首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Metamorphic decarbonation reactions and volcanic degassing lead to significant influx of CO2, a major greenhouse gas, into the ocean-atmosphere system from the solid Earth. Here we present quantitative estimates on CO2 derived through metamorphic degassing during ultrahigh-temperature (UHT) metamorphism in the Neoproterozoic through the mineralogical and geological analyses of the UHT decarbonation. Our computations show that an extra flux of CO2 was added to the atmosphere through a Himalayan scale UHT metamorphism to the extent of 6 × 1016 to 3.0 × 1018 mol/my, for a duration of 10 my. A calculation of the impact of the extra CO2 influx to the global mean temperature in the context of carbon cycle and greenhouse effect of CO2 shows that at the peak influx stage, the steady state temperature would be raised by 4 °C from 15 °C and by 13 °C from 4 °C. Our results have important bearing in evaluating the mechanism of melting and the duration of the Snowball Earth. Our estimate of the maximum degassing rate during UHT metamorphism suggests that the duration of the Marinoan snowball Earth was probably shorter, and the recovery from an ice-covered Earth to ocean-covered Earth was faster than previous estimates.  相似文献   

2.
Calc-silicate boudins from the Rauer Group, East Antarctica, were metamorphosed under granulite facies conditions during late Proterozoic (ca. 1,000 Ma) M3 metamorphism. Boudin cores contain low to moderate aCO 2 assemblages including wollastonite, grossularandradite (grandite) garnet, clinopyroxene, scapolite, plagioclase, quartz±calcite. Petrological and stable isotopic evidence suggests that these core assemblages resulted from pre-peak M3 infiltration of water-rich fluids; there is no evidence for a pervasive fluid phase under peak M3 conditions. The boudins are separated from the surrounding Fe-rich pelites and semi-pelites by a series of concentric, high-variance reaction zones developed under peak M3 conditions. Variations in mineral assemblage, mineral composition and whole rock composition across these zones suggest that they formed by diffusional masstransfer, controlled principally by a chemical potential gradient in Ca across the original calc-silicate-paragneiss lithological boundary. As a consequence of the nearcomplete decarbonation of the calc-silicatesbefore the M3 peak, development of the diffusion-controlled reaction zones did not liberate significant CO2 during granulite facies metamorphism. Similar calcite-poor, low aCO 2 calc-silicate horizons in other granulite facies terrains are unlikely to have been important local fluid sources during deep crustal metamorphism.  相似文献   

3.
Ultrahigh-temperature (UHT) metamorphism represents an extreme crustal thermal event with peak conditions exceeding 900 °C at 7–13 kbar. In the modern-style plate tectonic system, records of the UHT metamorphism are relatively rare due to the secular cooling of Earth. In the Palu region of Western Sulawesi, we newly discovered a series of HT-UHT metamorphic rocks including amphibolite, granulite, eclogites and gneiss. Of them, two granulite samples (18CS14-2, 18CS14-4) with high garnet content (>50 mol%) are chosen for petrographic observation, phase equilibrium modelling, and zircon U-Pb dating. These rocks are characterized by a relic M1 assemblage of Grt + Ky + Bt + Rt and a M2 assemblage of Grt + Sil + Pl + Spl + Crd ± Qtz + Ilm + melt. Phase equilibrium modelling based on effective bulk compositions yields UHT conditions of 7.2–8.5 kbar/940–1080 °C (18CS14-2) and 7.0–7.3 kbar/1000–1040 °C (18CS14-4). U-Pb analysis reveals two generations of metamorphic zircon with evolving REE content that is intimately related to garnet growth and decomposition. Zircon age of 36–5.3 Ma is ascribed to syn- to post-M1 metamorphism, whereas the young zircon age of 5.1–3.8 Ma is linked to syn- and post-M2 stage. The UHT metamorphism was probably the consequence of the upwelling of asthenospheric mantle triggered by post-collisional delamination of lithosphere in the Miocene-Pliocene (ca. 5 Ma). It could represent the youngest known UHT metamorphism on Earth.  相似文献   

4.
High-pressure and temperature experiments (28–62 GPa, and 1,490–2,000 K, corresponding to approximately 770–1,500 km depth in the mantle) have been conducted on a MgCO3 + SiO2 mixture using a laser-heated diamond anvil cell combined with analytical transmission electron microscope observation of the product phases to constrain the fate of carbonates carried on the subducting basalt into the lower mantle. At these conditions, the decarbonation reaction MgCO3 (magnesite) + SiO2 (stishovite) → MgSiO3 (perovskite) + CO2 (solid) has been recognized. This indicates that above reaction takes place as a candidate for decarbonation of the carbonated subducting mid ocean ridge basalts in the Earth’s lower mantle.  相似文献   

5.
火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义   总被引:3,自引:0,他引:3  
宋文磊  许成  刘琼  王林均  吴敏  曾亮 《地质论评》2012,58(4):726-744
火成碳酸岩是地表出露较少的幔源岩石之一。实验岩石学研究表明碳酸盐化的橄榄岩和循环的地壳物质(如碳酸盐化榴辉岩或泥质岩)的低程度(<1%)部分熔融均可以产生碳酸岩质的熔体,其中碳酸盐化泥质岩具有最低的熔融温度且更加富碱质、CO2和不相容元素;富CO2的霞石质等硅酸盐岩浆也可以通过不混溶或分离结晶作用产生碳酸岩,用于解释碳酸岩在空间中常与碱性硅酸岩的共生关系。由于碳酸岩熔体具有极低的粘度和高的活性,形成后在上升过程中会将二辉橄榄岩转变为异剥橄榄岩,是引起地幔交代作用和地幔地球化学不均一性的重要介质之一。实验表明在俯冲作用过程中,大多数的碳酸盐在位于岛弧之下的含水熔融并不分解而是被带入到深部地幔并且稳定存在,含碳地幔的熔融又会形成碳酸岩质的熔体,这说明俯冲循环物质可能对碳酸岩的成因也起着重要的作用。然而,对于碳酸岩的初始熔体成分、岩浆演化、地幔交代作用、成矿特征以及碳从地球深部返回到地表的途径和过程等都存在着很大的争议。我国火成碳酸岩出露相对较多,分布广泛,因此,加强我国碳酸岩以及伴生硅酸岩的成因研究,同时开展与碳酸岩相关的实验岩石学工作,不仅可以检验现有的成因理论,而且有助于提高我国对火成碳酸岩的研究水平;由于其特殊的成因背景,还可为许多存在很大争议的重大地质事件提供新的科学依据。  相似文献   

6.
Ultra‐high‐temperature (UHT) metamorphism occurs when the continental crust is subjected to temperatures of greater than 900 °C at depths of 20–40 km. UHT metamorphism provides evidence that major tectonic processes may operate under thermal conditions more extreme than those generally produced in numerical models of orogenesis. Evidence for UHT metamorphism is recorded in mineral assemblages formed in magnesian pelites, supported by high‐temperature indicators including mesoperthitic feldspar, aluminous orthopyroxene and high Zr contents in rutile. Recent theoretical, experimental and thermodynamic data set constraints on metamorphic phase equilibria in FMAS, KFMASH and more complex chemical systems have greatly improved quantification of the P–T conditions and paths of UHT metamorphic belts. However, despite these advances key issues that remain to be addressed include improving experimental constraints on the thermodynamic properties of sapphirine, quantifying the effects of oxidation state on sapphirine, orthopyroxene and spinel stabilities and quantifying the effects of H2O–CO2 in cordierite on phase equilibria and reaction texture analysis. These areas of uncertainty mean that UHT mineral assemblages must still be examined using theoretical and semi‐quantitative approaches, such as P(–T)–μ sections, and conventional thermobarometry in concert with calculated phase equilibrium methods. In the cases of UHT terranes that preserve microtextural and mineral assemblage evidence for steep or ‘near‐isothermal’ decompression P–T paths, the presence of H2O and CO2 in cordierite is critical to estimates of the P–T path slopes, the pressures at which reaction textures have formed and the impact of fluid infiltration. Many UHT terranes have evolved from peak P–T conditions of 8–11 kbar and 900–1030 °C to lower pressure conditions of 8 to 6 kbar whilst still at temperature in the range of 950 to 800 °C. These decompressional P–T paths, with characteristic dP/dT gradients of ~25 ± 10 bar °C?1, are similar in broad shape to those generated in deep‐crustal channel flow models for the later stages of orogenic collapse, but lie at significantly higher temperatures for any specified pressure. This thermal gap presents a key challenge in the tectonic modelling of UHT metamorphism, with implications for the evolution of the crust, sub‐crustal lithosphere and asthenospheric mantle during the development of hot orogens.  相似文献   

7.
Large volumes of CO2 are emitted during volcanic activity at convergent plate boundaries, not only from volcanic centres. Their C isotopic signature indicates that this CO2 is mainly derived from the decarbonation of subducted limestones or carbonated metabasalts, not as often admitted from magma degassing. On the example of Milos (Aegean Sea) it is argued that these fluids originate from intermediate depth in the mantle and carry sufficient heat to account for the generation of subduction-related magmas, as well as for the geothermal manifestations at the surface. The heat that is required for the decarbonation reactions is drawn by conduction from a wide zone surrounding the subducting slab and then rapidly transported upward by convection of the mixed CO2–H2O fluids that originate from the sediments in the slab. The transport takes place in a focused way through ‘chimneys’ in the upper mantle, where magmas are generated by the introduced heat and water. In the crust, the hot fluids cause thermal-dome-type metamorphism. In volcanic areas, magmas are commonly held responsible for the major part of heat transfer from the mantle to the surface. Here it is argued that most of the heat transfer is by hot gases. To cite this article: R.D. Schuiling, C. R. Geoscience 336 (2004).  相似文献   

8.
Eclogite-facies rocks and high-pressure granulites provide windows to the deeper parts of subduction zones and the root of mountain chains, carrying potential records of fluids associated with subduction-accretion-collision tectonics. Here, we report petrological and fluid inclusion data on retrogressed eclogite and high-pressure granulite samples from Sittampundi, Kanji Malai and Perundarai in southern India. These rocks occur within the trace of the Cambrian collisional suture which marks the final phase of amalgamation of the Gondwana supercontinent. The garnet–clinopyroxene assemblage in the eclogites preserves relict omphacite, whereas the high-pressure granulites are characterized by an assemblage of garnet and clinopyroxene in the absence of omphacite and with minor plagioclase, orthopyroxene, and quartz. Phase relations computed for the eclogite assemblage yield peak PT conditions of 19 kbar and 1,010°C. The mafic granulites also preserve the memory of high to ultrahigh-temperature metamorphism followed by an isothermal decompression. Systematic fluid inclusion optical, microthermometric and laser Raman spectroscopic studies were conducted in garnet and plagioclase from the eclogite–high pressure granulite suite. The results suggest that the early fluids were a mixture of CO2, CH4 and N2 probably derived from decarbonation and devolatilization reactions in a subduction setting during the prograde stage. The later generation inclusions, which constitute the dominant category in all the samples studied, are characterized by a near-pure CO2 composition with moderate to high densities (up to 1.154 g/cm3). The highest density fluid inclusions recorded in this study occur within the mafic granulites from Sittampundi (0.968–1.154 g/cm3) and Kanji Malai (1.092–1.116 g/cm3). In some cases, carbonate minerals such as dolomite and calcite are associated with the CO2-rich fluid inclusions. The composition and densities of the later generation fluids closely match with those of the CO2-bearing fluid inclusions reported from ultrahigh-temperature granulites occurring proximal to the eclogite–high pressure granulite suite within this suture zone, and suggest a common tectonic link for the fluid regime. We evaluate the fluid characteristics associated with convergent plate margin processes and propose that the early aqueous fluids probably associated with the eclogites were consumed during the formation of the retrograde hydrous mineral assemblages, whereas the fluid regime of the high-pressure and ultrahigh-temperature granulites was mostly CO2-dominated. The tectonic setting of the rocks along a collisional suture marking the trace along which crustal blocks were welded through subduction–collision process is in favor of a model involving the derivation of CO2 from sub-lithospheric sources such as a carbonated tectosphere invaded by hot asthenosphere, or underplated mafic magmas.  相似文献   

9.
彭卫刚  张立飞  申婷婷  胡晗 《岩石学报》2018,34(4):1204-1218
俯冲带可将地球表层碳输送至深部地幔,同时也记录着俯冲板片来源碳质流体的迁移沉淀机制,对地球深部碳循环具有重大影响。近年来,俯冲带脱碳机制的研究表明流体溶解脱碳作用是冷的大洋俯冲板片释放COH流体的重要方式,而上覆板块(尤其地幔楔)则被认为是缓冲这些COH流体的重要场所,甚至是俯冲带CO_2的唯一"归宿"。事实上,俯冲带岩石本身的固碳能力却受到了忽视,而对俯冲带岩石捕获和固存CO_2(carbon capture and storage,CCS)能力的评估对全球碳通量的估算尤为重要。本文以中国西南天山高压-超高压变质带中碳酸盐化云母片岩为例,探讨俯冲带岩石的碳酸盐化对深部碳循环的影响。西南天山长阿吾子一带的碳酸盐化云母片岩记录了俯冲板片起源的碳质流体对俯冲带云母片岩的交代作用,地球化学特征表明蛇纹岩释放的富水流体溶解俯冲洋壳中的碳酸盐可能是产生COH流体的重要机制。基于碳质流体对多硅白云母(Si(a.p.f.u.)=3.58~3.73)的交代及相对高压的碳酸盐矿物(主要为白云石和菱镁矿)与金红石的共生,结合区域上碳酸盐化云母片岩与高压碳酸盐化蛇纹岩(HP-ophidolomite)的伴生,我们认为云母片岩的碳酸盐化作用可能发生在俯冲板片峰期稍后的高压折返阶段。俯冲带云母片岩的固碳作用表明除了上覆板块,俯冲带岩石本身对于碳质流体也具有很好的吸收能力。初步估算表明俯冲带云母片岩的碳酸盐化每年可固存至少2.46~6.68Mt/yr,约占俯冲板片每年进碳量的4%~17%。  相似文献   

10.
Metasomatic reaction zones which developed at marble-pelitic schist contacts in a granulite facies terrane in West Greenland contain a consistent sequence of five mineralogical zones. Outward from the carbonates the zones are characterized by the assemblages grossular-diopside-meionite (I), meionite-anorthite-diopside (II), anorthite-diopside-edenitic hornblende (III), anorthite-enstatite (IV), plagioclase-almandine-sillimanite (V). Sphene is superceded by ilmenite between zones (II) and (III); quartz is present in all zones except zone I. Scapolite, plagioclase, clinopyroxene and mica exhibit a small degree of compositional variation which correlates with distance from the carbonate. These small compositional variations are superimposed on a strong CaO chemical potential gradient. Compositional features, zone distributions and CaO activity calculations demonstrate that the zones developed in response to CaO diffusion along a chemical potential gradient of 2 kcal/m. The CaO source appears to be carbonate rocks which release calcium as decarbonation reactions proceed. The maximum volume of CO2 released in this process, and that released during discontinuous reactions in the marbles, will contribute a total volume of CO2 approximately equivalent to the volume of carbonate in the rock. Calculations demonstrate that a terrane consisting of as little as 8% carbonate will release sufficient CO2 to result in complete dehydration of an amphibolite terrane, at deep crustal conditions. Dehydration through CO2 release will be accomplished either through rapid burial, which would prevent both equilibration of mineral assemblages and CO2 release at intermediate crustal levels, or through diffusion-driven metasomatic reactions which would lead to CO2 release primarily at the high temperatures of deep crustal environments. The latter process would be the dominant CO2 source at deep crustal levels if carbonate rocks occur predominately as relatively thin layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号