首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
巴尔喀什成矿带晚古生代地壳增生与构造演化   总被引:6,自引:4,他引:2  
巴尔喀什成矿带是中亚成矿域重要的晚古生代斑岩铜钼成矿带。巴尔喀什成矿带晚古生代花岗岩类(石炭-二叠纪)主要为高钾钙碱性系列,晚期出现钾玄岩系列岩石,主要为I型花岗岩类;石炭纪处在同碰撞和火山弧环境,二叠纪为后碰撞环境。分析表明,博尔雷属于经典的岛弧花岗岩区,科翁腊德、阿克斗卡和萨亚克属于埃达克岩(Adakite)区。巴尔喀什成矿带内花岗岩类εNd(t)值为(-5.87~+5.94),εSr(t)值为(-17.16~+51.10)。以巴尔喀什中央断裂为界,成矿带东、西分带,断裂两侧具有不同的地壳生长历史:断裂以东的萨亚克和阿克斗卡地区εNd(t)值较高,具有亏损地幔组分特征,为古生代增生的新生陆壳;以西的科翁腊德和博尔雷εNd(t)值较低,主要是壳幔岩浆混合的结果,反映了古老基底的存在,主要为新元古代增生地壳。成矿带花岗岩类206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值范围分别为18.3346~20.9929、15.5213~15.7321和38.2874~40.0209,为造山带花岗岩类,具有与天山、阿尔泰和准噶尔花岗岩类的亲缘性。  相似文献   

2.
西准噶尔成矿带夹持在天山断裂与额尔齐斯断裂之间,是中亚成矿域西部的核心区域之一,广泛发育晚古生代深成岩浆活动、走滑断裂构造和斑岩铜矿、造山型金矿成矿作用。本文在西准噶尔成矿带包古图岩体、康德岩体、加曼岩体、库鲁木苏岩体、别鲁阿嘎希岩体、哈图岩体、阿克巴斯套岩体、庙尔沟岩体、克拉玛依岩体及红山岩体采集12个样品,通过黑云母和钾长石(40)~Ar/(39)~Ar阶段升温测年,给出了该地区(40)~Ar/(39)~Ar冷却年龄。其中,黑云母(40)~Ar/(39)~Ar年龄处在326~302 Ma范围内,钾长石(40)~Ar/(39)~Ar年龄为297~264 Ma,反映了西准噶尔地区晚石炭世-中二叠世的区域中温冷却历史。结合前人报道的锆石U-Pb、角闪石(40)~Ar/(39)~Ar、辉钼矿Re-Os、磷灰石裂变径迹等年龄数据,构建了西准噶尔成矿带晚古生代岩浆侵入,成矿作用与构造抬升,以及晚中生代剥露过程的整个热历史;并与区域左行走滑断裂活动的时间进行了对比,讨论了(40)~Ar/(39)~Ar冷却年龄的构造意义。  相似文献   

3.
杨钢  肖龙  王国灿  高睿  贺新星  张雷  周佩 《地球科学》2015,40(5):810-823
为更深入了解西准噶尔晚古生代岩浆活动和构造背景,对位于西准噶尔中部的别鲁阿嘎希岩体开展了年代学、地球化学以及Sr-Nd同位素研究,讨论了岩石成因、源区性质和构造背景.别鲁阿嘎希花岗闪长岩为钙碱性系列岩石,岩浆锆石结晶年龄为318.7±3.3 Ma.其具相对高的MgO(Mg#=49~59)、Ni、Cr含量,富集大离子亲石元素(如K、Rb、Sr和Ba)、亏损高强场元素(如Nb、Ta、Ti),轻重稀土元素分异不明显.Sr-Nd同位素特征显示,其有较低的初始Sr比值(0.704 297~0.704 399),较高的εNd(t)值(5.8~6.5).通过综合分析,认为在晚石炭世早期,达尔布特洋壳(板片)俯冲至地幔楔下部,俯冲洋壳板片脱水所产生的流体在上升过程中与地幔楔共同作用,底侵加热由亏损地幔形成不久的年轻地壳(由洋壳和岛弧组成),使其部分熔融形成了别鲁阿嘎希分异I型花岗岩.   相似文献   

4.
姜洪颖  贺振宇 《地球科学》2022,47(9):3270-3284
北山造山带位于中亚造山带南部,是中亚造山带的重要组成部分.为了进一步深入认识北山造山带晚古生代的构造?岩浆演化过程,选择北山造山带南部石板墩?白墩子地区的晚古生代花岗岩?闪长岩开展了岩石学、锆石U-Pb定年、Hf同位素、微量元素及岩石地球化学研究.LA-ICP-MS锆石U-Pb年代学研究限定了石板墩花岗岩形成于~304~ 302 Ma,石板墩闪长岩形成于~291 Ma,白墩子石英闪长岩形成于~270 Ma.它们的锆石Hf同位素均呈现较亏损的特征(εHf(t)=-2.0~+15.7),且由老到新,亏损程度依次增加.岩石学和地球化学特征暗示了亏损地幔来源岩浆在北山造山带晚古生代岩浆活动中的主导作用,亏损地幔来源岩浆与古老地壳部分熔融形成的岩浆以不同比例混合,形成了复杂的岩石组合.因此,晚石炭世?早二叠世花岗岩?闪长岩可能形成于后撤式增生造山作用导致的弧后伸展构造环境.   相似文献   

5.
天水地区花岗岩类及其构造演化   总被引:2,自引:0,他引:2  
通过对地处祁连造山带与秦岭造山带结合部位的天水地区花岗岩类的岩石学、岩石化学、地球化学等资料的分析研究,区内花岗岩类可划分为3个构造岩浆带.对大量的花岗岩类构造环境信息综合分析表明,祁连造山带和秦岭造山带在晚古生代之前,二者分属两大造山带,具有皆然不同的岩浆事件和大地构造背景及其演化模式.直到晚古生代之后,祁连造山带才与秦岭造山带一道共同进入陆内演化阶段.花岗岩类为探索本区构造演化特征提供了佐证,具有重要研究意义.  相似文献   

6.
巴尔喀什成矿带是中亚成矿域重要的晚古生代斑岩铜钼成矿带。通过该成矿带科翁腊德、博尔雷和阿克斗卡地区与斑岩铜成矿作用密切相关的花岗斑岩类岩体锆石SHRIMP U-Pb定年,主量、稀土和微量元素地球化学,Sr、Nd同位素示踪分析,进一步厘定了斑岩铜成矿作用的时代,并推测了板块构造环境。斑岩铜成矿时代分为两期:早期约为327 Ma,形成科翁腊德和阿克斗卡超大型斑岩铜矿床;晚期约为316 Ma,形成博尔雷大型斑岩铜矿床。与成矿有关的斑岩类主要为高钾钙碱性系列花岗岩,可能为火山岛弧环境,部分具有埃达克岩特征和经典岛弧花岗岩类特征。斑岩类εSr(t)和εNd(t)的变化范围分别为-6.35~34.03和-0.46~5.53。其中,科翁腊德-博尔雷地区斑岩类来源于亏损地幔与大陆地壳表层物质(老地壳物质)的显著混染作用,而阿克斗卡地区斑岩类直接来自于亏损地幔。将巴尔喀什成矿带与我国西准噶尔成矿带进行了对比,认为可能属于同一个晚古生代斑岩铜钼成矿带。  相似文献   

7.
哈萨克斯坦巴尔喀什成矿带是中亚成矿域重要的晚古生代斑岩铜钼和云英岩-石英脉型钨钼成矿带,是受走滑断裂边界控制的中亚多核成矿系统的核心之一。本文根据锆石SHRIMP U-Pb定年、40Ar/39Ar热年代学、磷灰石裂变径迹定年和热历史模拟,厘定了巴尔喀什成矿带西部地区晚古生代最晚期深成岩浆侵入事件。研究表明,原来被认为是属于三叠纪的后碰撞花岗岩类侵入岩体,给出锆石SHRIMP U-Pb年龄为289.7±2.3Ma,为早二叠世。结合前人研究,本文探讨了巴尔喀什成矿带西部从深成岩浆侵入、钨钼成矿作用、区域冷却到剥露作用热历史的全过程。晚古生代最晚期花岗岩类侵入体具有与钨钼矿床相同的晚中生代剥露作用年龄(92.4±5.9Ma)。  相似文献   

8.
东准噶尔是中亚造山带在新疆北部区域的重要组成单元,是晚古生代岩浆剧烈活动的区域,以发育卡拉麦里巨量富碱花岗岩带为主要特征,也是中亚造山带发育年轻地壳的典型地区.通过分析该地区巨量深成岩浆岩来重塑岩石圈拆沉作用及新生地壳生长机制成为新的研究热点.近年来,众多学者对卡拉麦里岩带内的6个主要岩体的岩相学、岩石地球化学、年代学...  相似文献   

9.
新疆北塔山地区作为中亚造山带的重要组成部分,由于其独特的地理位置,故可以作为研究准噶尔地区构造演化的理想场所。北塔山地区晚石炭世侵入岩类型复杂,早期岩体多为闪长岩类,后期岩体以花岗岩为主,是原始岩浆不同时期演化形成的一套岩石序列,且岩浆具有明显壳幔混合源的特征。在地球化学特征上,里特曼指数σ3.3、A/CNK1.1、w(P2O5)0.65%、Fe2O3/FeO0.4,岩石相对富集LILE和亏损HFSE,均表现典型Ⅰ型花岗岩类的特征。然而进一步研究显示,晚期侵入体富硅富碱,高钾、低钙铁镁含量的特点指示其为碱性花岗岩的性质,表明北塔山地区在晚石炭世末期经历了由挤压碰撞向后碰撞伸展环境的转变,且转换时限为(290.4±3.2)Ma或更早。所获认识为进一步探讨准噶尔地区及中亚造山带构造环境的演化提供了依据。  相似文献   

10.
天山石炭-二叠纪后碰撞花岗岩的Nd、Sr、Pb同位素源区示踪   总被引:19,自引:2,他引:19  
天山造山带不仅是中亚巨型造山带的组成部分,也是我国西部晚古生代岩浆活动的集中区,蕴含着丰富的古亚洲洋演化的复合地质信息。笔者以探索天山晚古生代花岗岩浆活动的物质来源为目标,采用Sr、Nd、Pb同位素地球化学方法,对该区不同构造单元中具有代表性的花岗岩体进行了全面系统的研究,发现天山不同构造单元中花岗岩Sr、Nd、Pb同位素特征具有明显差异。在与其围岩的同位素特征进行对比研究的基础上,提出了产于不同构造单元石炭-二叠纪花岗岩的可能源区。觉罗塔格石炭-二叠纪裂谷带的晚古生代花岗岩,具有最高的εNd(t)值和最低的(^87Sr/^86Sr)t值,如,以康古尔石英闪长岩为代表的二叠纪花岗岩的源岩可能是早期泥盆纪大南湖岛弧火山岩(新生地壳);博格达地区的晚石炭-二叠纪花岗岩是早期基性火山岩,亦可能是底侵基性岩部分熔融的产物。中新元古代基底晚石炭-二叠纪裂谷带中花岗岩的源岩亦为同期基性火山岩,但在岩浆演化过程中受到古老基底地壳的混染,导致其εNd(t)值低于石炭-二叠纪裂谷带中花岗岩,而(^87Sr/^86Sr)t高于石炭-二叠纪裂谷带花岗岩。南天山东段和前寒武系微地块及其边缘中的晚古生代(含个别早古生代花岗岩)花岗岩分别是类似于库米什斜长角闪岩的古老地壳和西天山元古代古老地壳部分熔融的产物,因此它们均具有负的εNd(t)值和异常高的(^87Sr/^86Sr)t值。上述认识对于了解天山晚古生代区域岩石圈演化及深部过程具有重要意义。  相似文献   

11.
西准噶尔走滑断裂系元素分布特征及其成矿意义   总被引:8,自引:2,他引:6  
我国新疆西北部西准噶尔走滑断裂构造体系(简称"西准系")是中亚造山带巴尔喀什马蹄形构造的向东延伸部分,由于中生代成吉思-准噶尔断裂的右行走滑断裂作用而被分成了两个部分。西准系是一个多米诺式的走滑断裂构造体系,主要由达拉布特断裂、玛依勒断裂、巴尔鲁克断裂等三条NE走向的左行走滑断裂及其夹在它们之间的地块所组成,可能是晚古生代与走滑断裂相关的陆条弯曲(褶皱)作用的产物。同时,西准噶尔地区也是重要的晚古生代成矿带,产出有一些大型和超大型的金属矿床,包括包古图斑岩铜矿、哈图金矿、萨尔托海铬铁矿和杨庄铍矿床等。本文分析了西准系走滑断裂构造与元素分布之间的关系。结果显示,西准噶尔成矿带元素与地球化学块体以及铜、金、钼、铬铁矿等矿床的分布,均受晚古生代西准系的形成与演化过程的控制。其中,庙尔沟、红山岩体与金地球化学块体之间的反对称分布特征,说明了花岗岩类侵入体和金元素在达拉布特断裂左行走滑过程中发生了重要的物质调整与迁移作用。庙尔沟岩体的逆时针旋转运动,造成了环状断裂与裂隙系统,以及与之相对应的Cu、Pb等元素风火轮式的分布形式。走滑断裂作用与岩体旋转运动的共同结果,导致了金元素沿断裂和裂隙的迁移与成矿,使得西准地区金矿床在断裂和裂隙中的发育。断裂构造体系与元素地球化学异常之间的关系,可以用来有效指导西准地区未来矿产资源的勘查。  相似文献   

12.
West Junggar (NW China) and East Kazakhstan are situated in the southwest of the Central Asian orogenic belt (CAOB). Tectonic entities in the two areas share the same tectonic evolution history and make up the famous horseshoe-shaped orocline in Central Asia. This paper presents a newly compiled cross-border tectonic sketch map of West Junggar and East Kazakhstan and proposes the extension of the Chingiz–Tarbagatai belt and the North Balkhash-West Junggar belt.The Chingiz–Tarbagatai Belt in East Kazakhstan consists mainly of Middle-Late Ordovician differentiated volcanic rocks, pyroclastic sediments and flysch; while in the Tarbagatai Mountain in China, Tarbagatai (Kujibai) ophiolite is newly found with zircon (gabbro) age of 478 ± 3 Ma and the Ordovician flysch metamorphosed to a greenschist facies is distinguished from Devonian–Carboniferous rock associations. Therefore, the Early Paleozoic Chingiz–Tarbagatai belt of East Kazakhstan evidently extends to the northern part of West Junggar along the Tarbagatai orogenic belt.The North Balkhash-West Junggar belt lying south to the Chingiz–Tarbagatai belt is separated by the EW-trending Baiyanghe–Heshituoluogai depression in West Junggar. Early Ordovician–Early Silurian ophiolitic fragments and related pyroclastic sediments are widely exposed in Tekturmas, North Balkhash and Agadyr of East Kazashtan. Similarly, Early Paleozoic ophiolites have also been verified in Tangbale, Mayile, Baerluke, Darbut and Karamay of West Junggar in recent years. Therefore, nearly all ophiolites in West Junggar and East Kazakhstan are proved to have formed in Early Paleozoic, which suggests that the evolution of the paleo-ocean in the two areas reached its peak in the Early Paleozoic. Based on the ages of the Tangbale, Karamay and Hongguleleng ophiolites, an Early Paleozoic continental accretionary belt extending from Tangbale to Hongguleleng is determined at the NW margin of the Junggar basin for the first time. According to spatiotemporal comparison, ophiolites exposed in West Junggar and East Kazakhstan might originate from the same paleo-ocean tectonic region, and then the North Balkhash in East Kazakhstan and the West Junggar were offset for a long distance with respect to each other by the major Junggar dextral fault.Because of the large-scale accretion of continental crust before Silurian, the Late Paleozoic ocean in West Junggar and East Kazakhstan became smaller with residual nature, and extensive arc-basin-trench systems might be absent during the closure of this residual ocean.  相似文献   

13.
ABSTRACT

The Balkhash metallogenic belt (BMB) in Kazakhstan is a famous porphyry Cu–Mo metallogenic belt in the Central Asian Orogenic Belt (CAOB). The late Palaeozoic granitoids in the BMB are mainly high-K calc-alkaline and I-type granites, with shoshonite that formed during a late stage. Geochemical analyses and tectonic discrimination reveal a change in the tectonic environment from syn-collision and volcanic arcs during the Carboniferous to post-collision during the Permian. The late Palaeozoic granitoids from the Borly porphyry Cu deposit formed in a classical island-arc environment, and those from the Kounrad and Aktogai porphyry Cu deposits and the Sayak skarn Cu deposit are adakitic. The εNd(t) values for the late Palaeozoic granitoids are between ?5.87 and +5.94, and the εSr(t) values range from ?17.16 to +51.10. The continental crustal growth histories are different on either side of the Central Balkhash fault. On the eastern side, the εNd(t) values of the granitoids from the Aktogai and Sayak deposits are very high, which are characteristic of depleted mantle and suggest that crustal growth occurred during the late Palaeozoic. On the western side, the εNd(t) values of the granitoids from the Borly and Kounrad deposits are slightly low, which suggests the presence of a Neoproterozoic basement and the mixing of crust and mantle during magmatism. The granitoids have initial 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of 18.335–20.993, 15.521–15.732, and 38.287–40.021, respectively, which demonstrate an affinity between the late Palaeozoic magmatism in the BMB and that in the Tianshan, Altai, and Junggar orogens.  相似文献   

14.
North Xinjiang, Northwest China, is made up of several Paleozoic orogens. From north to south these are the Chinese Altai, Junggar, and Tian Shan. It is characterized by widespread development of Late Carboniferous–Permian granitoids, which are commonly accepted as the products of post-collisional magmatism. Except for the Chinese Altai, East Junggar, and Tian Shan, little is known about the Devonian and older granitoids in the West Junggar, leading to an incomplete understanding of its Paleozoic tectonic history. New SHRIMP and LA-ICP-MS zircon U–Pb ages were determined for seventeen plutons in northern West Junggar and these ages confirm the presence of Late Silurian–Early Devonian plutons in the West Junggar. New age data, combined with those available from the literature, help us distinguish three groups of plutons in northern West Junggar. The first is represented by Late Silurian–Early Devonian (ca. 422 to 405 Ma) plutons in the EW-striking Xiemisitai and Saier Mountains, including A-type granite with aegirine–augite and arfvedsonite, and associated diorite, K-feldspar granite, and subvolcanic rocks. The second is composed of the Early Carboniferous (ca. 346 to 321 Ma) granodiorite, diorite, and monzonitic and K-feldspar granites, which mainly occur in the EW-extending Tarbgatay and Saur (also spelled as Sawuer in Chinese) Mountains. The third is mainly characterized by the latest Late Carboniferous–Middle Permian (ca. 304 to 263 Ma) granitoids in the Wuerkashier, Tarbgatay, and Saur Mountains.As a whole, the three epochs of plutons in northern West Junggar have different implications for tectonic evolution. The volcano-sedimentary strata in the Xiemisitai and Saier Mountains may not be Middle and Late Devonian as suggested previously because they are crosscut by the Late Silurian–Early Devonian plutons. Therefore, they are probably the eastern extension of the Early Paleozoic Boshchekul–Chingiz volcanic arc of East Kazakhstan in China. It is uncertain at present if these plutons might have been generated in either a subduction or post-collisional setting. The early Carboniferous plutons in the Tarbgatay and Saur Mountains may be part of the Late Paleozoic Zharma–Saur volcanic arc of the Kazakhstan block. They occur along the active margin of the Kazakhstan block, and their generation may be related to southward subduction of the Irtysh–Zaysan Ocean between Kazakhstan in the south and Altai in the north. The latest Late Carboniferous–Middle Permian plutons occur in the Zharma–Saur volcanic arc, Hebukesaier Depression, and the West Junggar accretionary complexes and significantly postdate the closure of the Irtysh–Zaysan Ocean in the Late Carboniferous because they are concurrent with the stitching plutons crosscutting the Irtysh–Zaysan suture zone. Hence the latest Late Carboniferous–Middle Permian plutons were generated in a post-collisional setting. The oldest stitching plutons in the Irtysh–Zaysan suture zone are coeval with those in northern West Junggar, together they place an upper age bound for the final amalgamation of the Altai and Kazakhstan blocks to be earlier than 307 Ma (before the Kaslmovian stage, Late Carboniferous). This is nearly coincident with widespread post-collisional granitoid plutons in North Xinjiang.  相似文献   

15.
西准噶尔晚古生代岩浆活动和构造背景   总被引:18,自引:7,他引:11  
高睿  肖龙  王国灿  贺新星  杨刚  鄢圣武 《岩石学报》2013,29(10):3413-3434
西准噶尔作为中亚造山带的一部分,吸引了大量学者的关注。蛇绿混杂岩带、花岗岩、中基性岩墙在本地区广泛出现,表明西准噶尔晚古生代构造演化极为复杂。但是在许多方面仍存在很多争议,例如西准噶尔蛇绿混杂岩带的形成时代、岩石组合和岩石成因;I型和A型花岗岩的岩石成因,构造背景和热机制;中基性-酸性岩墙群的年代学、岩石成因、构造背景和古应力场;西准噶尔晚古生代年代学格架和构造背景;西准噶尔显生宙地壳增生;西准噶尔基底特征和西准噶尔晚古生代构造演化等。笔者通过搜集前人的资料和数据,对西准噶尔区域发育的蛇绿混杂岩带、地层、古地理环境、花岗岩体和中基性岩墙群的总结,结合项目组野外与室内数据的研究,得到以下认识:(1)达尔布特和克拉玛依蛇绿混杂岩的形成环境为与俯冲相关的弧后盆地,源区来自含尖晶石二辉橄榄岩高程度部分熔融作用;(2)早石炭世花岗岩形成于俯冲环境,晚石炭世-早二叠世花岗岩形成于后碰撞环境,中二叠世花岗岩形成于板内环境;(3)I型花岗岩的成因与俯冲密切相关,而A型花岗岩和中基性岩墙产于后碰撞环境下;(4)A型花岗岩是下地壳受地幔底侵发生部分熔融并高度分离结晶的产物,中基性岩墙群普遍具有埃达克质岩的地球化学特点,可能产于受流体(或熔体)交代的残余洋壳板片的部分熔融;(5)中基性岩墙群稍晚于寄主岩体而形成,但两者均形成于后碰撞构造背景。在晚石炭世-早二叠世,西准噶尔处于近南北向的拉张应力体系;(6)西准噶尔在泥盆纪为洋盆体系;早石炭世,俯冲-碰撞过程结束;晚石炭世-早二叠世属于后碰撞环境;中晚二叠世处于板内环境。  相似文献   

16.
ABSTRACT

The Circum–Balkhash–Junggar area, including mostly Kazakhstan, NW China, Russia, Kyrgyzstan, Tajikistan, Uzbekistan, and Mongolia, occupies an important tectonic position of the Central Asian Orogenic Belt (CAOB) (Figure 1). Tectonically, this vast area records the complicated geodynamic processes, among which the most prominent stages are the formation of the U-shaped Kazakhstan Orocline and its interactions with adjacent Altai (Altay), Junggar (West Junggar, Junggar Basin, and East Junggar), and Tianshan orogenic collages in the Palaeozoic, bearing large-scale mineral deposits. The formation of the Late Palaeozoic mineral deposits is related to the tectonic evolution of the Devonian and Carboniferous–Permian volcano-magmatic arcs in the region. However, the link between the metallogeny and the evolution of the volcano-magmatic arcs is not well understood and existing geodynamic models have not explained satisfactorily the mechanism of the huge metallogenic belt. Therefore, this special issue focuses on the formation of the Late Palaeozoic porphyry Cu deposits and their link to the tectonic evolution of the Devonian and Carboniferous–Permian volcano-magmatic arcs with emphasis on comparative studies across the international borders.  相似文献   

17.
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens in the world. The mechanism of continental growth and tectonic evolution of the CAOB remain debated. Here we present an overview of Early Paleozoic ophiolitic mélanges, calc-alkaline intrusions, and metamorphic rocks in West Junggar with an aim to provide constraints on the time and mechanism of subduction initiation in the Junggar Ocean, a branch of the southern Paleo-Asian Ocean (PAO). The Early Paleozoic ophiolitic mélanges are composed of ultramafic-mafic rocks, cherts, pelagic limestones, basaltic breccias and tuffs. The mafic rocks from these ophiolitic mélanges are divided into MORB-like and OIB-like types. The MORB-like rocks were formed in a fore-arc setting, but the OIB-like mafic rocks were formed by the intra-plate magmatism related to mantle plume activities. The Early Paleozoic intrusions are occurred as small stocks with a dominant composition of diorite, trondhjemite, and granodiorite. These granitoids display (high-K) calc-alkaline affinities, and have high and positive εNd(t) and εHf(t) values, formed in an arc-related setting. The metamorphic complex is mainly composed of blueschist and amphibolite blocks with metamorphism ages ranging from ~500 Ma to ~460 Ma. Their protoliths are calc-alkaline andesite and tholeiitic and alkaline basalts, formed in an arc related and seamount setting, respectively. It is clearly show that the West Junggar was under an intra-oceanic subduction regime during the Early Paleozoic, and the initial subduction of the southern PAO might have occurred in the Early Cambrian. Based on our observations, and in combination with previous work, we propose the plume-induced subduction initiation model for the Early-Middle Cambrian tectonic evolutionary of the Junggar Ocean. Our new model not only shed light on subduction initiation dynamics of the southern PAO, but also contribute to tectonic evolution of the CAOB.  相似文献   

18.
《International Geology Review》2012,54(13):1660-1687
This study focuses on the geochronology and elemental and Nd isotopic geochemistry of the Baogutu Cu deposit and the newly discovered Suyunhe W-Mo deposit in the southern West Junggar ore belt (Xinjiang, China), as well as the geology of the newly discovered Hongyuan Mo deposit in the southern West Junggar ore belt and the Kounrad, Borly, and Aktogai Cu deposits and the East Kounrad, Zhanet, and Akshatau W-Mo deposits in the North Balkhash ore belt (Kazakhstan). The aim is to compare their petrogenesis, tectonic setting, and mineralization and to determine the relationship between the southern West Junggar and North Balkhash ore belts. Based on our newly acquired results, we propose that the Kounrad, Borly, Aktogai, and Baogutu deposits are typical porphyry Cu deposits associated with calc-alkaline magmas and formed in a Carboniferous (327–312 Ma) subduction-related setting. In contrast, the East Kounrad, Zhanet, Akshatau, Suyunhe, and Hongyuan deposits are quartz-vein greisen or greisen W-Mo or Mo deposits associated with alkaline magmas and formed in an early Permian (289–306 Ma) collision-related setting. Therefore, two geodynamic–metallogenic events can be distinguished in the southern West Junggar and North Balkhash ore belts: (1) Carboniferous subduction-related calc-alkaline magma – a porphyry Cu metallogenic event – and (2) early Permian collision-related alkaline magma – a greisen W-Mo metallogenic event. The North Balkhash ore belt is part of the Kazakhstan metallogenic zone, which can be extended eastward to the southern West Junggar in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号