats in the main body of the estuary, progressively entraining material from the rippled sands. Resuspension creates, a turbid front that has suspended sediment concentrations (SSC) of about 4,000 mg I−1 by the time it reaches its landward limit which is also the landward limit of salt penetration. This turbid body constitutes the ETM. Deposition occurs at high slack water but the ETM retains SSC values up to 800 mg I−1, 1–2 orders of magnitude greater than ambient SSC values in the river and estuarine waters on either side. The ETM retreats down the estuary during the ebb; some material is deposited thinly across emergent intertidal flats and some is flushed out of the estuary. A new ETM is generated by the next flood tide. Both location and SSC of the ETM scale on Q/R3 where Q is tidal range and R is river discharge. The greatest expression of the ETM occurs when a spring tide coincides with low river discharge. It does not form during high river discharge conditions and is poorly developed on neap tides. Particles in the ETM have effective densities (120–160 kg m−3) that are 3–4 times less than those in the main part of the estuary at high water. High chlorophyll concentrations in the ETM suggest that flocs probably originate from biological production in the estuary, including production on the intertidal sand flats.  相似文献   

11.
We investigate the evolution of the salt field in a bar-built estuary after the tidal inlet is closed by sediment, isolating the estuary from the ocean. We show that seawater trapped by inlet closure in the Russian River Estuary, CA, undergoes a two-stage landward intrusion process that leads to widespread salt stratification throughout the estuary. This salinity intrusion extends to distances of several kilometers from the beach—into the “inner estuary” that is separated from the “outer estuary” by shallow sills and typically devoid of saline waters during tidal conditions when the mouth is open. We describe landward movement of saline waters during six closure events in 2009 and 2010, based on repeat boat-based conductivity-temperature-depth (CTD) surveys and bottom-mounted acoustic Doppler current profilers (ADCPs). While sills block the initial landward motion of dense saline waters due to gravitational adjustment (first stage of intrusion), these same sills facilitate a wind-induced, one-direction valve mechanism through which saline waters are pumped into the inner estuary. Saline waters that crest the shallow sill can drain into deeper pools in the inner estuary as a pulsed gravity current (second stage of intrusion). We use empirical orthogonal function (EOF) analysis to identify an internal seiche in the outer estuary that results in uplift of pycnocline waters during the night at the boundary to the inner estuary. EOF analysis of inner estuary currents and a horizontal Richardson number are used to suggest that nocturnal gravity current events in the inner estuary (beyond the blocking sill) occur as pulses initiated by the internal seiche in the outer estuary.  相似文献   

12.
The distribution of macroinfauna was quantified in subtidal, soft-bottom habitats, extending from the estuarine mouth to the tidal head of the Gamtoos—a small, shallow, temperate estuary situated on the south coast of South Africa. Sampling covered the full salinity gradient from fresh to marine waters, and all sediment types from marine sands to fluvial silts. A total of 35 taxa was recorded, of which 22 occurred throughout the year. Species richness and diversity declined from the seawater-dominated mouth region toward the fresh water section at the tidal head of the estuary. Sediment type generally bore no clear relation to biotic diversity. A marked drop in salinity between winter and summer sample series (Δ 0.2‰ to 24‰) coincided with a reduction of mean macrofaunal density by 70%, a more seaward relocation, and a compression of axial ranges of most taxa. Numerical classification and ordination of faunistically similar regions and of co-occurring species delineated four habitat zones along the longitudinal axis of the estuary which harbour four distinct macrofaunal assemblages: 1) A tidal inlet area with salinities close to seawater; clean, coarse, marine sands, rich in CaCO3 harbour a stenohaline fauna normally found on adjacent, marine sandy beaches. 2) In the lower reaches, where fine, fluvial silts of high organic content prevail, euryhaline polychaetes dominate the macrozoobenthic community; bottom salinities in this zone seldom dropped below 25‰ 3) The middle reaches, characterized by oligohaline- to polyhaline waters, stretch over sandy sediments of intermediate carbonate, silt, and organic fractions; the fauna comprises typical estuarine forms, which occurred throughout most of the estuary except at its seaward and landward limits. 4) The upper reaches encompass the limnetic waters near the tidal head of the estuary with sediments in this zone being composed mostly of coarse, clean sands, low in CaCO3; the macrobenthos in this region is dominated by taxa of freshwater origin, which generally do not penetrate seaward beyond the oligohaline waters, and by exceptionally euryhaline estuarine species. Salinity appears as the main factor in controlling faunal assemblages at both extremes of the estuarine gradient (i.e., tidal inlet and head), whereas sediment type delineates between communities in the mesohaline to polyhaline reaches. Axial (i.e., from tidal inlet to tidal head of the estuary) zonation patterns of macroinfauna broadly matched those of mesozooplankton and fishes, supporting the notion of a general structure underlying species distribution patterns in the Gamtoos estuary.  相似文献   

13.
Sediment trap deployments in estuaries provide a method for estimating the amount of organic material transported to the sediments from the euphotic zone. The amino acid composition of suspended particles, benthic sediment, and sediment-trap material collected at 2.4 m, 5.8 m, and 7.9 m depths in the Potomac Estuary was determined in stratified summer waters, and in well-mixed oxygenated waters (DO) in late fall. The total vertical flow, or flux, of material into the top traps ranged from 3 g m?2 d?1 in August to 4.9 g m?2 d?1 in October. The carbon and nitrogen fluxes increased in the deepest traps relative to the surface traps during both sampling periods, along with that of the total material flux (up to 47.3 g m?2 d?1 in the deepest trap), although the actual weight percent of organic carbon and organic nitrogen decreased with depth. Amino acid concentrations ranged from 129 mg g?1 in surface water particulate material to 22 mg g?1 in particulate material in 9-m-deep waters and in the benthic sediment. Amino acid concentrations from 2.4-mg-depth sediment traps averaged 104±29 mg g?1 in stratified waters and 164±81 mg g?1 in well-mixed waters. The deep trap samples averaed, 77.3±4.8 mg g?1 amino acids in summer waters and 37±16 mg g?1 in oxygenated fall waters. Amino acids comprised 13% to 39% of the organic carbon and 12% to 89% of the orgnaic nitrogen in these samples. Analysis of the flux results suggest that resuspension combined with lateral advection from adjacent slopes can account for up to 27% of the material in the deep traps when the estuary was well-mixed and unstratified. When the estuary was stratified in late summer, the amino acid carbon produced by primary productivity in the euphotic zone decreased by 85% (86% for total organic carbon) at the pycnocline at 6 m depth, leaving up to 15% of the vertical organic flux available for benthic sediment deposition.  相似文献   

14.
This paper deals with dissolved inorganic carbon (DIC) and organic carbon (DOC) in pore waters from a 150 m deep hole drilled through the carbonate barrier reef of Tahiti and its underlying basalt basement. Alkalinity-pH measurements were used to calculate the DIC species concentration, and DOC was analysed according to the high temperature catalytic oxidation technique. Salinity was used as a conservative tracer to help identify water origin and mixing within the hole. Water mixing, calcium carbonate dissolution and mineralization of organic carbon combined to form three distinct groups of pore water. In the deeper basalt layers, pore water with alkalinity of 1.4 meq kg?1 pH of 7.6 and p(CO2) of 1.2 mAtm was undersaturated with respect to both aragonite and calcite. In the intermediate carbonate layer, pore water with alkalinity of more than 2.0 meq kg?1, pH of 7.70 and p(CO2) of 1.4 mAtm was supersaturated with respect to both aragonite and calcite. The transition zone between those two groups extended between 80 and 100 m depth. The shift from aragonite undersaturation to supersaturation was mainly attributed to the mixing of undersaturated pore waters from the basalt basement with supersaturated pore waters from the overlaying limestone. In the top of the reef, inputs from a brackish water lens further increased p(CO2) up to 5.6 times the atmospheric P(CO2).  相似文献   

15.
This paper deals with dissolved inorganic carbon (DIC) and organic carbon (DOC) in pore waters from a 150 m deep hole drilled through the carbonate barrier reef of Tahiti and its underlying basalt basement. Alkalinity-pH measurements were used to calculate the DIC species concentration, and DOC was analysed according to the high temperature catalytic oxidation technique. Salinity was used as a conservative tracer to help identify water origin and mixing within the hole. Water mixing, calcium carbonate dissolution and mineralization of organic carbon combined to form three distinct groups of pore water. In the deeper basalt layers, pore water with alkalinity of 1.4 meq kg–1 pH of 7.6 and p(CO2) of 1.2 mAtm was undersaturated with respect to both aragonite and calcite. In the intermediate carbonate layer, pore water with alkalinity of more than 2.0 meq kg–1, pH of 7.70 and p(CO2) of 1.4 mAtm was supersaturated with respect to both aragonite and calcite. The transition zone between those two groups extended between 80 and 100 m depth. The shift from aragonite undersaturation to supersaturation was mainly attributed to the mixing of undersaturated pore waters from the basalt basement with supersaturated pore waters from the overlaying limestone. In the top of the reef, inputs from a brackish water lens further increased p(CO2) up to 5.6 times the atmospheric P(CO2).  相似文献   

16.
This paper examines how the mixing of freshwater and seawater, and related mixing of freshwater and marine particulate organic matter (POM) in the permanently stratified estuary of the River Krka, Croatia, are reflected in the stable isotope fingerprints of soft tissues and tubes of the serpulid Ficopomatus enigmaticus. The carbon stable isotope composition (δ13C values) of the river-borne POM is retained over long distances, causing a depletion in 13C of POM in brackish waters. A trophic depletion in 13C was recorded in serpulid soft tissues. The serpulid carbonate tubes were depleted in 13C even at locations with salinity close to that of the sea and were subject to large isotope fractionation between dissolved inorganic C (DIC) and carbonate caused by vital effects, making carbonate depleted in 13C by several per mil compared with DIC. These effects, though large in the freshwater zone, fade towards the sea. The carbonate δ18O values of tubes reflect the δ18O values of the water. The temperature-related differences in δ18O values of tubes from different sites are masked by source-related differences in the δ18O values of water arising from mixing of freshwater and seawater in the estuary. Therefore, in serpulide tubes, the terrestrial component can easily be overestimated because of vital effects during biomineralisation and trophic depletion in 13C in freshwater and brackish environments.  相似文献   

17.
The behaviour of dissolved Al in the Great Ouse estuary, in particular with respect to salinity, is complex. There is, however, evidence from field data as well as laboratory mixing experiments to suggest that flocculation and sorption mechanisms play important roles affecting the concentrations of dissolved Al during the early stages of estuarine mixing. In contrast, a near-buffering of dissolved Al occurs in the entire stretch of the estuary (salinity >0.2) with concentrations varying around 1.4 μg l−1. This distribution and lack of variation with salinity is attributable to sorption processes which might dominate over other processes in these turbid estuarine waters (suspended particulate load 48–888 mg l−1) impacting dissolved Al levels. Sorption models have been developed for both dissolved and leachable particulate Al concentrations in these waters. These observations provide compelling evidence of sorption processes that might be important in the geochemistry of Al in estuarine waters.  相似文献   

18.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   

19.
Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (δ13CDIC) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in 13C due to enhanced carbonate dissolution associated with the release of H2SO4 from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high δ34SSO4 and δ18OSO4 isotopic signatures of the mine drainage and the presence of presumptive SO4-reducing bacteria suggest that SO4 reduction activity also contributes C depleted in 13C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H2SO4 dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO2 outgassing.  相似文献   

20.
To characterize the isotopic composition of organisms at the base of the food web and the controls on their variability, the concentration and δ13C isotopic composition of dissolved inorganic carbon (DIC) and plankton δ13C, δ15N, and δ34S were measured. The measurements were made during periods of high and low river flow in Apalachicola Bay, Florida, United States, over 3 yr. DIC concentration and δ13C values were related to salinity, indicating that conservative mixing of riverine and marine waters was responsible for the overall distributions. The usefulness of DIC δ13C data for characterizing the trophic processes within the estuary was dependent upon the residence time of water within the season. Plankton δ13C values varied from −22‰ to −30‰ and were directly related to estuarine DIC δ13C, offset by a factor of roughly −20‰. This offset factor varied with salinity. Values of δ34S in estuarine plankton (station means ranged from 11.4‰ to 13.1‰) were depleted relative to marine plankton (17.7±0.4‰) possibly due to the admixture of34S-depleted sedimentary sulfide with estuarine samples. Values of δ34S in plankton were not related to δ13C values of plankton and were only weakly correlated to the salinity of the water from which the plankton were collected, indicating that marine sulfate was the primary source of planktonic sulfur. Values of δ15N in plankton varied from 5.5‰ to 10.7‰ and appeared related to dominance of the sample by phytoplankton or zooplankton. Estuarine plankton was15N enriched relative to offshore plankton and estuarine sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号