首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 Introduction The Gaojiacun intrusive complex is one of the numerous ultramafic-mafic intrusions in Sichuan Province of China. It was mapped during the 1970s and studied mainly by Chinese scientists (e.g. Geological Team 106, 1975; Shen et al., 1986, 1989; CGGJC, 1986; Yang et al., 1993; Li et al., 1995; Shen et al., 2003; Zhu et al., 2004a). Since the year 2000, China has become one of the largest PGE consumers. While the country can produce only less than 1 ton PGE/year, the Chin…  相似文献   

2.
In the Archaean Murchison Province of Western Australia, granitoid batholiths and plutons that intruded into the ca. 2.7–2.8 Ga and ca. 3.0 Ga greenstone belts can be divided into three major suites. Suite I is a ca. 2.69 Ga monzogranite-granodiorite suite, which was derived from anatexis of old continental crust and occurs as syn-tectonic composite batholiths over the entire province. Suite II is a trondhjemite-tonalite suite (termed I-type) derived from partial melting of subducted basaltic crust, which intruded as syn- to late-tectonic plutons into the greenstone belts in the northeastern part of the province where most of the major gold deposits are situated. One of the Suite II trondhjemite plutons has a Pb−Pb isochron age of 2641±36 Ma, and one of the structurally youngest tonalite plutons has a minimum Pb−Pb isochron age of 2630.1±4.3 Ma. Suite III is a ca. 2.65–2.62 Ga A-type monzogranite-syenogranite suite which is most abundant in the largely unmineralised southwestern part of the province. Gold deposits in the province are mostly hosted in brittle-ductile shear zones, and were formed at a late stage in the history of metamorphism, deformation and granitoid emplacement. At one locality, mineralisation has been dated at 2636.8±4.2 Ma through a pyritetitanite Pb−Pb isochron. Lead and Sr isotope studies of granitoids and gold deposits indicate that, although most gold deposits have initial Pb isotope compositions most closely similar to those of Suite II intrusions, both Suite I and Suite II intrusions or their source regions could have contributed solutes to the ore fluids. These preliminary data suggest that gold mineralisation in the Murchison Province was temporally and spatially associated with Suite II I-type granitoids in the northeastern part of the province. This association is consistent with the concept that Archaean gold mineralisation was related to convergent-style tectonic settings, as generation of both Suite II I-type granitoids and hydrothermal ore fluids could have been linked to the dehydration and partial fusion of subducted oceanic crust, and old sialic crust or its anatectic products may also contribute solutes to the ore fluids. Integration of data from this study with other geological and radiogenic isotope constraints in the Yilgarn Block argue against direct derivation of gold ore fluids from specific I-type granitoid plutons, but favour a broad association with convergent tectonics and granitoid magmatism in the late Archaean.  相似文献   

3.
There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small ultramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-Pl-Ol-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and low-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limahe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basalts. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts.  相似文献   

4.
Abstract. Intrusion‐related gold deposits are widely distributed within the North China craton or along its marginal fold belts. Presently, about 200 individual intrusion‐related gold deposits (prospects) have been discovered, among which Yuerya, Anjia‐yingzi, Linglong, Jiaojia, Chenjiazhangzi, Qiyugou, Jinjiazhuang, Dongping, Hougou, Huangtuliang, Guilaizhuang, Wulashan and Donghuofang are the most important ones. In general, the intrusion‐related gold deposits can be classified into three major groups according to their host rocks: (1) hosted by or related to felsic intrusions, including (la) calc‐alkaline granitoid intrusions and (lb) cryptoexplosion breccia pipes; (2) related to ultramafic intrusions, and (3) hosted by or related to alkaline intrusions. The first group contains the Yuerya, Anjiayingzi, Linglong, Jiaojia, Chenjiazhangzi and Qiyugou gold deposits. Gold mineralization at these deposits occurs within Mesozoic Yanshanian calc‐alkaline granitoid intrusions or cryptoexplosion breccia pipes as gold‐bearing quartz veins and replacement bodies. Pyrite, galena, sphalerite, chalcopyrite, native gold and electrum are major metallic minerals. The Jinjiazhuang deposit belongs to the second group, and occurs within Hercynian diopsidite and peridotite as quartz veins and replacement bodies. Pyrite, marcasite, arsenopyrite, native gold and electrum are identified. The third group includes the Dongping, Hougou, Huangtuliang, Guilaizhuang, Wulashan and Donghuofang deposits. Gold mineralization at these deposits occurs predominantly within the Hercynian alkaline intrusive complexes as K‐feldspar‐quartz veins and replacement bodies. Major metal minerals are pyrite, galena, chalcopyrite, tellurides, native gold and electrum. All these pyrite separates from Hercynian and Yanshanian intrusions or cryptoexplosion pipes associated with the gold deposits show a broad range in δ34S value, which is overall higher than those Precambrian rocks and their hosted gold deposits. For the alkaline intrusion‐related gold deposits, the δ34S values of the sulfides (pyrite, galena and chalcopyrite) from the deposits increase systematically from orebodies to the alkaline intrusions. All of these intrusion‐related gold deposits show relatively radiogenic lead isotopic compositions compared to mantle or lower crust curves. Most lead isotope data of sulfides from the gold ores plot in between the fields of the intrusions and Precambrian metamorphic rocks. Data are interpreted as indicative of a mixing of sulfur and lead from magma with those from Precambrian metamorphic rocks. Isotopic age data, geological and geochemical evidences suggest that the ore‐forming materials for the intrusion‐related gold deposits were generated during the emplacement of the Hercynian or Yanshanian intrusion. The calc‐alkaline or alkaline magma may provide heat, volatiles and metals for the intrusion‐related gold deposits. Evolved meteoric water, which circulated the wall rocks, was also progressively involved in the magmatic hydrothermal system, and may have dominated the ore fluids during late stage of ore‐forming processes. Therefore, the ore fluid may have resulted from the mixing of calc‐alkaline or alkaline magmatic fluids and evolved meteoric water. All these intrusion‐related gold deposits are believed to be products of Hercynian or Yanshanian calc‐alkaline and alkaline igneous processes along deep‐seated fault zones within the North China craton or along its marginal belts.  相似文献   

5.
Mafic rocks at Lake Nipigon provide a record of rift-related continental basaltic magmatism during the Keweenawan event at 1109 Ma. The mafic rocks consist of an early, volumetrically minor suite of picritic intrusions varying in composition from olivine gabbro to peridotite and a later suite of tholeiitic diabase dikes, sheets and sills. The diabase occurs primarily as two 150 to 200 m thick sills with a textural stratigraphy indicating that the sills represent single cooling units. Compositional variation in the sills indicates that they crystallized from several magma pulses.The diabases are similar in chemistry to olivine tholeiite flood basalts of the adjacent Keweenawan rift, particularly with respect to low TiO2, K2O and P2O5. The picrites have higher TiO2, K2O and P2O5 than the diabases and are similar to, but more primitive than, high Fe-Ti basalts which erupted early in the Keweenawan volcanic sequence.All of the rocks crystallized from fractionated liquids. The picrites are cumulate rocks derived at shallow crustal depths from a magma controlled predominantly by olivine fractionation. Picritic chills are in equilibrium with olivine phenocrysts of composition Fo80 and are interpreted to represent the least evolved liquids observed. The parental magma of the picrites was probably Fe rich relative to the parental magma of the diabase. The diabase sills crystallized from an evolved basaltic liquid controlled by cotectic crystallization of plagioclase and lesser olivine and pyroxene.The emplacement of dense olivine phyric picritic magmas early in the sequence, followed by later voluminous compositionally evolved magmas of lower density suggests the development of a crustal density filter effect as the igneous event reached a peak. Delamination of the crust-mantle interface may have resulted in the transition from olivine controlled primitive magma to fractionated magma through the development of crustal underplating.  相似文献   

6.
月牙山蛇绿质构造混杂岩带位于红柳河—洗肠井蛇绿岩带东部的月牙山一带。月牙山蛇绿岩套出露较完整,自下而上由超基性杂岩、辉长岩、层状玄武岩、枕状玄武岩及放射虫硅质岩组成。蛇绿岩套北侧发生了强烈的构造混杂作用,形成蛇绿质构造混杂岩带,由强糜棱岩化、强蛇纹石化的辉橄岩、玄武岩基质和辉石岩、堆晶辉长岩、斜长花岗岩、橄榄岩、橄辉岩、角闪石岩、白云岩、放射虫硅质岩、蚀变玄武岩等岩块组成。通过对蛇绿岩套中辉石岩、辉长岩、斜长花岗岩、辉长闪长岩及蛇绿岩套北侧斜山——东七一山火山弧中的安山岩、花岗闪长岩等开展锆石U-Pb同位素测年研究,确定月牙山蛇绿岩套形成时代约为530Ma,相当于早寒武世;洋盆发生大规模自南向北俯冲作用的时间为421.0±15~442.4±1.5Ma,相当于志留纪。通过对蛇绿岩带两侧地层形成环境及蛇绿岩带对两侧地层单位的限定意义等研究认为,红柳河—洗肠井蛇绿岩带是代表古大洋闭合的板块缝合带,以该带为界,北侧为哈萨克斯坦板块,南侧为塔里木板块。  相似文献   

7.
Abstract  Abundant small mafic intrusions occur associated with granitoids along the Gangdisê magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro‐pyroxenite zone occurs along the southern margin of the Gangdisê belt to the north of the Yarlung Zangbo suture. The mafic intrusion zone spatially corresponds to a strong aeromagnetic anomaly, which extends ~1400 km. The mafic intrusions consist of intermittently distributed small bodies and dikes of gabbro and dolerite with accumulates of pyroxenite, olivine pyroxenite, pegmatitic pyroxenite and amphibolite. Much evidence indicates that the Gangdisê gabbro‐pyroxenite assemblage is most likely a result of underplating of mantle‐derived magma. Detailed field investigation and systematic sampling of the mafic rocks was conducted at six locations along the Lhasa‐Xigazê segment of the mafic intrusive zone, and was followed by zircon SHRIMP II U‐Pb dating. In addition to the ages of two samples previously published (47.0±1 Ma and 48.9±1.1 Ma), the isotopic ages of the remaining four gabbro samples are 51.6±1.3 Ma, 52.5±3.0 Ma, 50.2±4.2 Ma and 49.9±1.1 Ma. The range of these ages (47–52.5 Ma) provide geochronologic constraints on the Eocene timing of magma underplating beneath the Gangdisê belt at ca. 50 Ma. This underplating event post‐dated the initiation of the India‐Eurasia continental collision by 15 million years and was contemporaneous with a process of magma mixing. The SHRIMP II U‐Pb isotopic analysis also found several old ages from a few zircon grains, mostly in a range of 479–526 Ma (weighted average age 503±10 Ma), thus yielding information about the pre‐existing lower crust when underplating of mafic magma took place. It is believed that magma underplating was one of the major mechanisms for crustal growth during the Indian‐Eurasia collision, possibly corresponding in time to the formation of the 14–16 km‐thick “crust‐mantle transitional zone” characterized by Vp = 6.85–6.9 km/s.  相似文献   

8.
The Granny Smith gold deposits formed late in the structural history of the Yilgarn Block at a high crustal level in a largely brittle structural régime. Gold mineralisation is located along a N-S striking fault which wraps around the contact of a small granitoid intrusion. In different sections of the fault, mineralisation may be developed in the granitoid, in the adjacent sedimentary sequence and/or along the contact between them. In the granitoid, gold mineralisation is in conjugate networks of thin carbonate-quartz veins and their alteration halos. Small displacements along veins are common. In contrast, veins and faults in the sedimentary rocks are subparallel to bedding. Spatial variations in the conjugate vein orientations indicate that the local stress field was heterogeneous and controlled by the shape of the granitoid contact. The greatest variations in vein and implied stress orientations occur in zones where the contact is most irregular. These are also the areas of richest mineralisation. Fluid flow was thus focused in a regional-scale low mean-stress region created by the geometry of the granitoid intrusion. Its irregular contact caused deposit scale variations in fluid flow and resulted in heterogeneous gold grades along the contact zone.  相似文献   

9.
The igneous rocks of the Kialineq centre on the coast of East Greenland at 67°N include a number of quartz syenite and granite plutons intruded 35my BP. These are subvolcanic bodies emplaced by cauldron subsidence and with ring-dike and bell-jar form. Associated with the major intrusions is an extensive acid-basic mixed magma complex. Two-liquid structures, chilling of basic against acid magma, pillows of basic in acid, and net-veining of basic by acid magma, are superbly displayed. The basic magma was of a transitional or alkaline type and underwent varying degrees of fractionation in a regime of repeated intrusions and diverse chambers. Heterogeneous hybrid rocks intermediate between basalt and quartz syenite are strongly developed and were formed by repeated mechanical mixing of contrasting magmas. The energy for this mixing probably came in the main from cauldron-block subsidence. The quartz syenite magma, which itself fractionated towards granite, has initial 87Sr/86Sr ratios the same as the basic magma and is itself believed to be a fractionation product of alkali basalt magma.  相似文献   

10.
中冈底斯带在早白垩世发生的大规模岩浆爆发事件的成因模式仍然存在争议。对中冈底斯带扎布耶茶卡北部区域岩浆岩的野外特征、锆石U-Pb年龄、全岩地球化学特征进行研究,结果表明,扎布耶茶卡北部岩体主要侵位于142Ma和100Ma,2期岩浆作用均包含中酸性岩体和辉长岩脉体。第一期(约142Ma)岩体属I型偏铝质高钾钙碱性系列花岗质岩体,第二期(约100Ma)岩体为偏铝质高钾钙碱性系列闪长质岩体。2期中酸性岩体均富集Rb、Ba、Th、U等大离子亲石元素,相对亏损Nb、Ta等高场强元素,并显示强烈的壳-幔岩浆混合特征。结合前人研究资料,扎布耶茶卡北部第一期花岗质岩体及辉长岩脉为南向俯冲的班公湖-怒江洋壳板片回转引起的岩浆作用;第二期闪长质岩体及辉长岩脉为班公湖-怒江洋壳板片断离的岩浆作用的响应。该研究成果为班公湖-怒江洋的南向俯冲、板片回转和板片断离演化模式提供了岩浆作用证据。  相似文献   

11.
The East Sulawesi Ophiolite (ESO) is tectonically dismembered and widely distributed in Central and East Sulawesi. It comprises, from base to top, residual mantle peridotite and mafic–ultramafic cumulate through layered to isotropic gabbro, to sheeted dolerites and basaltic volcanic rocks. Residual peridotite is dominantly spinel lherzolite intercalated with harzburgite and dunite. Ultramafic rocks from different locations display significant differences in rock composition and mineral. However, the clinopyroxene of peridotite displays REE pattern similarities with those of mid-ocean ridge (MOR) origin, rather than those of suprasubduction zone (SSZ) origin. The gabbroic unit consists of massive gabbro, layered gabbro, mafic and ultramafic cumulate and anorthosite. The observed crystallization sequence of gabbroic unit, which is olivine→(spinel)→plagioclase→clinopyroxene→(orthopyroxene)→(hornblende), and the mineral chemistry data indicate that the ESO gabbro has similarities with MOR setting.Major and trace element geochemistry of basalt and dolerite suggests MOR, oceanic plateau and minor SSZ origins. A possible oceanic plateau origin is supported by the following: (i) the 15-km thickness is comparable with the thickness of oceanic plateau rather than normal oceanic lithosphere; (ii) there are no or only minor olivine phenocrysts in the basalt; and (iii) predominance of aphyric texture in the basalts. The REE pattern of ESO basalt exhibits N-MORB-like signatures. However, a negative Nb anomaly in the trace element spider diagram may be attributed to mantle heterogeneity of an OPB source.The geochemical variations and disparities for both peridotite and basalt and the noncogenetic relationship between crust and mantle sections in several locations suggest that the ESO may have been formed at one tectonic setting and was later overprinted by magmatism in different environments through its birth to emplacement. A possible Cretaceous origin of an oceanic plateau component of the ESO is indicated on the basis of calculated paleopositions using plate trajectory analyses together with previously published paleolatitude data. The ESO can be traced back to the proximity of the presently active region of the SW Pacific Superplume.  相似文献   

12.
The Poyi Cu-Ni deposit is hosted by the Early Permian Pobei mafic-ultramafic complex along the northern margin of the Tarim Plate. This series of multiple intrusions in the Poyi deposit can be divided into four lithologies: gabbro, dunite, hornblende peridotite, and wehrlite. The ore body consists mainly of disseminated sulfides hosted by hornblende peridotite. All the Poyi deposit sulfides show positive Δ33S values from 0.004 to 0.221‰ and negative δ34S values from −0.8 to −3.5‰. High Ni contents occur in the hornblende peridotites, which exhibit the highest Δ33S value of 0.221‰ and the lowest δ34S value of −3.5‰, indicating contamination by sulfides from Archean sedimentary rocks. This contamination was important during sulfide saturation in the Poyi intrusions and likely occurred at depth before the emplacement of the Poyi intrusions. The intrusions incorporated country rocks during their emplacement and consolidation, and the degree of assimilation increases from the central lithofacies (i.e., the hornblende peridotite) to the marginal lithofacies (i.e., the wehrlite, dunite, olivine gabbro, and gabbro). Higher Ni contents are correlated with lower degrees of contamination; thus, we infer that the contamination by the country Paleoproterozoic rocks, which contain significant amounts of gneiss and marble, hindered sulfide saturation.The whole-rock Ni content is negatively correlated with the MgO and Fo contents in the olivine and positively correlated with the FeO and MnO contents in the olivine. During crystallization, olivine becomes gradually richer in FeO but poorer in MgO, and Mn tends to be enriched in the late stages of the melt. We infer that the fractional crystallization of olivine was an important factor during sulfide saturation.  相似文献   

13.
The Divrigi and Kuluncak ophiolitic mélanges are located in central Anatolia in the Tauride ophiolite belt. The stratigraphic sequence in the Divrigi ophiolitic mélange includes, from bottom to top, the Upper Jurassic-Lower Cretaceous Akdag limestone, Upper Cretaceous Çalti ultramafic rocks, and the Curek listwaenite. The Divrigi ophiolitic mélange is intruded by the Late Cretaceous-Eocene Murmano pluton. The above stratigraphic sequence is followed by the Eocene-Paleocene Ekinbasi metasomatite and the Quaternary Kilise Formation.

The oldest sequence of rocks in Kuluncak ophiolitic mélange in the GuvenÇ area is the Karadere serpentine/ultramafic body overlain successively by the Kurtali gabbro, Gundegcikdere radiolarite, the GuvenÇ listwaenites, and the Buldudere Formation. All of these units are Late Cretaceous in age. The Karamagra siderite deposit in the Hekimhan area probably was formed in the Lower Cretaceous at the contact between Çalti ultramafic rocks and the Buldudere Formation. The Kuluncak ophiolitic mélange was intruded by a subvolcanic trachyte in the Late Cretaceous. The Eocene-Paleocene Konukdere metasomatite, the Miocene Yamadag volcanic rocks, and Quaternary slope deposits are late in the stratigraphic sequence in the GuvenÇ area.

The Kuluncak ophiolitic mélange in the Karakuz area is similar to that at GuvenÇ; however, gabbro, radiolarite, and Miocene volcanic rocks are not present. The Miocene is represented by the Ciritbelen Formation at Karakuz and the Karakuz iron deposit is hosted by a Late Cretaceous subvolcanic trachyte.

The rareearth and trace-element concentration of serpentinite in the Divrigi and Kuluncak ophiolitic mélanges indicate that all of the ultramafics and their alteration products were derived from a MORB, which was depleted in certain elements and oxides. The results expressed in this study support the idea that the Divrigi and Kuluncak ophiolitic mélanges within the Tauride ophiolite belt originated from Northern Tauride oceanic lithosphere (Poisson, 1986), instead of a northern branch of Neo-Tethys (Sengor and Yilmaz, 1981).  相似文献   

14.
西昆仑山库地蛇绿岩的特征及其构造意义   总被引:17,自引:0,他引:17       下载免费PDF全文
杨树锋  贾承造 《地质科学》1999,34(3):281-288
库地蛇绿岩套由下部超镁铁质岩、辉长岩、幔源型花岗岩和上部基性火山岩、复理石等成分构成,形成于震旦纪-寒武纪。通过基性的辉长岩、玄武岩的矿物学、岩石学和地球化学研究得出,辉长岩表现出与典型蛇绿岩套中的堆晶辉长岩的特征相一致;而玄武岩则与大洋中脊玄武岩的特征一致,认为该蛇绿岩套是形成于洋中脊的蛇绿岩套。结合库地岛弧花岗岩的特征,提出塔里木盆地南缘在震旦纪-早古生代时期存在一个广阔的大洋,这一大洋在志留纪末期关闭。  相似文献   

15.
The largest ultra-high pressure metamorphic (UHPM) belt in the world is located along the Dabie–Sulu region, which tectonically belongs to the east part of the central orogenic belt of China. Integrated geophysical investigations of using deep seismic reflection, MT, and geothermal observations have been carried out in the Sulu area since 1997. The results of integrated interpretation suggest the existence of three features: (1) a rift beneath the Lianshui basin by the Jiashan–Xionshui fault; (2) a special crustal pattern, called the magmatic multi-arch structure occurs beneath the northern Sulu UHPM zone; and (3) a northwest-dipping regional thrust crosses the Sulu crust, representing the intracontinental subduction of the Yangtze craton beneath the Sulu metamorphic belts after collision between the Yangtze and Sino-Korean cratons. A magmatic multi-arch structure consists of some arched reflectors that occur in both the lower and the upper crust where arched reflectors coincide with granitoid plutons. The multi-arch structures are common in eastern China where many Mesozoic granitoid plutons of different scales occur. The crustal structures in the Sulu metamorphic belts resulted from intensive dynamic processes following the Triassic collision between the Yangtze and Sino-Korean cratons. The formation and exhumation of UHPM rocks followed the collision, and then intracontinental subduction of the Yangtze craton beneath the Dabie–Sulu terranes took place in the early and middle Jurassic. In the late Jurassic, the Sulu lithosphere turned to an extensional regime, large-scale granitic intrusions occurred in eastern China; these likely resulted from lithospheric thinning and asthenospheric uplifting. The granitic intrusions came to a climax during the Cretaceous and were followed by rifting along existing faults in the early Eogene, resulting in many petroleum basins. The granitoid emplacement that generated the magmatic multi-arch structure and the rift were consequences of the lithospheric thinning process, and deep intracontinental subduction of the Yangtze craton beneath the Sulu metamorphic belt might partially contribute to the lithospheric thinning.  相似文献   

16.
Kaersutite-bearing peridotite, clinopyroxenite, gabbro and hornblendite inclusions up to 5 cm in size and megacrysts of kaersutite, andesine and titanomagnetite occur in alkali basalt scoria at Takenotsuji, Iki Island, Japan. New analyses are presented for seven kaersutite-bearing basaltic rocks, three inclusions, three clinopyroxenes and six kaersutites.From the petrography and chemistry of the inclusions and recent experimental work at high pressures and temperatures on natural rock systems, it is suggested that kaersutite-bearing inclusions have been produced from alkali basalt magmas under hydrous conditions at a depth of about 25 to 30 km in the lowest part of the crust.  相似文献   

17.
A distinct group of gold deposits in the Abitibi greenstone belt is spatially associated with quartz-monzonite to syenite stocks and dikes. The deposits occur mainly along major fault zones, in association with preserved slivers of alluvial-fluvial, Timiskaming-type, sedimentary rocks. The deposits consist of disseminated sulfide replacement zones with variably developed stockworks of quartz-carbonate-K-feldspar veinlets, within zones of carbonate, albite, K-feldspar, and sericite alteration. The syenitic intrusions are broadly contemporaneous with deposition of Timiskaming sedimentary rocks and, together with disseminated gold mineralization, they have been overprinted by subsequent regional folding and related penetrative cleavage. Disseminated gold orebodies occur within composite syenitic stocks or along their margins, along satellite dikes and sills, and along faults and lithologic contacts away from intrusions. Orebodies in these different positions are interpreted to represent proximal to distal components of large magmatic-hydrothermal systems centered on, and possibly genetically related to, composite syenitic stocks.  相似文献   

18.
The Sangan mining region, which has a proven reserve of approximately 1000 Mt of 53% iron ore, is located in the Khaf-Kashmar-Bardeskan volcano-plutonic belt in northeastern Iran. The geological units in the eastern zone of the Sangan region consist of Precambrian schists, Jurassic sedimentary rocks and Tertiary subvolcanic granitoid intrusions. Iron skarn mineralization consists of stratiform and massive bodies in the carbonate rocks that are adjacent to the granitoid intrusions. Detailed field mapping revealed that 39-Ma syenitic intrusive bodies in the western and central zones of the Sangan region were the main sources of heat and fluid for the iron mineralization.A Mid-Cenozoic biotite granite pluton is associated with the eastern anomalies. However, field relationships suggested that this pluton is not the source of the metals, heat or fluids that were responsible for the iron mineralization. This pluton is rich in silica (SiO2 contents from 66.4 to 79.1 wt%) and is characterized by high-K series with metaluminous to slightly peraluminous affinity.Geochronological (U-Pb zircon method) and geochemical data, including major and trace elements and Sr-Nd-Pb isotopes, define the complex origin of these plutons, which consist of alkaline granitoids that appear to be A-type in character but also show I-type affinity.New geochemical and isotopic data from plutons in the eastern anomalies and data from previous studies of the western and central anomalies and the southeastern intrusive rocks in the Sangan region show that these plutons have close affiliation with lower to upper crust-derived melts and were largely modified into highly fractionated I-type granite. These rocks were derived from and emplaced by varying degrees of partial melting during the Middle Eocene (Bartonian to Lutetian, 38.3–43.9 Ma) from a crustal protolith in a normal to mature volcanic continental arc setting.The Sangan granitoids were produced from crustal assimilation by a heat source from mantle melts, which are associated with the Kashmar-Neotethyan slab that subducted under Eurasia. The Khaf-Kashmar-Bardeskan igneous rocks reflect an active Cenozoic plate margin that was related to the closure of the Kashmar-Neotethyan Sea between the Lut and Eurasia blocks because of the continuous convergence between the Arabian and Iran plates during the Late Cretaceous–Early Paleocene.  相似文献   

19.
新疆西准噶尔塔北地区晚古生代中酸性侵入岩的成因分析   总被引:2,自引:1,他引:1  
塔尔巴哈台-萨吾尔地区位于西准噶尔北部,中酸性岩浆侵入作用十分强烈。本文对塔尔巴哈台-萨吾尔地区西段的塔北地区出露的克孜贝提、哲北、巴斯、卡姆斯台、阿西和科鲁克6个代表性中酸性岩体的地质、成岩年代和地球化学特征进行研究。结果表明,塔北地区中酸性岩浆作用可分为早石炭世早期(343~338Ma)、早石炭世晚期(328~324Ma)和晚石炭世(315Ma)三个阶段:早石炭世早期中酸性岩体包括克孜贝提、哲北岩体;岩性主要为闪长岩,具有碱性、过铝质岩石的特点;早石炭世晚期中酸性岩体包括巴斯、卡姆斯台和阿西岩体,岩性主要为花岗闪长岩,具有钙碱性-碱性和准铝质-过铝质岩石的特点;晚古生代中酸性侵入岩体为科鲁克岩体,岩性为钾长花岗岩,具有碱性和过铝质岩石的特点。从早石炭世至晚石炭世,塔北地区中酸性岩具有向富K、Si和贫Ca演化的趋势,研究源区以壳源为主、有幔源物质混入的特征;岩浆演化具有分离结晶增强、围岩混染减弱的特点。塔北地区早石炭世早期中酸性岩体形成于俯冲岛弧环境,早石炭世晚期-晚石炭世岩浆侵位于后碰撞环境。  相似文献   

20.

Endeavour 42 is a structurally controlled Au deposit with similarities to adularia‐sericite deposits. It is the largest of four gold prospects discovered in the Late Ordovician Lake Cowal volcanic complex, adjacent to the Gilmore Fault Zone, in central New South Wales, Australia. The Lake Cowal volcanic complex consists of calc‐alkaline to shoshonitic volcanic rocks and related sedimentary rocks that were deposited in a relatively deep‐water environment. The volcanic and sedimentary rocks of the Lake Cowal volcanic complex were intruded by diorite and granodiorite. Low‐grade porphyry Cu (0.2–0.35% Cu) mineralisation is developed in parts of the granodiorite intrusion. The gold deposits are developed north of the porphyry Cu mineralisation and occur within a north‐south corridor adjacent to a north‐south‐oriented body of diorite. The Endeavour 42 deposit is hosted by three volcanic units and a diorite. The stratigraphic units at Endeavour 42, consistently strike 215° and dip 50°NW, and comprise an upper unit dominated by redeposited pyroclastic debris and a lower conglomerate unit with clasts of reworked volcanic rocks. Separating these units is a sequence of trachyandesite lava and hyaloclastite breccias. Laminated mudstone and siltstone throughout the sequence are indicative of a relatively deep‐water, below wave‐base, environment. Porphyritic dykes, which are typically associated with zones of faulting, cross‐cut both the volcano‐sedimentary sequence and the diorite. The major fault orientations are 290° and 340°, forming subparallel conjugate fault sets. Both sets of faults are mineralised, contain deformed porphyritic dykes and are associated with sericitic alteration. Endeavour 42 is a sulfide‐poor gold deposit with free native Au and Au associated with pyrite and sphalerite. Minor galena, pyrrhotite and chalcopyrite are also observed. Irregular pyrite veinlets and carbonate‐sulfide veinlets occur in the upper unit of re‐deposited pyroclastic debris. Auriferous veins are parallel‐sided dilatant veins with quartz‐sulfide‐carbonate‐adularia. These veins display a consistent strike of 305° and a dip of 35°SW. Alteration and mineralisation were influenced by host‐rock composition and rheology. A pervasive alteration assemblage of chlorite‐carbonate‐hematite‐epidote is developed throughout the Lake Cowal volcanic complex. This is overprinted by sericite‐silica‐carbonate alteration around fault zones and dykes, with patchy and pervasive alteration of this type developed in the lava sequence and upper volcani‐clastic unit, reflecting permeability and probable alteration zoning. In the lower clastic unit, the diorite and, in parts of the lava sequence, a chlorite‐carbonate‐pyrite assemblage partially overprints sericite‐silica alteration, suggesting an evolving fluid composition, changing physico‐chemical conditions or a different alteration fluid. Age dating of the intrusive phases and sericitic alteration associated with mineralisation at Endeavour 42 yields ages of 465.76 ± 1 and 438.6 ± 0.5 Ma, respectively, suggesting that mineralisation post‐dates the Lake Cowal intrusive event and is related to intrusion of magma during the 440 Ma mineralising event, an important period in the eastern Lachlan Fold Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号