首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Six national-scale, or near national-scale, geochemical data sets for soils or stream sediments exist for the United States. The earliest of these, here termed the ‘Shacklette’ data set, was generated by a U.S. Geological Survey (USGS) project conducted from 1961 to 1975. This project used soil collected from a depth of about 20 cm as the sampling medium at 1323 sites throughout the conterminous U.S. The National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance (NURE-HSSR) Program of the U.S. Department of Energy was conducted from 1975 to 1984 and collected either stream sediments, lake sediments, or soils at more than 378,000 sites in both the conterminous U.S. and Alaska. The sampled area represented about 65% of the nation. The Natural Resources Conservation Service (NRCS), from 1978 to 1982, collected samples from multiple soil horizons at sites within the major crop-growing regions of the conterminous U.S. This data set contains analyses of more than 3000 samples. The National Geochemical Survey, a USGS project conducted from 1997 to 2009, used a subset of the NURE-HSSR archival samples as its starting point and then collected primarily stream sediments, with occasional soils, in the parts of the U.S. not covered by the NURE-HSSR Program. This data set contains chemical analyses for more than 70,000 samples. The USGS, in collaboration with the Mexican Geological Survey and the Geological Survey of Canada, initiated soil sampling for the North American Soil Geochemical Landscapes Project in 2007. Sampling of three horizons or depths at more than 4800 sites in the U.S. was completed in 2010, and chemical analyses are currently ongoing. The NRCS initiated a project in the 1990s to analyze the various soil horizons from selected pedons throughout the U.S. This data set currently contains data from more than 1400 sites. This paper (1) discusses each data set in terms of its purpose, sample collection protocols, and analytical methods; and (2) evaluates each data set in terms of its appropriateness as a national-scale geochemical database and its usefulness for national-scale geochemical mapping.  相似文献   

2.
In 2007, the US Geological Survey initiated a low-density (1 site per 1600 km2, c. 4800 sites) geochemical and mineralogical survey of soils of the conterminous USA. The ideal sampling protocol at each site includes a sample from 0–5 cm depth, a composite of the soil A horizon, and a sample from the soil C horizon. The <2-mm fraction of each sample is analyzed for Al, Ca, Fe, K, Mg, Na, S, Ti, Ag, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4 and HF. Separate methods are used for As, Hg, Se and total C on this same size fraction. The major mineralogical components are determined by a quantitative X-ray diffraction method. Sampling was completed in 2010 with chemical and mineralogical analysis currently underway. Preliminary results for a swath from the central USA to Florida clearly show the effects of soil parent material and climate on the chemical and mineralogical composition of soils. A sample archive will be established and made available for future investigations.  相似文献   

3.
In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada sampled and chemically analyzed soils along two transects across Canada and the USA in preparation for a planned soil geochemical survey of North America. This effort was a pilot study to test and refine sampling protocols, analytical methods, quality control protocols, and field logistics for the continental survey. A total of 220 sample sites were selected at approximately 40-km intervals along the two transects. The ideal sampling protocol at each site called for a sample from a depth of 0–5 cm and a composite of each of the O, A, and C horizons. The <2-mm fraction of each sample was analyzed for Al, Ca, Fe, K, Mg, Na, S, Ti, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y, and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4, and HF. Separate methods were used for Hg, Se, total C, and carbonate-C on this same size fraction. Only Ag, In, and Te had a large percentage of concentrations below the detection limit. Quality control (QC) of the analyses was monitored at three levels: the laboratory performing the analysis, the USGS QC officer, and the principal investigator for the study. This level of review resulted in an average of one QC sample for every 20 field samples, which proved to be minimally adequate for such a large-scale survey. Additional QC samples should be added to monitor within-batch quality to the extent that no more than 10 samples are analyzed between a QC sample. Only Cr (77%), Y (82%), and Sb (80%) fell outside the acceptable limits of accuracy (% recovery between 85 and 115%) because of likely residence in mineral phases resistant to the acid digestion.A separate sample of 0–5-cm material was collected at each site for determination of organic compounds. A subset of 73 of these samples was analyzed for a suite of 19 organochlorine pesticides by gas chromatography. Only three of these samples had detectable pesticide concentrations. A separate sample of A-horizon soil was collected for microbial characterization by phospholipid fatty acid analysis (PLFA), soil enzyme assays, and determination of selected human and agricultural pathogens. Collection, preservation and analysis of samples for both organic compounds and microbial characterization add a great degree of complication to the sampling and preservation protocols and a significant increase to the cost for a continental-scale survey. Both these issues must be considered carefully prior to adopting these parameters as part of the soil geochemical survey of North America.  相似文献   

4.
In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada (GSC) initiated a pilot study that involved collection of more than 1500 soil samples from 221 sites along two continental transects across Canada and the United States. The pilot study was designed to test and refine protocols for a soil geochemical survey of North America. The two transects crossed a wide array of soil parent materials, soil ages, climatic conditions, landforms, land covers and land uses. Sample sites were selected randomly at approximately 40-km intervals from a population defined as all soils of the continent. At each site, soils representing 0 to 5 cm depth, and the O, A, and C horizons, if present, were collected and analyzed for their near-total content of over 40 major and trace elements. Soils from 0–5 cm depth were also collected for analysis of organic compounds. Results from the transects confirm that soil samples collected at a 40-km spacing reveal coherent, continental- to subcontinental-scale geochemical and mineralogical patterns that can be correlated to aspects of underlying soil parent material, soil age and climate influence. The geochemical data also demonstrate that at the continental-scale the dominance of any of these major factors that control soil geochemistry can change across the landscape. Along both transects, soil mineralogy and geochemistry change abruptly with changes in soil parent materials. However, the chemical influence of a soil’s parent material can be obscured by changing climatic conditions. For the transects, increasing precipitation from west to east and increasing temperature from north to south affect both soil mineralogy and geochemistry because of climate effects on soil weathering and leaching, and plant productivity. Regional anomalous metal concentrations can be linked to natural variations in soil parent materials, such as high Ni and Cr in soils developed on ultramafic rocks in California or high P in soils formed on weathered Ordovician limestones in central Kentucky. On local scales, anomalous metal concentrations recognized in soil profiles, such as high P in soils from animal confinement sites, are consistent with local anthropogenic disturbances. At a larger scale, the distribution of Hg across the west to east transect demonstrates that it can be difficult to distinguish between natural or anthropogenic contributions and that many factors can contribute to an element’s spatial distribution.Only three samples in a subset of seventy-three 0–5 cm depth soil samples from the north to south transect had organochlorine pesticides values above the method detection limit, apparently related to historic usage of the pesticides DDT and dieldrin.  相似文献   

5.
《Applied Geochemistry》2004,19(2):257-260
Over the past 30 a, regional and national solid-phase geochemical surveys have been conducted by the United States Geological Survey and the Geological Survey of Canada. In the present paper the authors have examined the distribution of As in stream-sediment and soil samples of the US and Canada in terms of geologic and anthropogenic components. The results of the compilations indicate that the distribution of As in stream sediments, lake sediments, and soils in Canada and the US shows that most of the variability is controlled by the bed rock characteristics.  相似文献   

6.
In vitro bioaccessibility tests (IVBA) are inexpensive, physiologically-based extraction tests designed to estimate the bioaccessibility of elements along ingestion exposure pathways. Published IVBA protocols call for the testing to be done on the <250-μm fraction of soil, as these particles are most likely to adhere to the hands of children and be ingested. Most IVBA in the literature to date have been applied to soil samples from highly contaminated sites or to spiked samples, and relatively little work has been done to evaluate bioaccessibility of elements in a wide variety of uncontaminated ‘background’ soils.In 2004, the US Geological Survey and the Geological Survey of Canada sampled soils along north–south and east–west transects across the two countries to test and refine sampling and analytical protocols recommended for the planned soil geochemical survey of North America. Samples were collected at 220 sites selected randomly at approximately 40-km intervals. The focus of the investigation presented in this paper was twofold: (1) to begin to examine variations in bioaccessibility of As, Cd, Cr, Ni and Pb in a number of ‘background’ (i.e., unpolluted) soils from around North America and (2) to determine if there are significant differences that would preclude using the standard size fraction of <2 mm for extraction with a simulated gastric fluid as an expeditious and inexpensive bioaccessibility screening tool for the large numbers of future samples to be collected by this continental-scale project. A subset of 20 soil samples collected along the north–south transect at a depth of 0–5 cm was used for this study. Two separate size fractions (<2 mm and <250 μm) were extracted using a simulated human gastric fluid consisting of a solution of HCl and glycine adjusted to a pH of 1.5. In general, the leachate results for the <2-mm size fraction were not substantially different than those for the <250-μm size fraction for concentrations of As, Cd, Cr, Ni and Pb. Leachate concentrations for Cd, Ni and Pb appear to be controlled to some extent by the total concentration of the element in soil. Bioaccessibility of the elements in this study decreased in the order, Cd > Pb > Ni > As > Cr.  相似文献   

7.
A novel modeling method is presented for indexing and normalizing natural gas endowments of petroleum provinces. The approach is demonstrated with data from Canada, the Unites States, and Latin American and Caribbean (LAC) countries. A variable shape distribution model (VSD) is used to fit the conventional natural gas endowment published by the United States Geological Survey (USGS) for 29 provinces in LAC countries and 85 provinces in Canada and the United States. These data are indexed and normalized to generate curves showing number of provinces versus normalized endowments. Results are compared with normalized endowments from provinces in other regions around the world, including Europe, Asia Pacific, the Middle East, North Africa, and the former Soviet Union (FSU). The comparison gives the method predictive power for estimating the natural gas endowment, particularly in LAC provinces that at present have little exploration activity. Of particular importance is the fact that all the curves of the various regions display a generally concave pattern throughout. The exception is the LAC curve, which displays the shape of an inverted S and has a distinct convex pattern at the largest gas endowment volumes. This comparison suggests there is potentially a large volume of natural gas in the region that has not been considered in previous studies.  相似文献   

8.
The Mexican Geological Survey (SGM), the National Institute of Statistics, Geography and Informatics (INEGI) and the Autonomous University of San Luis Potosi (UASLP) have established a multidisciplinary team with the objective of creating a national program of geochemical mapping of soils in Mexico. This is being done as part of the North American Soil Geochemical Landscapes Project in partnership with the US Geological Survey and the Geological Survey of Canada. As the first step, a pilot study was conducted over a transect that extends from the Mexico–US border near Ciudad Juarez in the north to the Pacific Ocean in the south. This pilot transect was conducted in two phases, and this paper presents results from the first phase, which sampled soils at about a 40-km spacing along a 730-km transect beginning in Central Mexico and ending at the Pacific Coast. Samples were collected from the A and C horizons at each site and 60 elements were analyzed. This pilot study demonstrates that geochemical mapping based on a 40-km spacing is adequate to identify broad-scale geochemical patterns. Geologic influence (i.e., soil parent material) was the most important factor influencing the distribution of elements along the transect, followed by the influence of regional mineralization. The study also showed that influence by human activities over the transect is minimal except possibly in large mining districts. A comparison of element abundance in the A horizon with the environmental soil guidelines in Mexico showed that the natural concentrations of the studied soils were lower than the established threshold for soil restoration with the exception of V and As. The former had a median value (75 mg/kg) approximately equal to the value established in Mexico for soil restoration in agricultural and residential lands (78 mg/kg), and the latter had three values higher than the 22 mg/kg threshold for soil restoration in agricultural and residential lands. These cases demonstrate the importance of knowing the national- and regional-scale geochemistry of Mexican soils as a support for the decision-making process, particularly for the proper formulation and application of soil guidelines designed to protect human and ecosystem health.  相似文献   

9.
该数据集依托中国地质调查局“山东莱州-招远地区金矿整装勘查区矿产调查与找矿预测”项目,在充分收集地质、物探、化探、遥感及矿产等资料基础上,开展毕郭幅矿产地质调查。项目共采集1 875件水系沉积物样品,采样粒级为-10~+80目,平均采样密度4.5个/km2。采用电感耦合等离子质谱法(ICP-MS)、原子荧光光谱法(AFS)、粉末发射光谱法(ES)和石墨炉原子吸收光谱法(GF-AAS)分析了16种元素,最终形成1:50 000山东毕郭幅地球化学数据集,数据集包含有1 875件样品×16种元素的原始分析数据表格一个,图集一套(含有1张矿产地质图、一张采样点位图和16张元素地球化学图)。区内共新发现单元素地球化学异常149处,综合异常10处,结合地质、矿产、物探、化探、遥感等信息并圈出金矿找矿靶区5处。  相似文献   

10.
The main purposes of this study are the textural, chemical and mineralogical characterization of the urban soils of Lisbon and the identification of probable relations between the several soil properties. The results are used to infer which soil properties control the superficial dispersion of potential harmful elements to human health. Soil sampling was carried out in 51 selected sites all through the city, under the criterion that such sites should be spaces usually frequented by children. The concentrations of 42 elements in the >2 mm soil size fraction were determined at a commercial laboratory in Canada (ActLabs, LTD), by ICP-MS/ICP-OES after an acid digestion with aqua regia. The soil mineralogy was determined by X-ray diffraction in the <2 and <62 μm size fractions. The results indicate that the urban soils have mainly a sandy texture and a main mineralogical assemblage of quartz, K-feldspar, plagioclase and calcite. In terms of clay minerals, smectite, illite and kaolinite are the main clays in the soil. Smectite and illite show a dichotomy in their distribution, with the smectites prevailing in the soils of the volcanic complex of Lisbon, which are classified as being residual, and illite prevailing in the remaining soils, which are considered mainly as man-made soils. Smectite seems to exert an important role in the fixation of Ni and Cr. The results of the geochemical study show that Ni and Cr have concentrations above the soil guideline value established to the UK and pose a probable risk to human health.  相似文献   

11.
12.
The National Institute for Standards and Technology (NIST) has recently released three soil standard reference materials that are uncontaminated (SRM 2709), moderately contaminated (SRM 2711), and highly contaminated (SRM 2710) with metals. The SRMs were analyzed at the U.S. Geological Survey (USGS) for thirty two major, minor and trace elements using a combination of wavelength dispersive X-ray fluorescence spectroscopy (WDXRF) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Good agreement is observed between NIST certified values and USGS results. The wide concentration ranges for most transition metals should make these SRMs useful in assessing the accuracy of methods used in geochemical exploration and environmental studies.  相似文献   

13.
The U.S. Geological Survey has prepared an attapulgite and a bentonite as reference samples because of their economic importance. The attapulgite (ATT-1) is from the Meigs-Attapulgite-Quincy fuller's earth district of Georgia and Florida, and the bentonite (CSB-1) is from the Northern Black Hills bentonite district of Wyoming, Montana, and South Dakota. The chemical and mineralogical properties of these two samples are quite different. Provisional values calculated from the few analytical data and the X-ray diffraction mineralogy are presented for those who wish to use the clays as reference samples.  相似文献   

14.
15.
Aggregation Methodology for the Circum-Arctic Resource Appraisal   总被引:1,自引:0,他引:1  
This paper presents a methodology that intends to aggregate the results of a recent assessment of undiscovered conventional oil and gas resources of the Arctic by the U.S. Geological Survey. The assessment occurred in 48 geologically defined regions called assessment units. The methodology includes using assessor specified pair-wise correlations as the basis to construct a correlation matrix. Sampling from this matrix generates more realistic uncertainty estimates of aggregated resources than if assumptions of total independence or total dependence are made. The latter two assumptions result in overly narrow or overly broad estimates. Aggregation results for resources in regions north of the Arctic Circle are presented.  相似文献   

16.
Bond distances and angles in isostructural, ordered clinopyroxenes are compared for eight compositions, based on five new and three published crystal-structure refinements from X-ray diffraction data. Unit-cell parameters and configuration of the silicate chains are directly correlated with cation composition and distribution in the M2 and M1 sites.Publication authorized by the Director, U. S. Geological Survey.Our thanks go to D. B. Stewart, C. Milton, and C. S. Ross, U. S. Geological Survey, who supplied crystals of the minerals, to D. B. Stewart for synthesis of iron spodumene, to Dr. L. Fuchs, Argonne National Laboratory, for synthesis of ureyite, and to Dr. B. Mason, U. S. National Museum, who transmitted the ureyite crystals.  相似文献   

17.
Probabilistic methodology used by the U.S. Geological Survey is described for estimating the quantity of undiscovered recoverable conventional resources of oil and gas in the United States. A judgmental probability distribution of the quantity of resource and its properties is determined for a geologic province or basin. From this distribution, point and interval estimates of the quantity of undiscovered resource are obtained. Distributions and their properties are established for each of the following resources: (1) oil and nonassociated gas from estimates of the probability of the resource being present and the conditional probability distribution of the quantity of resource given that the resource is present, (2) associated-dissolved gas from its corresponding oil distribution, (3) total gas, (4) oil and total gas in two or more provinces. Computer graphics routines are illustrated with examples from the U.S. Geological Survey Circular 860.  相似文献   

18.
Two rock samples from the San Marcos Gabbro and the Lakeview Mountain Tonalite of the Southern California Batholith were prepared as U.S. Geological Survey reference samples. These samples were chosen to supply reference data for rocks having intermediate silica contents in the range of 45-60 percent. Unpublished data by members of the U.S. Geological Survey and some published data are summarized, and provisional estimates of the major and minor oxide and traceelement contents are given.  相似文献   

19.
Three new rock reference samples, Rhyolite JR-3, Gabbro JGb-2 and Hornblendite JH-1 have been prepared by the Geological Survey of Japan for collaborative studies on their chemical composition. Twenty-eight major, minor and trace elements were determined and presented. The results of homogeneity tests showed that all elements are considered to be distributed homogeneously in each reference sample. Geological and mineralogical characteristics are also described.  相似文献   

20.
Summary This workshop was primarily motivated by the goals of the International Decade for Natural Disaster Reduction (IDNDR), one of which is that each country should have a comprehensive national assessment of risks due to natural hazards by the year 2000. It was sponsored by the Environmental Adaptation Research Group (EARG) of Environment Canada, the International Partnerships of Environment Canada, the Geological Survey of Canada, Emergency Preparedness Canada and the Canadian National Committee of the IDNDR. The National Science Foundation of the U.S. and the Government of Mexico supported travel costs related to their delegates. The workshop dealt with both atmospheric hazards such as tornadoes and floods, and geological hazards such as earthquakes and landslides. Nine U.S., eight Mexican and 24 Canadian participants included academia, government and the private sector. Six projects were selected as being of joint interest to all three countries, with lead country and agencies identified for possible future cooperative work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号