首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
对印支地块思茅地区始新世陆相红层进行古地磁研究,获得勐伴剖面特征剩磁方向为Ds=118.2°,Is=22.1°,k=31.6,α95=10.9°;勐腊剖面特征剩磁方向为Ds=47.6°,Is=22.8°,k=20.2,α95=5.9°。其特征剩磁方向与前人研究结果基本一致。利用Hodych等的磁倾角校正方法得到校正磁倾角为28.4°±4.3°,对前人的数据重新进行E/I统计得到的校正磁倾角值为30.7°,置信区间为[25.4°,35.9°],两种不同方法得到了较一致的结果,思茅地区的古近纪磁倾角显示了一定程度的偏低。E/I磁倾角偏低检验方法在应用时存在一定的局限性,变形微弱地层的古地磁学数据适合进行E/I磁倾角偏低校正,以避免倾伏褶皱或差异性旋转变形作用对E/I磁倾角偏低校正的影响。Hodych等提出的磁倾角校正方法是现今比较可靠的磁倾角校正方法。结合前人印支地块的古地磁研究成果,本次研究结果表明印支地块思茅地区自始新世以来相对于华南板块向南滑移量约500km。  相似文献   

2.
印支地块思茅地区早白垩世古地磁结果及其构造意义   总被引:2,自引:0,他引:2  
对印支地块思茅地区的早白垩世红层开展详细的岩石磁学和古地磁学研究,获得镇沅剖面特征剩磁方向Ds=52.4°,Is=45.5°,κ=77.9,α95=6.3°;普洱剖面特征剩磁方向Ds=46.2°,Is=46.6°,κ=50.9,α95=5.6°;江城剖面特征剩磁方向Ds=8.6°,Is=42.2°,κ=117.1,α95=4.0°。对普洱和江城剖面进行E-I磁倾角偏低检验,结果显示江城剖面不存在磁倾角偏低,普洱剖面由于偏角较分散,导致其伸展方向出现假象,推测的磁倾角偏大,出现实测磁倾角偏低的假象。思茅地区各采样剖面之间的磁偏角差异表明,块体内部发生过差异性旋转变形,其变形的过程不仅受控于边界深大断裂,也与内部小断裂的活动有密切关系。若进一步考虑华南地块白垩纪可能存在的磁倾角偏低现象,则该结果说明印度支那地块思茅地区白垩纪以来相对于华南地块向南滑移量为570±310km,接近构造地质研究推测的红河大断裂左行滑移量。  相似文献   

3.
对印支地块思茅地区的早白垩世红层开展详细的岩石磁学和古地磁学研究,获得镇沅剖面特征剩磁方向Ds=52.4°,Is=45.5°,κ=77.9,α95=6.3°;普洱剖面特征剩磁方向Ds=46.2°,Is=46.6°,κ=50.9,α95=5.6°;江城剖面特征剩磁方向Ds=8,6°,Is=42.2°,κ=117.1,α95 =4.0°.对普洱和江城剖面进行E-I磁倾角偏低检验,结果显示江城剖面不存在磁倾角偏低,普洱剖面由于偏角较分散,导致其伸展方向出现假象,推测的磁倾角偏大,出现实测磁倾角偏低的假象.思茅地区各采样剖面之间的磁偏角差异表明,块体内部发生过差异性旋转变形,其变形的过程不仅受控于边界深大断裂,也与内部小断裂的活动有密切关系.若进一步考虑华南地块白垩纪可能存在的磁倾角偏低现象,则该结果说明印度支那地块思茅地区白垩纪以来相对于华南地块向南滑移量为570±310km,接近构造地质研究推测的红河大断裂左行滑移最.  相似文献   

4.
印支地块北部地壳的侧向挤出逃逸方式和动力机制仍存在争议,本文通过兰坪盆地晚始新世红层的构造磁学和磁倾角偏低矫正研究,探讨了青藏高原东南缘大陆变形的成因等关键问题。磁倾角偏低矫正后的原生特征剩磁分量为D_s=264.5°,I_s=-39.4°,k=21.4,α_(95)=9.6°,N=12。结果表明自晚始新世以来,位于印支地块西北部的兰坪—思茅地体,其北部相对于东亚古地磁参考极发生了80.3°±8.9°的顺时针旋转运动,同时发生了5.8°±7.2°(638±792 km)的不显著南向运动。综合前人的古地磁研究结果,表明兰坪—思茅地体北部和中部地区存在显著的差异性旋转变形。本文提出地体北部~80°的顺时针旋转变形与印度板块东端和西缅甸地块向北揳入欧亚大陆联合作用造成的北东—东向挤压作用相关,而地体中部复杂的差异性旋转变形则与川滇地体的南向挤压和临沧花岗岩带的阻挡作用所导致的局部地壳构造变形相关。因此,兰坪—思茅地体北部和中部的差异性旋转运动是地体整体性顺时针旋转运动和局部差异性旋转变形相叠加的结果,与下地壳粘性通道流的驱动并无直接关联,而与相邻地块间的差异性运动所导致的地块间的挤压作用相关。自晚始新世以来,在兰坪—思茅地体北部地区上地壳沿大型走滑断裂带发生的东南向挤出逃逸运动和下地壳通道流所导致的上地壳韧性变形作用可能共存,而地体中南部地区沿大形走滑断裂带发生整体性侧向挤出逃逸模型可能占据主导地位。  相似文献   

5.
通过对川滇地体、思茅地体白垩纪、古近纪地层古地磁数据以及新生代地壳构造特征的分析,结合青藏高原东南缘GPS监测研究结果,揭示了新生代时期青藏高原东南缘地壳块体的旋转变形特征.根据古地磁数据模拟计算得出~5Ma以来哀牢山-红河走滑断裂带(ARF)受川滇地体挤压而发生弯曲变形的南北向偏移速率至少为~13.05mm/a,奠边俯左旋走滑断裂带(DBPF)西侧思茅地体内部自~5Ma以来至少存在~2.08mm/a的东西向伸展分量,而DBPF 5Ma以来的南北向平均左旋走滑速度则至少为~1.66mm/a,与现今GPS监测结果基本一致.证明鲜水河-小江左旋走滑断裂带(XXF)的左旋走滑运动虽然没有切断ARF,但是川滇地体的南向顺时针旋转挤压作用导致了断裂带的南向弯曲变形,从而吸收了部分左旋走滑速率,造成左旋走滑运动在跨过ARF传递到DBPF后走滑速率发生了突变,由~10mm/a减小于2~3mm/a.缅泰地块和思茅地体在经历了渐新世-中新世时期以高黎贡山-实楷右旋走滑断裂带和ARF为边界的东南侧向顺时针旋转挤出运动之后,自5Ma开始,至少思茅地体与川滇地体一起,以XXF和DBPF为旋转边界发生了以东喜马拉雅构造节为近似中心的旋转挤出运动.  相似文献   

6.
华南中、新生代紅层古地磁研究的初步結果   总被引:1,自引:0,他引:1  
1960—1962年期間,我們曾結合地层对比問題,先后在华南的川、滇、湘、鄂、粤等地,对若干中、新生代构造盆地中的紅色岩层(包括少量火山岩),进行了初步的古地磁研究。各研究結果分別有专文論述,現仅将所有数据作一綜合,以观察其可能具有的某些特点。在川、滇地区的古地磁研究是与北京大学和中国科学院地球物理研究所协同进行的,  相似文献   

7.
磁倾角是古纬度的记录者,对许多构造活动有着很好的揭示作用.但在青藏高原,沉积物的磁倾角往往要比火山岩或欧亚极预测的值要小,这很大程度上制约了对该地区构造演化历史的了解.本文应用E/I统计分析法对青藏高原东北部几个典型山间盆地的已有古地磁数据进行分析,发现该地区沉积物中普遍存在的10°~ 20°磁倾角浅化可以通过该法矫正,揭示出该地区的磁倾角浅化可能是由于沉积物在沉积过程中或沉积后的压实作用造成;同时也表明该地区在晚新生代以来南北向缩短量并不是十分显著,至少是在古地磁研究的误差范围以内.  相似文献   

8.
帕米尔-西昆仑地区新生代古地磁结果及其构造意义   总被引:1,自引:0,他引:1  
通过对帕米尔-西昆仑地区新生代地层51个采点古地磁样品系统的古地磁测试,获得了研究区新生代较可靠的古地磁数据。尽管上述研究剖面因为单斜地层无法对所获得的古地磁结果进行褶皱检验,但从实验结果可以看出,其地理坐标下平均的高温特征剩磁方向远离现代地磁场方向,且和田朗如乡古近纪、策勒恰恰古近纪、叶城柯克亚乡新近纪剖面所获得的古地磁结果具有正、反2种极性,由此,我们认为以上剖面的高温特征剩磁很可能代表了岩石形成时的原生剩磁方向。结合研究区已有的古地磁数据,认为在新生代印度板块向北挤压作用下,塔里木地块西缘地区(帕米尔高原东北缘)早白垩世-晚白垩世始相对欧亚大陆在古地磁误差范围内并没有发生明显的构造旋转作用(1°~1.6°),而始新世以来相对欧亚大陆则发生了明显的逆时针旋转(22°~38°),该地区的逆时针旋转作用可能与塔拉斯-费尔干纳断裂新生代以来的右旋走滑作用有关,而在帕米尔高原以东则主要以沿大型走滑断裂的走滑作用为主,并没有发生明显的旋转作用。  相似文献   

9.
右江地区北西向断裂起源于晚古生代右江盆地内发育的同沉积断裂,这些断裂近等间距平行分布,新生代以来发生了多期次左旋走滑活动,进而导致了右江地区整体发生简单剪切变形。利用三维沙箱模型展开了物理模拟实验,对新生代右江地区的变形机制进行了分析。实验结果表明,早期在红河断裂的左旋剪切错动和印支地块的顺时针旋转联合作用下,右江地区北西向断裂复活,并发生明显的左旋走滑活动;随后川滇地块发生东南向的挤出运动,对右江地区产生侧向挤压,导致了右江地区北西向断裂新一轮的快速左旋走滑活动,同时还导致了右江地区西部的地壳压缩增厚。实验证实新生代右江地区的简单剪切变形以及北西向断裂的走滑活动是印支地块和川滇地块挤出运动共同作用的结果,同时也是印度-欧亚板块碰撞产生的连锁反应之一。   相似文献   

10.
张大文  颜茂都 《地质论评》2019,65(5):1251-1268
古地磁学在限定印度—欧亚板块碰撞时限的研究中扮演着重要的角色。然而受磁倾角浅化、地球磁场长期变以及重磁化等诸多因素影响,不同时期获得的古地磁数据质量参差不齐,造成其限定的印度—欧亚大陆碰撞时限从65到20多百万年不等。本文针对这一现状,通过对拉萨陆块和特提斯喜马拉雅已有的晚白垩世—古近纪古地磁数据开展严格的可靠性评判,共筛选出10条有效数据(其中拉萨陆块9条、特提斯喜马拉雅1条),获得以下认识:① 拉萨陆块晚白垩世期间基本稳定在10°~16°N,在始新世晚期—渐新世早期位于21.8+2.5/-2.3°N;② 特提斯喜马拉雅在晚白垩世中期位于约34.2+4.4/-5.0°S,并与印度板块有基本一致的古纬度;③ 对于用来限定碰撞时限的晚白垩世晚期—始新世早期的古地磁结果,经评判分析,认为至少到目前为止,在明确磁倾角浅化及浅化程度、地球磁场长期变是否被平均掉和剩磁的原生性及重磁化程度等问题之前,还缺乏真正有效的古地磁数据。因此,总体来说,现有的古地磁数据在限定拉萨陆块与特提斯喜马拉雅碰撞时限的精确度方面,还有很大的提升空间,亟待针对存在争议的岩石地层单元开展更详细的磁学和非磁学相结合的综合研究进行验证,并在更多地区获得高质量的古地磁数据(尤其是晚白垩世晚期—古近纪)。此外,考虑到两个陆块呈近东西向的巨型狭长条带,其地质时期的展布方向会显著影响东、西部的古纬度,今后的相关古地磁研究应尽量分东、西部不同区域开展。  相似文献   

11.
古地磁磁倾角是古纬度的记录者,能真实反映块体在地质时期的古纬度,对块体构造活动有着很好的揭示作用。但最近众多的研究表明,沉积物所记录的磁倾角结果,往往存在浅化现象。因此,如何精确确定古地磁磁倾角方向,是研究块体南北向构造活动的关键。本文围绕古地磁研究相对薄弱的青藏高原腹地羌塘块体,针对雁石坪地区侏罗纪沉积地层开展了精细的古地磁研究,确定了雁石坪群沉积岩地层中灰岩和碎屑岩的剩磁方向(碎屑岩雀莫错组Ds=339.0°,Is=24.4°,α95=18.3°,灰岩布曲组Ds=336.9°,Is=30.9°,α95=7.8°),通过运用"E/I"统计方法对所获得的古地磁结果进行校正,发现雁石坪地区侏罗纪沉积岩由同沉积期间或沉积后的压实作用所造成的磁倾角浅化约5.7°~8.5°。该结果表明,羌塘块体在中侏罗世雀莫错组和布曲组期间存在约278 km北向漂移。校正后的古地磁结果,与同期的相邻块体塔里木极对比,揭示出磁倾角具有额外10.9°~14.6° 的浅化,可能指示了自中侏罗世以来,羌塘块体相对塔里木块体有约1 000 km的北向漂移和缩短。  相似文献   

12.
红层是古地磁学的重要研究对象之一。以往对河湖相红层的古地磁研究较多,而对于风成红层的研究较少。因 此,对于风成红层剩磁记录是否可靠等基本问题仍然缺乏清晰的认识。文章对江西信江盆地上白垩统圭峰群塘边组风成 红层和河口组河流相红层开展了古地磁研究,并通过对比风成红层与河流相红层的古地磁结果,探究风成红层剩磁记录 的可靠性及不同沉积过程对古地磁记录的影响。逐步热退磁实验结果显示仅有19% 的塘边组风成红层分离出稳定的特征 剩磁,而且其强度衰减曲线为凸形,表明特征剩磁为碎屑赤铁矿携带的原生剩磁。其平均方向为Ds=15.6 °, Is=28.9 °, n= 25, κ=13.0, α95=8.3 °;对应的古地磁极为Latitude=70.7 °, Longitude=245.6 °, A95=6.8 °。该古地磁极与赣州地区河湖相红层 的古地磁极及华南晚白垩世的古地磁极位置一致,表明风成红层的剩磁记录是可靠的。河口组河流相红层绝大部分样品 未能分离出稳定的特征剩磁。磁化率各向异性结果显示塘边组和河口组为沉积组构。岩石磁学结果表明,载磁矿物为赤 铁矿和磁铁矿。通过对塘边组风成红层的薄片观察和红度值比较等进一步研究表明,颗粒粒度和胶结程度可能对红层剩 磁记录的稳定性有一定影响。  相似文献   

13.
红层是古地磁学的重要研究对象之一。以往对河湖相红层的古地磁研究较多,而对于风成红层的研究较少。因 此,对于风成红层剩磁记录是否可靠等基本问题仍然缺乏清晰的认识。文章对江西信江盆地上白垩统圭峰群塘边组风成 红层和河口组河流相红层开展了古地磁研究,并通过对比风成红层与河流相红层的古地磁结果,探究风成红层剩磁记录 的可靠性及不同沉积过程对古地磁记录的影响。逐步热退磁实验结果显示仅有19% 的塘边组风成红层分离出稳定的特征 剩磁,而且其强度衰减曲线为凸形,表明特征剩磁为碎屑赤铁矿携带的原生剩磁。其平均方向为Ds=15.6 °, Is=28.9 °, n= 25, κ=13.0, α95=8.3 °;对应的古地磁极为Latitude=70.7 °, Longitude=245.6 °, A95=6.8 °。该古地磁极与赣州地区河湖相红层 的古地磁极及华南晚白垩世的古地磁极位置一致,表明风成红层的剩磁记录是可靠的。河口组河流相红层绝大部分样品 未能分离出稳定的特征剩磁。磁化率各向异性结果显示塘边组和河口组为沉积组构。岩石磁学结果表明,载磁矿物为赤 铁矿和磁铁矿。通过对塘边组风成红层的薄片观察和红度值比较等进一步研究表明,颗粒粒度和胶结程度可能对红层剩 磁记录的稳定性有一定影响。  相似文献   

14.
华南莲沱组最新的年龄结果表明,其时代结束于715Ma,因此,准确确定莲沱组的古纬度对"雪球地球"的研究具有重要意义。通过对莲沱组红层进行等温剩磁各向异性研究,获得其磁倾角校正因子为0.8719,校正后的磁倾角为70.4°,对比热退磁实验测得的莲沱组磁倾角为67.8°,则其磁倾角偏低量为2.6°。通过校正前后的磁倾角分别计算古纬度,获得磁倾角偏低所引起的古纬度变化为3.9°±6°。通过对比华南与澳大利亚-东南极板块的720Ma古地理位置,发现这一时期冰碛岩从中纬度到赤道广泛分布,验证了当时的"雪球地球"环境。  相似文献   

15.
Various Oligocene formations from NE Greece (ignimbrites from the Medousa area, rhyolites from Zagradenia, granodiorites from Elatia) show discordant paleomagnetic signatures, in each case indicating small cw (clockwise) rotation and also inclination flattening. Marls from Pithion were partly remagnetized in a present-day field. Samples that contain ancient magnetization components also indicate small cw rotation and inclination flattening. However, the magnetization of andesites from Peplos reflects a considerably larger rotation, likely owing to local tectonics. In the context of previous work in the area, these results are used to propose a subdivision of NE Greece into four structural zones of distinctive rotational behaviour (from east to west): sites in zone 1, east of the Kavala-Xanthi-Komotini fault (KXK), show various cw and ccw (counterclockwise) rotation angles owing to complex kinematics resulting from the interaction of the KXK and the north-Anatolian fault zone. However, zone 2, between the KXK and the Strymon valley, is structurally homogeneous ( 10° cw rotation). The paleomagnetic signature of the Vertiskos massif (zone 3) implies a larger (> 30°) cw rotation, whereas sites in the Vardar basin (zone 4) contain a paleomagnetic signature similar to that of zone 2. This suggests a motion of the Vertiscos massif, a meta-ophiolitic nappe, relative to underlying strata. Indeed, zones 2 and 4 may be parts of the same structural unit which underlies this nappe.  相似文献   

16.
《Geodinamica Acta》2013,26(1-3):73-82
Paleomagnetic declinations from the Inner Carpathian Paleogene Basin imply that the area rotated counterclockwise about 60°, during the Miocene[1]. The question may arise if the paleomagnetic declination could have been biased by the W-E directed turbidity currents prevailing in the basin causing an apparent counter-clockwise rotation of the paleomagnetic direction.

The paleomagnetic results were obtained for fine grained strata, deposited in relatively calm water. Nevertheless, to confirm the paleomagnetic rotation, we needed evidence that flow activity on the magnetic grains was indeed insignificant in the beds yielding paleomagnetic results. Therefore, we carried out magnetic anisotropy measurements.

Results of AMS (representing para and ferromagnetic minerals together) measurements, compared with paleomagnetic observations, demonstrate that well-clustered lineations at locality level and failure to define a paleomagnetic direction are coupled. Lineation, when observable, is flow parallel, suggesting that magnetic lineation in the Inner Carpathian flysch basins may be regarded as a good proxy for turbidity current direction. It is remarkable, however, that the well-defined paleomagnetic directions are observed for localities, where the magnetic fabric is not showing lineation on locality level. Moreover, the lineation direction of the ferromagnetic minerals alone (obtained by measuring the anisotropy of the remanence) is independent of that of the turbidity currents. Thus we can safely conclude that the Inner Carpathian flysch basin indeed was affected by 60° tectonic rotation, and the paleomagnetic vectors were not biased by paleocurrents.  相似文献   

17.
The Aït Attab syncline, located in the Central High Atlas, displays a curved geometry in plan view, and is considered as one of the most spectacular fold shapes in the Central High Atlasic belt. We conducted a paleomagnetic study in Jurassic-Cretaceous red beds to investigate the origin of this geometry. The Natural Remanent Magnetization (NRM) is dominated by a secondary magnetization carried by haematite with unvarying normal polarity that has been dated at about 100 Ma. The regional fold test performed in both limbs of the syncline is positive and the paleomagnetic vectors (after tectonic correction) are parallel throughout the curvature, indicating a negative oroclinal bending test. These results are inconsistent with previous works that consider the bent geometry of this syncline to result from subsequent distortion of originally NE–SW trending structures by rotation about a vertical axis. We interpret the NRM data to demonstrate that the changing trend of the Aït Attab syncline is a primary feature, resulting from the influence of pre-existing, NE–SW and E-W-striking extensional faults that developed during a strike-slip regime. Paleomagnetic results also reveal that the tilting observed in the sampled red beds is post Albian, probably linked to the Cenozoic inversion of the High Atlasic belt.  相似文献   

18.
A combined paleomagnetic and geochronological investigation has been performed on Cretaceous rocks in southern Qiangtang terrane (32.5°N, 84.3°E), near Gerze, central Tibetan Plateau. A total of 14 sites of volcanic rocks and 22 sites of red beds have been sampled. Our new U–Pb geochronologic study of zircons dates the volcanic rocks at 103.8 ± 0.46 Ma (Early Cretaceous) while the red beds belong to the Late Cretaceous. Rock magnetic experiments suggest that magnetite and hematite are the main magnetic carriers. After removing a low temperature component of viscous magnetic remanence, stable characteristic remanent magnetization (ChRM) was isolated successfully from all the sites by stepwise thermal demagnetization. The tilt-corrected mean direction from the 14 lava sites is D = 348.0°, I = 47.3°, k = 51.0, α95 = 5.6°, corresponding to a paleopole at 79.3°N, 339.8°E, A95 = 5.7° and yielding a paleolatitude of 29.3° ± 5.7°N for the study area. The ChRM directions isolated from the volcanic rocks pass a fold test at 95% confidence, suggesting a primary origin. The volcanic data appear to have effectively averaged out secular variation as indicated by both geological evidence and results from analyzing the virtual geomagnetic pole (VGP) scatter. The mean inclination from the Late Cretaceous red beds, however, is 13.1° shallower than that of the ~ 100 Ma volcanic rocks. After performing an elongation/inclination analysis on 174 samples of the red beds, a mean inclination of 47.9° with 95% confidence limits between 41.9° and 54.3° is obtained, which is consistent with the mean inclination of the volcanic rocks. The site-mean direction of the Late Cretaceous red beds after tilt-correction and inclination shallowing correction is D = 312.6°, I = 47.7°, k = 109.7, α95 = 3.0°, N = 22 sites, corresponding to a paleopole at 49.2°N, 1.9°E, A95 = 3.2° (yielding a paleolatitude of 28.7° ± 3.2°N for the study area). The ChRM of the red beds also passes a fold test at 99% confidence, indicating a primary origin. Comparing the paleolatitude of the Qiangtang terrane with the stable Asia, there is no significant difference between our sampling location in the southern Qiangtang terrane and the stable Asia during ~ 100 Ma and Late Cretaceous. Our results together with the high quality data previously published suggest that an ~ 550 km N–S convergence between the Qiangtang and Lhasa terranes happened after ~ 100 Ma. Comparison of the mean directions with expected directions from the stable Asia indicates that the Gerze area had experienced a significant counterclockwise rotation after ~ 100 Ma, which is most likely caused by the India–Asia collision.  相似文献   

19.
To verify paleomagnetic proof for megatectonic translation in the Tethys a large collection of samples from a key area, the Bolzano Quartz Porphyry Plateau in the Southern Alps, was examined. Their natural remanent magnetization was analyzed with thermal, and mainly alternating field demagnetization. The result is a well-established paleomagnetic direction of D: 150° and I: −19.5° (95 = 4.9), obtained from 152 samples from 39 sites distributed over 12 volcanic units. It is argued that the inclination of this result is not significantly different from that which can be extrapolated for the Southern Alps from Early Permian paleomagnetic directions of the stable European shield. Consequently it is concluded that a paleomagnetic indication for megatectonic translation of the Southern Alps is virtually absent. But a large counterclockwise deviation of the declination is evident, and is easily explained by a counterclockwise rotation of 50° of the Southern Alps with respect to stable Europe. Since the paleomagnetic direction of the Early Permian volcanics of the Southern Alps fits in reasonably well with the (poorly known) Early Permian paleomagnetic pattern of Africa, a coherence between both regions is presumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号