首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
纯化了捕集剂,用锍试金结合Te共沉淀富集,等离子体质谱法测定了地质样品中的铂族元素。全流程铂族元素回收率大于94%。一次熔样可同时测定6个铂族元素。按20g取样计算,方法检出限(ng/g)分别为:0024Ru,0013Rh,020Pd,0033Os,039Ir,012Pt;对标准GPt6平行测定5次,铂族元素相对标准偏差为1%(Os)~8%(Pt);对不同类型标样进行测定,测得结果与标准值基本吻合  相似文献   

2.
纯化了捕集剂,用锍试金结合Te共沉淀富集,等离子体质谱法测定了地质样品中的铂族元素,全流程铂族元素回收率大于94%,一次熔样可同时测定了6个铂族元素,按20g取样计算,方法检出限(ng/g)分别为0.024,Ru,0.013,Rh,0.20,Pd,0.033,Os0.39,Ir0.12Pt;对标准GPt-6平行测定5次,铂族元素相对标准偏差为1%(Os)~8%(Pt)对不同类型标样进行测定,测得结  相似文献   

3.
铂族元素中子活化分析的微型镍锍试金预富集方法研究   总被引:5,自引:1,他引:5  
李晓林  M.  Ebihara 《岩矿测试》2005,24(3):167-170
建立了适用于小样品(≤1g)中铂族元素分离富集的微型镍锍试金流程。讨论了试金熔剂、捕集剂的用量和比例,以及熔炼条件。化学回收实验显示铂族元素全流程回收率≥90%,分析精密度(RSD,n=6)为4.3%~7.7%。标准参考物质分析显示分析值与标准值基本吻合,表明所建立的微型镍锍试金流程是可靠的。  相似文献   

4.
该铂-金砂矿产于超基性岩体山前谷地的第四纪冲积-洪积层中。在60年代,前人曾对该铂-金砂矿作过初步评价,但对其中的铂族元素矿物未进行过矿物学研究。笔者于1992年夏对该砂矿作了调研,并对吕明鸿工程师所提供的该砂矿的铂族矿物样品进行了物理光学性质研究及电子探针和X射线分析。业已查明,它们主要是铱锇矿、钉铱锇矿、锇铱矿、自然锇、等轴铁铂矿;矿物共生组合为自然金+上述铂族矿物+自然银+铬尖晶石+铬铁矿+磁铁矿+钛铁矿+辰砂。这表明,该铂-金砂矿的物质来源为含铬超基性岩。  相似文献   

5.
针对铂矿标样基体中高铜、高镍、高硫等特点.对常规的镍锍试金预处理中子活化分析流程作了适当改进,包括铂矿样品的灼烧、调节试金配方、改变酸溶条件和仪器测试条件。流程中铂族元素的回收率均在86%以上。用南非的铂矿标准物质SARM7和我国的铜镍硫化物铂族元素标准物质975作了对照分析,结果与标准值相符。表明改进后的流程适用于同类含铂铜镍矿样品中铂族元素的测试。  相似文献   

6.
近30年来,国内外铼—锇(Re-Os)同位素和铂族元素(PGE)分析方法及其地学应用取得了诸多研究进展.首先对铼—锇同位素和铂族元素分析的样品溶解、化学分离及质谱测定等方面的进展情况进行了综述;然后,对铼—锇同位素和铂族元素在天体化学、大陆岩石圈地幔定年、金属矿床定年、沉积地层定年及古环境,以及在油气系统定年与示踪等领域的应用进展情况进行了简要评述.可供地质分析工作者针对不同分析任务及分析对象,选择分析方法并进一步发展Re-Os-PGE分析技术时参考,也可供地质科研工作者开展Re-Os-PGE地球化学研究工作时借鉴.  相似文献   

7.
根据西太平洋麦哲伦海山富钴板状结壳样品的成分特征,对常规的锍镍试金配方作了改进;酌情减少捕集剂羰基镍的加入量,可显著降低铂族元素的空白值。富集后的样品,采用电感耦合等离子体质谱测定铂族元素(PGE)。其中,Ru、Rh、Pd、Ir和Pt用常规外标法测定,^175Lu作内标;Os用同位素稀释法测定。用国家一级标准物质GBW07290和GBW07291作监控分析质量的参考样,结果满足要求。  相似文献   

8.
本文通过与世界著名硫化铜镍矿床百分之百硫化物中铂族元素和金的配分模式的对比,认为金川矿床以Pt、Pd、Au含量高和Ru、Rh亏损以及铂族元素配分曲线斜率陡倾为特征。同时用因子分析方法探讨了金川矿床铂族元素和金的赋存规律,并将其中赋存的铂族元素矿体按成因分为两类:一类是受岩浆期硫化物熔体控制的矿体,另一类是受气液交代作用控制的矿体。它们在元素组合、铂族元素配分模式图上均有明显的差异。此外还讨论了铂族元素和金的地球化学行为,在上地幔硫化物熔融期间,Pt、Pd、Au趋向于液体,Os、Jr、Ru、Rh趋向于固溶体,这是它们富集或亏损的内在原因。  相似文献   

9.
本文通过与世界著名硫化铜镍矿床百分之百硫化物中铂族元素和金的配分模式的对比,认为金川矿床以Pt、Pd、Au含量高和Ru、Rh亏损以及铂族元素配分曲线斜率陡倾为特征。同时用因子分析方法探讨了金川矿床铂族元素和金的赋存规律,并将其中赋存的铂族元素矿体按成因分为两类:一类是受岩浆期硫化物熔体控制的矿体,另一类是受气液交代作用控制的矿体。它们在元素组合、铂族元素配分模式图上均有明显的差异。此外还讨论了铂族元素和金的地球化学行为,在上地幔硫化物熔融期间,Pt、Pd、Au趋向于液体,Os、Jr、Ru、Rh趋向于固溶体,这是它们富集或亏损的内在原因。  相似文献   

10.
黑色页岩中碳、硫、镍等元素的含量很高,按照常规的锍镍试金熔剂配方不能形成较好的锍扣,影响铂族元素准确定值。本文通过调整试剂配方、优化操作流程等方式建立了黑色页岩中铂族元素的锍镍试金-电感耦合等离子体质谱(ICP-MS)测定方法。结果表明,加入适量硝酸钾可以将铂族元素回收率提高了大约10%。用盐酸溶解锍扣之后,溶液中仍然存在大量黑色沉淀,不易过滤和溶解,趁热在不断搅拌下加入2~3 mL三氯化铁溶液可以在很大程度上减少沉淀量,降低实验操作的难度和不确定性。方法检出限Ru为0.054 ng/g,Rh为0.040 ng/g,Pd为0.40 ng/g,Ir为0.032 ng/g,Pt为0.27 ng/g,Os为0.026 ng/g。精密度和准确度试验表明,该方法稳定可靠,可用于黑色页岩中铂族元素的准确测定。  相似文献   

11.
报道了利用一次溶样和同一化学流程分离富集地质样品中铂族元素(Pt、Pd、Os、Ir和Ru)和Re的方法.该化学流程包括以下几个步骤:(1) Carius管溶样法分解岩石样品中富集铂族元素的矿物;(2)四氯化碳萃取法分离出Os;(3)微蒸馏法进一步纯化Os;(4)阳离子交换树脂法将铂族元素(Pt、Pd、Ir和Ru)以及R...  相似文献   

12.
铂族元素(Os,Ir,Pt,Ru,Rh,Pd)具有强亲铁性和强亲铜性,为一组地球化学性质相近的相容元素,铂族元素包含两个同位素衰变体系(^190Pt-^186Os和^187Re-^187Os)。近年来,铂族元素和Re-Os同位素在研究各类不同地持作用过程中,尤其是在地幔岩石的研究中,作用独特,效果显著。由于地幔岩石的铂族元素含量较低,因此高精度,高灵敏度的分析测试方法的研究就显得十分重要。以往的分析方法(如常规的ICP-MS和中子活化分析方法),对含10^-9-10^012级低含量铂族元素的产品分析精度一般较差(>15%-100%)。所采用的分析流程通常也无法同时获得样品的铂族元素含量和Os同位素比值。本文采用新的熔样方法(HAP-S高温高压釜酸溶法),新的化学流程(溶剂萃取和阴离子交换树脂柱)和新的分析仪器(多接收等离子体质谱MC-ICPMS和负离子热电离质谱N-TIMS)。用同位素稀释法对低含量地幔橄榄岩样品同时测定的铂族元素含量和Os同位素比值,获得了高精度的分析结果。对所分析的地橄榄样品中的铂族元素分配曲线和Os同位素组成的地质意义进行了初步探讨。  相似文献   

13.
锍镍试金常用于富集常规地质样品中的铂族元素(PGEs);而用于富集硫铁矿中的PGEs鲜有报道。硫铁矿中硫和铁的含量较高,采用常规的试金配方不能得到较好的锍扣,影响下一步样品的溶解和过滤。本文对锍镍试金-电感耦合等离子体质谱法测定硫铁矿中PGEs的流程进行改进。针对硫铁矿中硫和铁含量高的特点,在不减少称样量的情况下,调整常规锍镍试金中的试剂配方,获得了理想的锍扣和熔渣,使锍扣富集PGEs的能力达到最佳,且避免了由于反应时间过长而造成PGEs损失。同时利用硫化铁易剥落和粉化的特点,省去了锍扣的机械粉碎工序,简化了流程,避免了碎扣时的机械损失和样品间可能的交叉污染。结果表明,高含量的铁对PGEs的测定无显著影响。加标回收试验显示PGEs全流程回收率大于94%。按10 g取样量计算,方法检出限分别为Ru 0.018 ng/g,Rh 0.017ng/g,Pd 0.18 ng/g,Os 0.019 ng/g,Ir 0.013 ng/g,Pt 0.11 ng/g。实际样品分析和加标回收试验表明,改进后的锍镍试金-电感耦合等离子体质谱测定流程可以满足大多数硫铁矿中PGEs的测定要求。  相似文献   

14.
It is of great importance to understand the origin of UG2 chromitite reefs and reasons why some chromitite reefs contain relatively high contents of platinum group elements(PGEs: Os, Ir, Ru, Rh,Pt, Pd) or highly siderophile elements(HSEs: Au, Re, PGE). This paper documents sulphide-silicate assemblages enclosed in chromite grains from the UG2 chromitite. These are formed as a result of crystallisation of sulphide and silicate melts that are trapped during chromite crystallisation. The inclusions display negative crystal shapes ranging from several micrometres to 100 μm in size.Interstitial sulphide assemblages lack pyrrhotite and consist of chalcopyrite, pentlandite and some pyrite. The electron microprobe data of these sulphides show that the pentlandite grains present in some of the sulphide inclusions have a significantly higher iron(Fe) and lower nickel(Ni) content than the pentlandite in the rock matrix. Pyrite and chalcopyrite show no difference. The contrast in composition between inter-cumulus plagioclase(An_(68)) and plagioclase enclosed in chromite(An_(13)), as well as the presence of quartz, is consistent with the existence of a felsic melt at the time of chromite saturation.Detailed studies of HSE distribution in the sulphides and chromite were conducted by LA-ICP-MS(laser ablation-inductively coupled plasma-mass spectrometry), which showed the following.(Ⅰ) Chromite contained no detectable HSE in solid solution.(Ⅱ) HSE distribution in sulphide assemblages interstitial to chromite was variable. In general, Pd, Rh, Ru and Ir occurred dominantly in pentlandite, whereas Os,Pt and Au were detected only in matrix sulphide grains and were clearly associated with Bi and Te.(Ⅲ)In the sulphide inclusions,(a) pyrrhotite did not contain any significant amount of HSE,(b) chalcopyrite contained only some Rh compared to the other sulphides,(c) pentlandite was the main host for Pd,(d)pyrite contained most of the Ru, Os, Ir and Re,(e) Pt and Rh were closely associated with Bi forming a continuous rim between pyrite and pentlandite and(f) no Au was detected. These results show that the use of ArF excimer laser to produce high-resolution trace element maps provides information that cannot be obtained by conventional(spot) LA-ICP-MS analysis or trace element maps that use relatively large beam diameters.  相似文献   

15.
中国铬铁矿的铂族元素分布特征   总被引:2,自引:0,他引:2  
周美付  白文吉 《矿物学报》1994,14(2):157-163
用NiS溶解和Te沉淀方法富集铂族元素(PGE),制成镍扣,再溶解于浓HCl中,使PGE和Te一起沉淀。制备的样品溶液在ELAN-5000型电感耦合等离子质谱仪(ICP-MS)上分析PGE。中国铬铁矿矿石,包括蛇绿岩套中的豆荚状铬铁矿床、非层状侵入体铬铁矿,计13个矿床(化)样品,其PGE模式表明,主要呈RU正异常模式,个别不同模式是由母岩不同以及铂族元素矿化叠加引起的。铬铁矿的PGE模式不取决于铬铁矿的化学成分,而取决于其母岩性质以及形成温度和铂族元素的熔点。  相似文献   

16.
《International Geology Review》2012,54(14):1783-1791
The Chibaisong magmatic Cu–Ni sulphide deposit is located in Tonghua City, Jilin Province, in the eastern part of the northern margin of the North China Craton. The geological characteristics of the deposit have been investigated, and pyrrhotite Re–Os isotope dating has been utilized to constrain the age. Five pyrrhotite samples separated from the Chibaisong Cu–Ni sulphide deposit yielded a Re–Os isotopic isochron age of 2237 ± 62 Ma (mean squared weighted deviation = 1.13, n = 5), indicating that the only Palaeoproterozoic magmatic Cu–Ni sulphide deposit in China is the Chibaisong Cu–Ni sulphide deposit. The geodynamic setting during ore formation was related to the Liaoning–Jilin Palaeoproterozoic rift split. The Re–Os isotope analyses showed an initial 187Os/188Os ratio of 0.778 ± 0.033, and (187Os/188Os)i and γOs(t) values ranged from 0.7531 to 0.8013 (average 0.7734) and from 574 to 617 (average 592), respectively, indicating that abundant crustal material (5–10%) was mixed with the Cu–Ni sulphide ore system during magma ascent and ore formation.  相似文献   

17.
通过对葫芦铜镍硫化物矿石的Re-Os同位素物质来源示踪研究, 其187Os/188Os初始比值介于1.40~1.97,γOs值介于1110~1565,平均为1379, 表明在成矿过程及岩浆侵位期间有大量地壳物质加入到成矿系统中。  相似文献   

18.
Analyses of enriched mantle (EM)-basalts, using lithophile element-based isotope systems, have long provided evidence for discrete mantle reservoirs with variable composition. Upon partial melting, the mantle reservoir imparts its isotopic fingerprint upon the partial melt produced. However, it has increasingly been recognised that it may not be simple to delimit these previously well-defined mantle reservoirs; the “mantle zoo” may contain more reservoirs than previously envisaged.Here we demonstrate that a simple model with varying contributions from two populations of compositionally distinct mantle sulphides can readily account for the observed heterogeneities in Os isotope systematics of such basalts without additional mantle reservoirs. Osmium elemental and isotopic analyses of individual sulphide grains separated from spinel lherzolites from Kilbourne Hole, New Mexico, USA demonstrate that two discrete populations of mantle sulphide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os] and low [Re] with unradiogenic, typically sub-chondritic 187Os/188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulphides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic 187Os/188Os ([Os] typically ? 1-2 ppm, 187Os/188Os ? 0.3729; this study). This population is thought to represent metasomatic sulphide.Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulphide ([Os] ? 37 ppm; this study). During the early stages of partial melting, supra-chondritic interstitial sulphides are mobilised and incorporated into the melt, adding their radiogenic 187Os/188Os signature. Only when sulphides armoured within silicates are exposed to the melt through continued partial melting will enclosed sulphides add their high [Os] and unradiogenic 187Os/188Os to the aggregate melt. Platinum-group element data for whole rocks are also consistent with this scenario. The sequence of (i) addition of all of the metasomatic sulphide, followed by (ii) the incorporation of small amounts of armoured sulphide can thus account for the range of both [Os] and 187Os/188Os of EM-basalts worldwide without the need for contributions from additional silicate mantle reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号