首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bimonthly variations in shoot density, biomass, and blade productivity were used to estimate diel rates of primary productivity in conjunction with in situ measurements of photosynthesis and irradiance for a monospecific meadow ofHalodule wrightii Ascherson in Laguna Madre, Texas. Four separate techniques for estimating areal primary productivity were compared to estimates of primary production calculated from in situ measurements of photosynthesis and continuous recording of underwater light using the Hsat model. The clip and reharvest method, which is commonly used to measure shoot production, provided estimates ranging from 0.003 mol C m?2 d?1 in winter to 0.054 mol C m?2 d?1 in summer. In contrast, a method using aboveground biomass values, previously determined turnover rates, and belowground: aboveground biomass ratios provided estimates of primary production ranging from 0.04 mol C m?2 d?1 (winter) to 0.49 mol C m?2 d?1 (spring), similar to values determined from the Hsat model using in situ measurements of photosynthesis and ambient light regimes. Our results indicate that the clip and reharvest method dramatically underestimates primary productivity forH. wrightii, and that the inclusion of belowground biomass in carbon budget calculations is essential to obtaining realistic estimates of plant productivity. *** DIRECT SUPPORT *** A01BY069 00022  相似文献   

2.
Fluxes of methane (CH4) and carbon dioxide (CO2) to the atmosphere at 52 sites within a salt marsh were measured by a dark static chamber technique from mid July to mid September. Mean CH4 fluxes ranged from 0.2 mg m?2 d?1 to 11.0 mg m?2 d?1, with an overall average of 1.6 mg m?2 d?1. Flux of CH4 was inversely correlated (r2=0.23, p = 0.001) with salinity of the upper porewater at the site, suggesting the dominant role of SO4 2? in inhibiting methanogenesis in salt-marsh sediments. The combination of salinity and water table position was able to explain only 29% of the variance in CH4 emission. Mean soil flux of CO2 ranged from 0.3 g m?2 d?1 to 3.7 g m?2 d?1, with an overall average of 2.5 g m?2 d?1; it was correlated with aboveground biomass (positive, r2=0.38, p = 0.001) and position of the water table (negative, r2 = 0.55, p = 0.001). The combination of biomass and water table position accounted for 63% of the variance in CO2 flux. There were high variations in gas flux within the six plant communities. The sequences were CH4: upland edge > panne > pool > middle marsh > low marsh > high marsh, and CO2: middle marsh > low marsh > upland edge > high marsh > panne > pool. Compared to other salt-marsh systems, this Bay of Fundy marsh emits small amounts of CH4 and CO2.  相似文献   

3.
Salt marsh zonation patterns generate different abiotic and biotic conditions that can accentuate species inherent differences in primary production and biomass. In South West Atlantic marshes, there are two Spartina species: Spartina alterniflora in the low intertidal and Spartina densiflora in the high intertidal. These two species are generally found in all marshes but with different dominance: In some marshes, the S. densiflora zone occupies higher extents, and in others, the S. alterniflora zone is the one that prevails. We found through field sampling that, in six studied marshes, there is greater S. densiflora live and total (i.e., dead+live) aboveground biomass (g m?2) in the marshes dominated by S. densiflora than in the ones dominated by S. alterniflora. Spartina alterniflora had similar aboveground biomass in the six marshes, regardless of the dominance of each species. When comparing the two Spartina species within each marsh, S. densiflora had greater live and total biomass in the marshes it dominates. In the marshes dominated by S. alterniflora, both species had similar live and total biomass. In all marshes, there was greater dead S. densiflora biomass. A multivariate analysis using selected abiotic factors (i.e., salinity, latitude, and tidal amplitude) showed that S. alterniflora aboveground biomass patterns are mainly correlated with salinity, while S. densiflora live biomass is mainly correlated with salinity and latitude, dead biomass with salinity and tidal amplitude, and total biomass with salinity alone. We conclude that in S. densiflora dominated marshes, the main processes of that species zone (i.e., nutrient accumulation) will be accentuated because of its higher biomass. We also conclude that climatic conditions, in combination with specific Spartina biotic and ambient abiotic parameters, can affect marsh ecological functions.  相似文献   

4.
N2 fixation associated with the epiphytic community on standing dead Spartina alterniflora shoots was examined in both a natural and transplanted salt marsh in North Carolina. Acetylene reduction (AR) assays were conducted over a 24-mo period to estimate N2 fixation rates on standing dead stems and leaves. In the natural salt marsh, mean AR rates ranged from 0.5 nmol C2H4 cm?2 h?1 to 14 nmol C2H4 cm?2 h?1, while in the transplanted marsh mean AR rates ranged from 1 nmol C2H4 cm?2 h?1 to 33 nmol C2H4 cm?2 h?1. Diel AR activity of epiphytic communities in both marshes varied seasonally. Midday incubations yielded higher AR rates than nighttime incubations in the spring, while midday incubations in late summer and fall generally yielded AR rates equal to or lower than nighttime incubations. Desiccation during low tides occasionally repressed AR activity, although AR rates quickly rebounded with wetting. AR activity was localized in the epiphytic community, rather than in the underlying Spartina stem material. Based on the measured AR rates and the density of standing dead stems, the annual input of new N to the natural salt marsh via epiphytic N2 fixation is estimated to be 2.6 g N m?2 yr?1. The estimate of annual input of new N to the transplanted marsh is 3.8 g N m?2 yr?1. These estimates should be added to previous estimates of N2 fixation in marsh sediments to estimate the total contribution of new nitrogen to salt marsh nitrogen budgets.  相似文献   

5.
The effects of long-term exposure to elevated atmospheric CO2 (ambient + 340 ppmv) on carbon cycling were investigated for two plant communities in a Chesapeake Bay brackish marsh, one dominated by the C3 sedgeSchoenplectus americanus and the other by the C4 grassSpartina patens. Elevated CO2 resulted in a significant increase in porewater concentrations of DIC at 30 cm depth (p < 0.1). The CO2 treatment also yielded increases in DOC (15 to 27%) and dissolved CH4 (12–18%) in the C3 marsh (means for several depths over the period of June 1998 and June 1999), but not at a significant level. Elevated CO2 increased mean ecosystem emissions of CO2 (34–393 g C m−2 yr−1) and CH4 (0.21–0.40 g C m−2 yr−1) in the C3 community, but the effects were only significant on certain dates. For example, CO2 enrichment increased C export to the atmosphere in the C3 community during one of two winter seasons measured (p = 0.09). In the C4 community, gross photosynthesis responded relatively weakly to elevated CO2 (18% increase, p > 0.1), and the concomitant effects on dissolved carbon concentrations, respiration, and CH4 emissions were small or absent. We concluded that elevated CO2 has the potential to increase dissolved inorganic carbon export to estuaries.  相似文献   

6.
The experiment was conducted to ascertain net production and consumption rates of 15NH4 + and 15NO3 ? for water and sediment in a wetland. This was done using 15N isotope pool dilution methodology under ambient and elevated atmospheric CO2 concentrations in experimental riparian wetlands to obtain the gross N transformation rates. The 15N budget for sediment was also estimated. The results suggested that the differences in high proportion of 15N concentration in the overlying water body under elevated CO2 could be attributed to the low production and high consumption rates of 15NH4 + in sediment. The elevated CO2 effect on production and consumption of NH4 + decreased by 144 % (P = 0.014) and increased by 153 % (P = 0.009), respectively. Thereby, 15NH4 + production rates are negatively related with 15NO3 ? consumption rates and this accounted for the decreases in net 15NO3 ? consumption under CO2 enrichment in the wetland sediment by 11 % (P = 0.528). Therefore, 15NO3 ? production and consumption rates may strongly depend on NH4 + production. Inorganic 15N and total 15N exported from sediment to overlying water body by the effect of CO2 were 41 % (P = 0.071) and 18 % (P = 0.000), respectively. Therefore, low net 15NH4 + production and high 15NH4 + consumption rates under elevated CO2 may partly explain the significant reduction of N from the sediment.  相似文献   

7.
The potential for marsh plants to be vectors in the transport of mercury species was studied in the natural, mature, tidal China Camp salt marsh on San Pablo Bay. The fluxes of organic matter, mercury (THg), and monomethylmercury (MeHg) were studied in natural stands of Spartina foliosa and Salicornia virginica. Seasonal fluxes from the sediment into aboveground biomass of live plants and subsequent transfer into the dead plant community by mortality were measured. Loss of THg and MeHg from the dead plant community through fragmentation, leaching, and excretion were calculated and were similar to net uptake. Seasonal data were added up to calculate annual mass balances. In S. foliosa, annual net production was 1,757 g DW m?2, and the annual net uptakes in the aboveground biomass were 305 μg THg m?2 and 5.720 μg MeHg m?2. In S. virginica, annual net production was 2,117 g DW m?2, and the annual net uptakes in aboveground biomass were 99.120 μg THg m?2 and 1.990 μg MeHg m?2. Of both plant species studied, S. foliosa had a slightly lower production rate but greater mercury species uptake and loss rates than S. virginica, and, consequently, it is to be expected that S. foliosa matter may affect the local and possibly the regional food web relatively more than S. virginica. However, the actual effects of the input of mercury-species-containing plant-derived particulate matter into the food webs would depend on trophic level, food preference, seasonal cycle of the consumer, total sediment surface area vegetated, location of the vegetation in the marsh landscape, and estuary bay landscape. Since the levels of mercury species in dead plant material greatly exceed those in live plant material (on a dry weight basis), detritivores would ingest greater mercury species concentrations than herbivores, and consumers of S. foliosa would ingest more than consumers of S. virginica. The greatest THg and MeHg losses of both plant species due to mortality and to fragmentation–leaching–excretion occurred in late spring and early autumn, which corresponds to peak MeHg levels observed in sediments of coastal systems of previous studies, suggesting enhanced THg–MeHg export from the marsh to the nearshore sediment.  相似文献   

8.
While multiple species of macroalgae and seagrass can benefit from elevated CO2 concentrations, competition between such organisms may influence their ultimate responses. This study reports on experiments performed with a Northwest Atlantic species of the macroalgae, Ulva, and the seagrass, Zostera marina, grown under ambient and elevated levels of pCO2, and subjected to competition with each other. When grown individually, elevated pCO2 significantly increased growth rates and productivity of Ulva and Zostera, respectively, beyond control treatments (by threefold and 27%, respectively). For both primary producers, significant declines in tissue δ13C signatures suggested that increased growth and productivity were associated with a shift from use of HCO3? toward CO2 use. When grown under higher pCO2, Zostera experienced significant increases in leaf and rhizome carbon content as well as significant increases in leaf carbon-to-nitrogen ratios, while sediments within which high CO2 Zostera were grown had a significantly higher organic carbon content. When grown in the presence of Ulva; however, above- and below-ground productivity and tissue nitrogen content of Zostera were significantly lower, revealing an antagonistic interaction between elevated CO2 and the presence of Ulva. The presence of Zostera had no significant effect on the growth of Ulva. Collectively, this study demonstrates that while Ulva and Zostera can each individually benefit from elevated pCO2 levels, the ability of Ulva to grow more rapidly and inhibit seagrass productivity under elevated pCO2, coupled with accumulation of organic C in sediments, may offset the potential benefits for Zostera within high CO2 environments.  相似文献   

9.
Responses ofSpartina alterniflora marsh to combinations of feral horse grazing, clipping, simulated trampling, and a late winter burn were studied on Cumberland Island National Seashore, Georgia. Replicated 200-m2 plots were established and sampled bimonthly from July 1983 to November 1984. Clipping and trampling each reduced peak aboveground biomass by 20% in 1983 and 50% (clipping) and 55% (trampling) in 1984. A March burn reduced peak aboveground biomass by 35% in 1984. Trampling and burning earch reduced net aboveground primary production (NAPP) by 35%, but clipping did not reduce NAPP. Standing stocks of live rhizomes were correlated with aboveground biomass and were reduced with experimental treatments. Abundance of the periwinkle snail (Littorina irrorata) was also reduced. Horse grazing had a substantial impact on standing stocks and NAPP ofSpartina, but grazing was not uniform throughout the marsh. Moderately grazed plots had NAPP reduced by 25% compared to ungrazed plots. Heavily grazed plots had extremely low NAPP, and abovegroundSpartina never exceeded 40 g m?2 dry mass compared to 360 g m?2 within exclosures.  相似文献   

10.
Coastal wetlands, well recognized for their ecosystem services, have faced many threats throughout the USA and elsewhere. While managers require good information on the net impact of these combined stressors on wetlands, little such information exists. We conducted a 4-month mesocosm study to analyze the multiple stressor effects of precipitation changes, sea level rise, and eutrophication on the salt marsh plant Spartina alterniflora. Pots containing plants in an organic soil matrix were positioned in tanks and received Narragansett Bay (RI, USA) water. The study simulated three precipitation levels (ambient daily rain, biweekly storm, and drought), three levels of tidal inundations (high (15 cm below mean high water (MHW)), mean (MHW), and low (15 cm above MHW)), and two nutrient enrichment levels (unenriched and nutrient-enriched bay water). Our results demonstrate that storm and drought stressors led to significantly less above- and belowground biomass than those in ambient rain conditions. Plants that were flooded at high inundation had less belowground biomass, fine roots, and shoots. Nutrients had no detectable effect on aboveground biomass, but the enriched pots had higher stem counts and more fine roots than unenriched pots, in addition to greater CO2 emission rates; however, the unenriched pots had significantly more coarse roots and rhizomes, which help to build peat in organogenic marshes. These results suggest that multiple stressors of altered precipitation, sea level rise, and nutrient enrichment would lead to reduced marsh sustainability.  相似文献   

11.
Increased nitrogen (N) input to ecosystems could alter soil organic carbon (C) dynamics, but the effect still remains uncertain. To better understand the effect of N addition on soil organic C in wetland ecosystems, a field experiment was conducted in a seasonally inundated freshwater marsh, the Sanjiang Plain, Northeast China. In this study, litter production, soil total organic C (TOC) concentration, microbial biomass C (MBC), organic C mineralization, metabolic quotient (qCO2) and mineralization quotient (qmC) in 0–15 cm depth were investigated after four consecutive years of N addition at four rates (CK, 0 g N m?2 year?1; low, 6 g N m?2 year?1; moderate, 12 g N m?2 year?1; high, 24 g N m?2 year?1). Four-year N addition increased litter production, and decreased soil organic C mineralization. In addition, soil TOC concentration and MBC generally increased at low and moderate N addition levels, but declined at high N addition level, whereas soil qCO2 and qmC showed a reverse trend. These results suggest that short-term N addition alters soil organic C dynamics in seasonally inundated freshwater marshes of Northeast China, and the effects vary with N fertilization rates.  相似文献   

12.
Much uncertainty exists in the phosphorus (P) cycle in the marshes of the intertidal zone. This study explored the P cycling in the two Suaeda salsa marshes [middle S. salsa marsh (MSM) and low S. salsa marsh (LSM)] of the Yellow River estuary during April 2008 to November 2009. Results showed seasonal fluctuations and vertical distributions of P in different S. salsa marsh soils, and variations in P content in different parts of plants due to water and salinity status. The N/P ratios of the different S. salsa were 9.87 ± 1.23 and 15.73 ± 1.77, respectively, indicating that plant growth in MSM was limited by N, while that in LSM was limited by both N and P. The S. salsa litter in MSM released P to the environment throughout the year, while that in LSM immobilized P from the environment at all times. The P absorption coefficients of S. salsa in MSM and LSM were very low (0.0010 and 0.0001, respectively), while the biological cycle coefficients were high (0.739 and 0.812, respectively). The P turnovers among compartments of MSM and LSM showed that the uptake amounts of roots were 0.4275 and 0.0469 g m?2 year?1 and the values of aboveground parts were 1.1702 and 0.1833 g m?2 year?1, the re-translocation quantities from aboveground parts to roots were 0.8544 and 0.1452 g m?2 year?1, the translocation amounts from roots to soil were 0.0137 and 0.0012 g m?2 year?1, the translocation quantities from aboveground living bodies to litter were 0.3157 and 0.0381 g m?2 year?1, and the annual return quantities from litter to soil were less than 0.0626 and ?0.0728 g m?2 year?1 (minus represented immobilization), respectively. P was an important limiting factor in S. salsa marshes, especially in LSM. S. salsa was seemingly well adapted to the low-nutrient condition and the vulnerable habitat, and the nutrient enrichment due to the import of N and P from the Yellow River estuary would be a potential threat to the S. salsa marshes.  相似文献   

13.
Primary production by algal epiphytes of dead Spartina alterniflora shoots in a Georgia salt marsh was measured using the 14C technique. A 23 factorial design was used to quantify the effects of light intensity and inundation frequency (stem height) on carbon fixation at two sites along a salt marsh creek. Algae inundated daily fixed carbon more rapidly than those which had dried for several days, but this may have been the results of greater biomass on more frequently immersed stems. This result corroborates studies showing desiccation is not always a severe stress for intertidal algae. Similarity of epiphyte algal productivity to that of salt marsh benthic diatoms suggests that, given adequate substrate, the epiphytes may be an important source of primary production during some seasons of the year.  相似文献   

14.
Changes in biomass, growth form and shoot net primary production in an eelgrass, Zostera marina L., bed were monitored along transects at three tidal heights in Netarts Bay, Oregon, from May 1979 through June 1981. During the growing season, April through October, the mean plastochrone interval was 16.5 d along the low intertidal transect and 11.6 d along the high intertidal transect. The mean export interval was 13.3 d along the low intertidal transect and 11.6 d along the high intertidal transect. The life span of a leaf averaged 48 d along the low intertidal transect and 36 d along the high intertidal transect. Shoot density was positively correlated with mean leaf area index (LAI) until the LAI reached 3.8 to 5.5, above which LAI was negatively correlated with density. The maximum Zostera biomass ranged from 143 (high intertidal transect) to 463 (low intertidal transect) g dry wt m?2. Maximum values of shoot net production ranged from 4.7 (high intertidal transect) to 13.6 (low intertidal transect) g dry wt m?2d?1. Zostera shoot net production was related to light and to the physical damage to the shoots associated with a rapid accumulation of Enteromorpha biomass in the bay. In addition, patterns of biomass accumulation were related to the duration of water coverage, as determined by both tidal height and local impoundments of water. At all transects, biomass sloughed was equal to at least 50% of the shoot net primary production in that area during that time period; sloughed leaves accounted for 25 to 97% of these losses. An estimate of the total annual net primary production of aboveground Zostera in the bed was 17,500 kg, dry wt (SE=3,080 kg dry wt), which was equivalent to a mean annual rate of 383 g C m?2 (SE=67 g C m?2)  相似文献   

15.
Accurate measures of intertidal benthic microalgal standing stock (biomass) and productivity are needed to quantify their potential contribution to food webs. Oxygen microelectrode techniques, used in this study, provide realistic measures of intertidal benthic microalgal production. By dividing a salt-marsh estuary into habitat types, based on sediment and sunlight characteristics, we have developed a simple way of describing benthic microalgal communities. The purpose of this study was to measure and compare benthic microalgal biomass and production in five different estuarine habitats over an 18-mo period to document the relative contributions of benthic microalgal productivity in the different habitat types. Samples were collected bimonthly from April 1990 to October 1991. Over the 18-mo period, tall Spartina zone habitats had the highest (101.5 mg chlorophyll a (Chl a) m?2±6.9 SE) and shallow subtidal habitats the lowest (60.4±8.9 SE) microalgal biomass. There was a unimodal peak in biomass during the late winter-early spring period. The concentrations of photopigments (Chl a and total pheopigments) in the 0–5 mm of sediments were highly correlated (r2=0.73 and 0.88, respectively) with photopigment concentrations in the 5–10 mm depth interval. Biomass specific production (μmol O2 mg Chl a ?1 h?1) was highest in intertidal mudflat habitats (206.3±11.2 SE) and lowest in shallow subtidal habitats (104.3±11.1 SE). Regressions of maximum production (production at saturating irradiances) vs. biomass (Chl a) in the upper 2 mm of sediment by habitat type gave some of the highest correlations ever reported for benthic microalgal communities (r2 values ranged from 0.43 to 0.73). The habitat approach and oxygen microelectrode techniques provide a useful, realistic ranged from 0.43 to 0.73). The habitat approach and oxygen microelectrode techniques provide a useful, realistic method for understanding the biomass and production dynamics of estuarine benthic microalgal communities.  相似文献   

16.
Seasonal plant growth dynamics were followed for a year in undisturbed plots of tall and short formSpartina alterniflora Loisel. and in plots of short formS. alterniflora which were enriched with sewage sludge at a rate of 100 g dry sludge m?2wk?1, corresponding to a nitrogen enrichment of 2 g N m?2wk?1. Monthly determinations of aboveground live and dead biomass, density of live stems, the ratio of number of young shoots to total number of shoots, and belowground mass of macro-organic matter to a depth of 30 cm were made for each area. Sludge fertilization increased the live biomass of the short formS. alterniflora by up to 150% of the control live biomass, but had little effect on the dead biomass, stem density, or proportion of young shoots. There was a trend of increased amount of belowground macro-organic matter in fertilized compared to control plots during the last 6 months of the study. In all areas, there was a marked decrease in the proportion of young shoots from winter to early summer, followed by a rapid increase in the percent of young shoots from late summer to fall. Sampling of plots 7 and 20 months after termination of sludge enrichment showed higher plant biomass and % N content in surface soils, but no difference in N content of live plant tissue, in fertilized compared to unfertilized marsh. After 20 months, about half of the sludge nitrogen remaining in the soils of the fertilized plots had disappeared.  相似文献   

17.
The fringing environments of lower Chesapeake Bay include sandy shoals, seagrass meadows, intertidal mud flats, and marshes. A characterization of a fringing ecosystem was conducted to provide initialization and calibration data for the development of a simulation model. The model simulates primary production and material exchange in the littoral zone of lower Chesapeake Bay. Carbon (C) and nitrogen (N) properties of water and sediments from sand, seagrass, intertidal silt-mud, and intertidal marsh habitats of the Goodwin Islands (located within the Chesapeake Bay National Estuarine Research Reserve in Virginia, CBNERR-VA) were determined seasonally. Spatial and temporal differences in sediment microalgal biomass among the habitats were assessed along with annual variations in the distribution and abundance ofZostera marina L. andSpartina alterniflora Loisel. Phytoplankton biomass displayed some seasonality related to riverine discharge, but sediment microalgal biomass did not vary spatially or seasonally. Macrophytes in both subtidal and intertidal habitats exhibited seasonal biomass patterns that were consistent with other Atlantic estuarine ecosystems. Marsh sediment organic carbon and inorganic nitrogen differed significantly from that of the sand, seagrass, and silt habitats. The only biogeochemical variable that exhibited seasonality was low marsh NH4 +. The subtidal sediments were consistent temporally in their carbon and nitrogen content despite seasonal changes in seagrass abundance. Eelgrass has a comparatively low C:N ratio and is a potential N sink for the ecosystem. Changes in the composition or size of the vegetated habitats could have a dramatic influence over resource partitioning within the ecosystem. A spatial database (or geographic information system, GIS) of the Goodwin Islands site has been initiated to track long-term spatial habitat features and integrate model output and field data. This ecosystem characterization was conducted as part of efforts to link field data, geographic information, and the dynamic simulation of multiple habitats. The goal of these efforts is to examine ecological structure, function, and change in fringing environments of lower Chesapeake Bay.  相似文献   

18.
Much uncertainty exists in spatial and temporal variations of nitrous oxide (N2O) emissions from coastal marshes in temperate regions. To investigate the spatial and temporal variations of N2O fluxes and determine the environmental factors influencing N2O fluxes across the coastal marsh dominated by Suaeda salsa in the Yellow River estuary, China, in situ measurements were conducted in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in autumn and winter during 2011–2012. Results showed that mean N2O fluxes and cumulative N2O emission indicated intertidal zone of the examined marshes as N2O sources over all sampling seasons with range of 0.0051 to 0.0152 mg N2O m?2 h?1 and 7.58 to 22.02 mg N2O m?2, respectively. During all times of day and the seasons measured, N2O fluxes from the intertidal zone ranged from ?0.0004 to 0.0644 mg N2O m?2 h?1. The freeze/thaw cycles in sediments during early winter (frequent short-term cycle) and midwinter (long-term cycle) were one of main factors affecting the temporal variations of N2O emission. The spatial variations of N2O fluxes in autumn were mainly dependent on tidal fluctuation and plant composition. The ammonia-nitrogen (NH4 +–N) in sediments of MF significantly affected N2O emissions (p < 0.05), and the high concentrations of Fe in sediments might affect the spatial variation of N2O fluxes. This study highlighted the large spatial variation of N2O fluxes across the coastal marsh (coefficient of variation (CV) = 127.86 %) and the temporal variation of N2O fluxes during 2011–2012 (CV = 137.29 %). Presently, the exogenous C and N loadings of the Yellow River estuary are increasing due to human activities; thus, the potential effects of exogenous C and N loadings on N2O emissions during early winter should be paid more attention as the N2O inventory is assessed precisely.  相似文献   

19.
The monthly variations of below- and aboveground biomass of Spartina alterniflora were documented for a south Louisiana salt marsh from March 2004 to March 2005, and in March 2006 and 2007. The annual production rate above- and belowground was 1821 and 11,676 g m?2, respectively (Smalley method), and the annual production rate per biomass belowground was 10.7 g dry weight?1, which are highs along the latitudinal distributions of the plant’s range. The average root + rhizome/shoot ratio (R&R/S) was 2.6:1, which is lower than the R&R/S ratios of 4 to 5.1 reported for Spartina sp. marshes in the northeastern US. The belowground biomass increased from July to September and fluctuated between October and November, after which it declined until February when the growing season began. The belowground biomass was dominated by rhizomes, which declined precipitously in spring and then rose to a seasonal high in the month before declining again as the late summer rise in inflorescence began. Over half of the root biomass in a 30-cm soil profile was in the upper 10 cm, and in the 10- to 20-cm profile for rhizomes. The maximum March biomass above- and belowground was four to five times that of the minimum biomass over the four sampling years. The net standing stock (NSS) of N and P in live biomass aboveground compared to that in the belowground biomass was about 1.7 times higher and equal, respectively, but the NSS of N and P for the live + dead biomass was about six times higher belowground. The average nitrogen/phosphorous molar ratios of 16:1 aboveground is in agreement with the often tested N limitation of biomass accumulation aboveground, whereas the 37:1 belowground ratio suggests that there is an influence of P on R&R foraging for P belowground. Some implications for management and restoration are, in part, that salt marshes should be evaluated and examined using information on the plant’s physiology and production both below- and aboveground.  相似文献   

20.
The solubilities of PbCO3(s), 2PbCO2·Pb(OH)2(s), and of 3PbCO3 2Pb(OH)2(s) have been studied at 25°C ± 0.1°C in solutions of the constant ionic strength I = 0.3 mol/dm3, consisting primarily of sodium perchlorate. A few experiments with hydrocerussite were performed in solutions of 0.1 M KNO3. The concentrations of lead and hydrogen ions have been determined in solution in contact with the solid phase. From experimental data the following values for equilibrium constants are obtained: log [Pb2+pCO2·[H+]?2 = 5.20log [Pb2+pCO0.672·[H+]?2 = 6.80log [Pb2+]3·[CO2?3]2·[OH?]2 = ?44.08 (and ?44.8 forI = 0.1 M)log [PbCO03]·[Pb2+]?1·[CO2?3]?1 = 5.40log [Pb(CO3)2?2]·[Pb2+]?1·[CO2?3]?2 = 8.86 The data indicate that hydrocerussite is the most stable solid phase in natural waters. Comparison with the literature and needs for further research are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号