首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
雪冰反照率能够改变冰川表面能量收支平衡,是影响冰川消融的重要因素之一。利用祁连山地区冰川面积矢量数据、MODIS逐日积雪反照率、气温和降水以及冰川物质平衡等数据,探讨了祁连山典型冰川区雪冰反照率特征及其对冰川物质平衡的影响。结果表明:祁连山地区冰川多年平均反照率为0.532,冰川区面积大小与其多年平均反照率之间呈显著正相关(R2=0.16,P<0.05,N=91),即冰川面积缩减1 km2,对应的平均反照率下降0.0025。祁连山老虎沟12号冰川反照率在夏季有明显的海拔效应,且强于其他时段,达到0.047?(100m)-1。典型冰川年均物质平衡量与冰川表面夏季(6—8月)平均反照率之间存在显著的正相关关系,老虎沟12号冰川和七一冰川决定系数R2分别达到了0.48(P<0.05)和0.66(P <0.05)。冰川表面夏季平均反照率这一指标能够较好地衡量青藏高原北部祁连山地区冰川物质平衡的变化。  相似文献   

2.
1958-2005年祁连山老虎沟12号冰川变化特征研究   总被引:23,自引:8,他引:15  
老虎沟12号冰川是祁连山最大的冰川, 面积为21.9 km2, 为极大陆型冷性复式山谷冰川. 该冰川监测开始于1958年, 1962年监测被迫终止;其后于20世纪70-80年代有过短期考察, 2005年恢复全面观测. 基于野外GPS观测, 两期1∶50 000地形图和两期1∶10 000地形图及Landsat ETM 遥感影像, 分析了过去近50 a来多时间段冰川的变化特征及其对气候变化的响应过程. 结果表明: 1957-1976年间冰川退缩约100 m, 平均退缩速率5 m·5a-1, 此后冰川归于平稳态; 1985-2005年间冰川退缩140.12 m, 退缩速率较之前(1957-1976年)提高了40.2%. 结合玉门镇气象资料分析认为, 升温幅度的增大是影响20世纪90年代中期以来老虎沟12号冰川退缩加剧的根本原因, 冰川在持续高温情景下的气候响应要敏感于低温情景.  相似文献   

3.
物质平衡是衡量冰川“健康”状况的最好方式,由于野外工作开展难度大,物质平衡观测仅局限于少数几条冰川上,限制了区域冰川物质平衡和冰量变化的评估.通过卫星高程数据可以监测区域冰川高程变化,进而可估算其冰量变化.利用SRTM和ICESat激光测高数据反演了祁连山冰川冰量变化,结果表明:21世纪初祁连山冰川处于物质亏损状态,年平均高程减薄(0.345士0.258)m,相当于(0.293土0.219)m w.e.,估算祁连山冰川年均冰量损失为(534.2±399.5)×106 m3 W.e..由于祁连山各冰川区相对独立,相隔较远,冰川规模普遍不大,且ICESat地面轨迹在中低纬度分布稀疏,使得结果的不确定性还很大.  相似文献   

4.
冰川储量变化对全球水循环、能量平衡和区域水资源都具有重要意义,构成全球变化研究的重要方面.针对当前冰川变化监测技术与方法,提出一种结合多源DEM数据和多时相遥感影像监测冰川体积变化的方法.以青藏高原那木纳尼峰地区冰川为例,通过MSS/TM遥感数据识别冰川范围,以地形图DEM和SRTM-DEM计算出两时期冰川厚度变化信息,从而计算冰川体积变化值.计算过程中,对冰川范围识别、遥感数据不同时相、不同源DEM数据的误差进行了分析和控制.结果显示,1976—2001年的25a间该地区冰川体积减少了3.060km3,存在着较为强烈的消耗,冰川年损耗速率为0.1224km3.a-1.  相似文献   

5.
黄河源区阿尼玛卿山典型冰川表面高程近期变化   总被引:1,自引:0,他引:1  
阿尼玛卿山位于青藏高原的东缘,是黄河源区冰川分布比较集中的区域。该区域的冰川物质平衡变化研究对于冰川水资源评估及冰川对气候变化响应研究具有重要借鉴意义。通过TerraSAR-X/TanDEM-X数据的干涉测量方法获得阿尼玛卿山区冰川的高分辨、高精度的数字高程模型(DEM),与SRTM DEM进行差分获得该区域冰川2000年至2013年间的表面高程变化。对比发现:近13 a来该区域典型大冰川表面高程整体均有所下降,唯格勒当雄冰川末端区域冰川表面高程平均下降(4.16±3.70)m,冰舌中部表面高程有所增加,冰川末端区域表碛覆盖范围有所增加;哈龙冰川表面高程从末端往上呈递减下降的趋势,平均下降(8.73±3.70)m;耶和龙冰川表面平均下降了(13.0±3.70)m,但从冰川末端往上1.6 km区段表面高程平均增加约25 m,冰舌中部表面高程下降明显,对比冰川编目数据、Landsat TM图像可知,该冰川在2000年至2009年间发生过跃动,冰川末端位置前进了约500 m。总体来说,即使存在个别冰川前进现象,该区域冰川在近13 a间仍处于退缩状态。  相似文献   

6.
基于Landsat系列卫星遥感影像、 SRTM DEM和TanDEM-X DEM对喀喇昆仑山中部Shigar流域不同类型冰川的面积变化、 物质平衡进行了分析。结果表明: 1993—2016年间Shigar流域内有25条跃动冰川(面积增加1.30 km2), 68条前进冰川(面积增加0.86 km2), 50条退缩冰川(面积减少3.48 km2), 376条稳定冰川(面积减少1.34 km2)。跃动冰川的冰川长度和规模均集中在较大范围内, 前进冰川的规模略高于退缩冰川, 退缩冰川多为小规模冰川, 特大规模冰川保持稳定状态; 不同类型冰川的空间分布差异较大, 且不同海拔带内水热组合条件不一致也影响冰川运动状态。2000—2013年间, 流域内跃动冰川物质平衡为(+0.17±0.03) m w.e.·a-1, 前进冰川物质平衡为(-0.01±0.03) m w.e.·a-1, 退缩冰川物质平衡为(-0.22±0.03) m w.e.·a-1, 稳定冰川物质平衡为(-0.01±0.03) m w.e.·a-1。四类冰川表面高程变化随归一化冰川长度的变化模式以及不同海拔带内和不同坡度区间的冰川表面高程变化显示: 跃动冰川主要特征是积累区物质积累量大; 前进冰川上部物质积累并且向下运动推动冰川末端前进; 退缩冰川消融区物质亏损量大使得冰川末端退缩。  相似文献   

7.
基于高分卫星数据的冰川长度综合提取方法   总被引:3,自引:1,他引:2  
冰川长度是冰川变化研究中的重要参数。以青藏高原普若岗日冰原为研究对象,基于高分一号卫星遥感影像和数字高程模型数据,利用波段阈值法和目视解译相结合的方法提取冰川边界,综合利用冰川中心线法和冰川主流线法获取冰川长度,并在地理信息系统技术支持下进行了实现。结果表明,提取的冰川长度线与人工数字化的冰川长度线吻合度较好,精度可达97.9%,且执行效率较高。  相似文献   

8.
利用尼泊尔已发布的冰川编目数据、遥感数据及DEM数字高程模型,利用GIS和Excel对尼泊尔境内冰川的结构特征及1980-2010年的冰川变化特征进行了分析,并运用冰川系统功能模型模拟了同期尼泊尔冰川的变化趋势。结果表明:(1)尼泊尔境内冰川平均规模较小,且冰川分布的海拔差异大。(2)尼泊尔冰川平衡线高度分布受地形影响明显,呈现出反纬向性变化特征,存在若干以高峰为中心的高值区域。(3)1980-2010年尼泊尔冰川整体呈现退缩状态,冰川数量增加了378条,冰川面积和体积均减少,分别减少了24%和29%;小规模冰川或冰川系统退缩更快,1980-1990年冰川变化速率最快。(4)采用历史时期的气温变化率,冰川系统功能模型可以较好地模拟冰川历史时期的变化特征。  相似文献   

9.
祁连山摆浪河全新世冰量变化初探   总被引:2,自引:2,他引:0  
采用祁连山老虎沟12号冰川2009年RTK测量生成的数字高程模型(DEM), 建立现代冰川表面横截面拟合的二次方程, 结合差分GPS测量的冰碛垄形态, 运用于祁连山摆浪河上游14号冰川和16号冰川全新世以来冰量变化的估算. 结果表明: 新冰期以来冰储量减少0.38 km3, 小冰期以来14号冰川和16号冰川的冰储量分别减少0.016 km3和0.047 km3; 根据祁连山全新世各个时期最大冰川范围的时间, 估计了全新世以来14号和16号冰川冰储量的减少速率, 新冰期以来为12.2×10-5~15.0×10-5 km3·a-1, 小冰期以来分别为4.0×10-5~5.3×10-5 km3·a-1, 11.75×10-5~15.7×10-5 km3·a-1.  相似文献   

10.
冰川的监测一直是冰川学研究的重要内容, 2008年对天山东段博格达峰南坡的黑沟8号冰川末端进行了地面多基线数字摄影测量, 获取了该冰川末端的影像, 以及与之相配套的控制信息. 在Lensphoto多基线数字摄影测量系统中, 测得了冰川末端的0.11 km2 DEM数据. 采用同期测量的GPS数据检验得知, 摄影测量所得DEM数据在高程上的平均误差为1.92 m, 标准偏差为3.47 m. 地面旋转多基线数字摄影测量是一种非常有效的冰川测量手段, 可以在典型冰川测量和冰川重要部位(例如冰川末端、 冰崖等)的测量中发挥作用.  相似文献   

11.
针对冰川遥感监测研究工作中存在的数据源选择问题,首次将国产高分一号卫星数据应用于祁连山系青海境内冰川动态变化监测工作.通过国产高分遥感数据与同尺度的Landsat历史数据对比,从变化面积、变化率、空间变化、类型变化、结构变化等方面阐述祁连山系冰川变化规律.研究对比表明:国产高分卫星遥感数据在采集、处理、监测冰川变化中的应用效果完全可以满足1:10万尺度的遥感调查和监测,不管是光谱信息还是纹理信息都优于ETM等中低分辨率数据;国产高分卫星的多光谱数据与Landsat、Aster等历史数据可以形成对比数据集;祁连山系冰川总体变化不大,但在内部结构与时空分布存在较大差异,冰川面积和数量呈双降态势;针对冰川的特殊性,能保证在每年的最佳季节获取最优质的遥感数据,对于时间跨度大的遥感监测目标监测具有重要意义.  相似文献   

12.
深入了解全球变暖背景下青藏高原东南部海洋型冰川的变化趋势及其对气候变化的响应,对认识不同类型冰川对气候变化的响应方式有重要意义。根据Landsat系列遥感影像和数字高程等数据提取了青藏高原东南部雀儿山地区1987—2016年期间多年的冰川边界,并对其变化过程和特征进行了分析。结果表明:1987—2016年雀儿山地区冰川面积持续减小,变化率为(-1.69±0.87)%·a-1,为青藏高原众多山系中变化最大的之一。研究区冰川消融主要发生在规模<1 km2的小型冰川及海拔5 200 m以下的冰川消融区,其中西南方向的冰川退缩速率最大。气象数据分析结果显示,1987—2016年雀儿山地区夏季平均气温总体上升了1.58 ℃,平均升温速率为0.33 ℃?(10a)-1。由于夏季平均气温与冰川变化过程有显著的相关性,而同期年降水量无明显变化,由此推测,夏季平均气温的上升是雀儿山地区冰川快速退缩的主因。此外,相对于单纯基于光谱特征提取冰川信息,结合地形阴影模拟数据进行遥感冰川分类在一定程度上可以提高分类精度。  相似文献   

13.
石羊河流域冰川变化与地形因子的关系探究   总被引:2,自引:2,他引:0  
李林凤  李开明 《冰川冻土》2019,41(5):1026-1035
以甘肃省石羊河流域为研究区,运用GIS和RS技术结合人工目视解译,提取了1995年、2002年、2009年、2015年、2016年5期遥感影像冰川边界信息。结合DEM数据提取了坡度、朝向、海拔三个地形因子。基于相关性分析与地理探测器的方法,对冰川变化与地形因子进行了相关分析,并研究了冰川变化与地形因子之间的空间关系。结果表明:(1)该地区冰川年均面积变化率由1973-1995年的-1.27%·a-1变为2015-2016年的-2.87%·a-1,消融速度加快,面积小于0.1 km2的小冰川消融显著;(2)石羊河流域冰川分布主要的朝向是N、NE、NW,朝向与冰川变化具有一定相关性,南坡退缩较快;(3)坡度与冰川变化呈异向相关,海拔高度控制着冰川的消融速度,低海拔冰川的退缩幅度更大;(4)地形因子对冰川变化空间分异的影响显著不同,海拔是冰川变化空间分异最重要的控制因素,其次是朝向,最后是坡度。  相似文献   

14.
冰川流速是冰川动力状况的重要标志,利用合成孔径雷达技术能快速获得大范围冰川的表面流速.利用日本高级陆地观测卫星(ALOS)相控阵型合成孔径雷达L波段(PALSAR)及欧洲太空局的ENVISAT/ASAR数据的特征匹配方法获得帕米尔高原公格尔山区冰川表面流速,并结合合成孔径雷达干涉相干与不同时期数字高程模型对公格尔山区典型冰川动力进行分析,获得研究区不同时间基线冰川表面相干性、表面流速以及基于不同时相DEM的典型冰川表面高程变化信息.结果表明:30 a来克拉牙依拉克冰川表面高程下降了(15±12.1)m,表碛区域近期运动速度变化不大;其木干冰川平均表面高程几乎无变化,但2007-2011年夏季表面流速明显减缓,靠近末端附近部分区域可能已经演化为非活动区;姜满加尔冰川位于西风带的迎风坡,积累区面积大,冰川流速较快,无表碛覆盖,但表面高程仍下降了(8.8±12.7)m.编号为5Y663D0009的冰川冰舌表碛覆盖区可能已经演化为非活动区,30 a来表面高程下降(8.6±12.0)m.综合分析表明,冰川规模特别是积累区面积的大小及所处位置、地形对冰川演化具有重要影响.  相似文献   

15.
煤矿区沉降与遥感监测方法探讨   总被引:2,自引:0,他引:2  
以晋城市煤矿区沉降研究为例,介绍了应用遥感图像调查与数字高程模型相结合的方法进行煤矿区沉降研究及监测。监测结果表明,沉降区主要集中在该区域的西北部,沉降区面积较大,沉降原因是大矿开采3#煤层,导致地面沉降,只有2处沉降由小煤矿开采9#煤层引起。经验证,具体位置虽有差异,但沉降区基本与实际吻合。依据当前合成孔径雷达干涉测量技术的发展,对煤矿区遥感综合监测方法进行了讨论。  相似文献   

16.
2000-2015年祁连山植被变化分析   总被引:2,自引:1,他引:1  
植被变化对区域生态系统稳定和生态环境变化有着重要的影响。基于MOD13A3数据,建立了2000-2015年祁连山地区植被覆盖时空数据集,结合DEM和土地覆盖分类数据,分析了祁连山地区植被时空分布格局及变化特征,并利用同期气象数据探讨其对气候变化的响应。结果表明:祁连山植被呈东多西少的分布格局,其空间分布与降水空间分布一致;2000年以来祁连山地区灌丛和高寒稀疏草甸先增后减,山地森林草原和高寒草甸增加;整体上祁连山植被覆盖有转好趋势,这与区域暖湿化有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号