首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We report Sr-, Nd- and Pb-isotopic compositions for the lavasof Mauritius, the second youngest volcanic island in the Réunionhotspot. The lavas of the Older Series (7·8–5·5Ma) have identical isotopic compositions (87Sr/86Sr = 0·70411to 0·70422,143Nd/144Nd = 0·512865 to 0·512854,and 206Pb/204Pb = 19·016 to 19·041) to those ofRéunion, where the center of volcanic activity is currentlylocated. The lavas of the Intermediate Series (3·5–1·9Ma) and Younger Series (0·70–0·17 Ma) areshifted to lower Sr-isotopic compositions (0·70364–0·70394,with 143Nd/144Nd = 0·512813 to 0·512948 and 206Pb/204Pb= 18·794 to 18·984). The Intermediate Series lavashave similar trace-element characteristics (e.g. Zr–Nb,Ba–Y) to those of Rodrigues, in both cases requiring theinvolvement of an enriched mantle-like component in the mantlesource. During the volcanic history of Mauritius, the magmaslost the principal isotopic characteristics of the Réunionhotspot with time, and became gradually imprinted with the isotopicsignature of a shallower mantle source that produced the CentralIndian Ridge basalts. KEY WORDS: hotspot; isotopes; Mauritius; Réunion; trace element  相似文献   

2.
Neogene plateau lavas in Patagonia, southern Argentina, eastof the volcanic gap between the Southern and Austral VolcanicZones at 46·5° and 49·5°S are linked withasthenospheric slab window processes associated with the collisionof a Chile Ridge segment with the Chile Trench at 12 Ma. Thestrong ocean-island basalt (OIB)-like geochemical signatures(La/Ta <20; Ba/La <20; 87Sr/86Sr = 0·7035–0·7046;143Nd/144Nd = 0·51290–0·51261; 206Pb/204Pb= 18·3–18·8; 207Pb/204Pb = 15·57–15·65;208Pb/204Pb = 38·4–38·7) of these Patagonianslab window lavas contrast with the mid-ocean ridge basalt (MORB)-like,depleted mantle signatures of slab window lavas elsewhere inthe Cordillera (e.g. Antarctic Peninsula; Baja California).The Patagonian lavas can be divided into a voluminous  相似文献   

3.
Numerous minette dykes intersect the Precambrian crystallinebasement of Schirmacher Oasis, East Antarctica. This study presentsnew Sr, Nd, Pb and O isotope data for 11 minette samples fromfour different dykes. The samples are characterized by relativelyhigh 87Sr/86Sr (0·7077–0·7134), 207Pb/204Pb(15·45–15·55) and 208Pb/204Pb (37·8–39·8),combined with low 143Nd/144Nd (  相似文献   

4.
This paper presents field, geochemical and isotopic (Sr, Nd,Pb) results on basalts from the Antipodes, Campbell and ChathamIslands, New Zealand. New 40Ar/39Ar age determinations alongwith previous K–Ar dates reveal three major episodes ofvolcanic activity on Chatham Island (85–82, 41–35,5 Ma). Chatham and Antipodes samples comprise basanite, alkaliand transitional basalts that have HIMU-like isotopic (206Pb/204Pb>20·3–20·8, 87Sr/86Sr <0·7033,143Nd/144Nd >0·5128) and trace element affinities(Ce/Pb 28–36, Nb/U 34–66, Ba/Nb 4–7). Thegeochemistry of transitional to Q-normative samples from CampbellIsland is explained by interaction with continental crust. Thevolcanism is part of a long-lived (100 Myr), low-volume, diffusealkaline magmatic province that includes deposits on the Northand South Islands of New Zealand as well as portions of WestAntarctica and SE Australia. All of these continental areaswere juxtaposed on the eastern margin of Gondwanaland at >83Ma. A ubiquitous feature of mafic alkaline rocks from this regionis their depletion in K and Pb relative to other highly incompatibleelements when normalized to primitive mantle values. The inversionof trace element data indicates enriched mantle sources thatcontain variable proportions of hydrous minerals. We proposethat the mantle sources represent continental lithosphere thathost amphibole/phlogopite-rich veins formed by plume- and/orsubduction-related metasomatism between 500 and 100 Ma. Thestrong HIMU signature (206Pb/204Pb >20·5) is consideredto be an in-grown feature generated by partial dehydration andloss of hydrophile elements (Pb, Rb, K) relative to more magmaphileelements (Th, U, Sr) during short-term storage at the base ofthe lithosphere. KEY WORDS: continental alkaline basalts; lithospheric mantle, mantle metasomatism; New Zealand; OIB, HIMU; Sr, Nd and Pb isotopes; West Antarctica  相似文献   

5.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF), the site of the Valles caldera, lies at the intersectionof the Jemez lineament, a Proterozoic suture, and the CenozoicRio Grande rift. Parental magmas are of two types: K-depletedsilica-undersaturated, derived from the partial melting of lithosphericmantle with residual amphibole, and tholeiitic, derived fromeither asthenospheric or lithospheric mantle. Variability insilica-undersaturated basalts reflects contributions of meltsderived from lherzolitic and pyroxenitic mantle, representingheterogeneous lithosphere associated with the suture. The Kdepletion is inherited by fractionated, crustally contaminatedderivatives (hawaiites and mugearites), leading to distinctiveincompatible trace element signatures, with Th/(Nb,Ta) and La/(Nb,Ta)greater than, but K/(Nb,Ta) similar to, Bulk Silicate Earth.These compositions dominate the mafic and intermediate lavas,and the JMVF is therefore derived largely, and perhaps entirely,from melting of fertile continental Jemez lineament lithosphereduring rift-related extension. Significant variations in Pband Nd isotope ratios (206Pb/204Pb = 17·20–18·93;143Nd/144Nd = 0·51244–0·51272) result fromcrustal contamination, whereas 87Sr/86Sr is low and relativelyuniform (0·7040–0·7048). We compare theeffects of contamination by low-87Sr/86Sr crust with assimilationof high-87Sr/86Sr granitoid by partial melting, with Sr retainedin a feldspathic residue. Both models satisfactorily reproducethe isotopic features of the rocks, but the lack of a measurableEu anomaly in most JMVF mafic lavas is difficult to reconcilewith a major role for residual plagioclase during petrogenesis. KEY WORDS: Jemez Mountains volcanic field; Rio Grande rift; lithospheric mantle; crustal contamination; trace elements; radiogenic isotopes  相似文献   

6.
The volcanic history of Santo Antão, NW Cape Verde Islands,includes the eruption of basanite–phonolite series magmasbetween 7·5 and 0·3 Ma and (melilite) nephelinite–phonoliteseries magmas from 0·7 to 0·1 Ma. The most primitivevolcanic rocks are olivine ± clinopyroxene-phyric, whereasthe more evolved rocks have phenocrysts of clinopyroxene ±Fe–Tioxide ± kaersutite ± haüyne ± titanite± sanidine; plagioclase occurs in some intermediate rocks.The analysed samples span a range of 19–0·03% MgO;the most primitive have 37–46% SiO2, 2·5–7%TiO2 and are enriched 50–200 x primitive mantle in highlyincompatible elements; the basanitic series is less enrichedthan the nephelinitic series. Geochemical trends in each seriescan be modelled by fractional crystallization of phenocrystassemblages from basanitic and nephelinitic parental magmas.There is little evidence for mineral–melt disequilibrium,and thus magma mixing is not of major importance in controllingbulk-rock compositions. Mantle melting processes are modelledusing fractionation-corrected magma compositions; the modelssuggest 1–4% partial melting of a heterogeneous mantleperidotite source at depths of 90–125 km. Incompatibleelement enrichment among the most primitive magma types is typicalof HIMU OIB. The Sr, Nd and Pb isotopic compositions of theSanto Antão volcanic sequence and geochemical characterchange systematically with time. The older volcanic rocks (7·5–2Ma) vary between two main mantle source components, one of whichis a young HIMU type with 206Pb/204Pb = 19·88, 7/4 =–5, 8/4 0, 87Sr/86Sr = 0·7033 and 143Nd/144Nd= 0·51288, whereas the other has somewhat less radiogenicSr and Pb and more radiogenic Nd. The intermediate age volcanicrocks (2–0·3 Ma) show a change of sources to two-componentmixing between a carbonatite-related young HIMU-type source(206Pb/204Pb = 19·93, 7/4 = –5, 8/4 = –38,87Sr/86Sr = 0·70304) and a DM-like source. A more incompatibleelement-enriched component with 7/4 > 0 (old HIMU type) isprominent in the young volcanic rocks (0·3–0·1Ma). The EM1 component that is important in the southern CapeVerde Islands appears to have played no role in the petrogenesisof the Santo Antão magmas. The primary magmas are arguedto be derived by partial melting in the Cape Verde mantle plume;temporal changes in composition are suggested to reflect layeringin the plume conduit. KEY WORDS: radiogenic isotopes; geochemistry; mantle melting; Cape Verde  相似文献   

7.
Palaeocene (c. 55–58 Ma) adakitic andesites from the Yanjiarea, NE China, are typically clinopyroxene-bearing sodic andesitescontaining 60· 9–62· 2% SiO2 and 4·02–4· 36% MgO, with high Mg-number [100 Mg/(Mg+ Fe) atomic ratio] from 65· 5 to 70· 1. Whole-rockgeochemical features include high Cr (128–161 ppm) andNi (86–117 ppm) concentrations, extremely high Sr (2013–2282ppm), low Y (10–11 ppm) and heavy rare earth elements(HREE; e.g. Yb = 0· 79–1· 01 ppm), and mid-oceanridge basalt (MORB)-like Sr–Nd–Pb isotopic compositions[e.g. 87Sr/ 86Sr(i) = 0· 70298–0· 70316,Nd(t) = +3· 8 to +6· 3 and 206Pb/ 204Pb = 17·98 – 18· 06], analogous to high-Mg adakites occurringin modern subduction zones. However, mineralogical evidencefrom clinopyroxene phenocrysts and microcrystalline plagioclaseclearly points to magma mixing during magma evolution. Iron-richclinopyroxene (augite) cores with low Sr, high Y and heavy REEcontents, slightly fractionated REE patterns and large negativeEu anomalies probably crystallized along with low-Ca plagioclasefrom a lower crustal felsic magma. In contrast, high Mg-numberclinopyroxene (diopside and endiopside) mantles and rims havehigher Sr and lower HREE and Y concentrations, highly fractionatedREE patterns (high La/Yb) and negligible Eu anomalies, similarto those found in adakites from subduction zones. The Yanjiadakitic andesites can be interpreted as a mixture between acrust-derived magma having low Mg-number and Sr, and high Yand HREE, and a mantle-derived high Mg-number adakite havinghigh Sr and low Y and HREE concentrations. During storage and/orascent, the mixed magma experienced further crustal contaminationto capture zircons, of a range of ages, from the wall rocks.The absence of coeval arc magmatism and an extensional tectonicregime in the Yanji area and surrounding regions suggest thatthese Palaeocene adakitic andesites were formed during post-subductionextension that followed the late Cretaceous Izanagi–Farallonridge subduction. Generation of these adakitic andesites doesnot require contemporaneous subduction of a young, hot oceanicridge or delamination of eclogitic lower crust as suggestedby previous models. KEY WORDS: magma mixing; adakitic andesites; Palaeocene; NE China  相似文献   

8.
Miocene to Recent volcanism in northwestern Arabia producedthe largest intraplate volcanic field on the Arabian plate (HarratAsh Shaam, Jordan). The chemically and isotopically diversevolcanic field comprises mafic alkali basalts and basanites.The magmas underwent limited fractional crystallization of ol± cpx ± plag and rare samples have assimilatedup to 20% of Late Proterozoic crust en route to the surface.However, there are subtle Sr–Nd–Pb isotopic variations(87Sr/86Sr = 0·70305–0·70377, 143Nd/144Nd= 0·51297–0·51285, 206Pb/204Pb = 18·8–19·2),which exhibit marked correlations with major elements, incompatibletrace element ratios and abundances in relatively primitivebasalts (MgO >8·5 wt %), and cannot be explained byfractional crystallization and crustal contamination alone.Instead, the data require polybaric melting of heterogeneoussources. Semi-quantitative melt modelling suggests that thisheterogeneity is the result of small degree melts (2–5%)from spinel- and garnet-facies mantle, inferred to be shallowArabian lithosphere, that mixed with smaller degree melts (<1%)from a predominantly deep garnet-bearing asthenospheric(?) sourcewith ocean island basalt characteristics. The latter may bea ubiquitous part of the asthenosphere but is preferentiallytapped at small degrees of partial melting. Volcanism in Jordanappears to be the result of melting lithospheric mantle in responseto lithospheric extension. With time, thinning of the lithosphereallowed progressively deeper mantle (asthenosphere?) to be activatedand melts from this to mix with the shallower lithospheric mantlemelts. Although Jordanian intraplate volcanism is isotopicallysimilar to examples of Late Cenozoic volcanism throughout theArabian peninsula (Israel, Saudi Arabia), subtle chemical andisotopic differences between Yemen and Jordan intraplate volcanismsuggest that the Afar plume has not been channelled northwestwardsbeneath the Arabian plate and played no role in producing thenorthern Saudi Arabian and Jordan intraplate volcanic fields. KEY WORDS: asthenosphere; intraplate volcanism; Jordan; lithospheric mantle; Sr–Nd–Pb isotopes  相似文献   

9.
Major and trace element, Sr–Nd–Pb isotope and mineralchemical data are presented for newly discovered ultrapotassiclavas in the Tangra Yumco–Xuruco graben in southern Tibet.The ultrapotassic lavas are characterized by high MgO, K2O andTiO2, low Al2O3 and Na2O contents, and also have high molarK2O/Al2O3, molar (K2O + Na2O)/Al2O3 and K2O/Na2O ratios. Theirhigh abundances of incompatible trace elements such as largeion lithophile elements (LILE) and light rare earth elements(LREE) reach the extreme levels typical of lamproites. The lamproitesshow highly radiogenic 87Sr/86Sr (0· 7166–0·7363) and unradiogenic 143Nd/144Nd (0· 511796–0·511962), low 206Pb/204Pb (18· 459–18· 931),and elevated radiogenic 207Pb/204Pb (15· 6732–15·841) and 208Pb/204Pb (39· 557–40· 058) ratios.On the basis of their geochemical and isotopic systematics,the lamproites in south Tibet have a distinct magma source thatcan be differentiated from the sources of potassic lavas inthe east Lhasa and Qiangtang blocks. Their high Nb/Ta ratios(17· 10–19· 84), extremely high Th/U ratios(5· 70–13· 74) and distinctive isotope compositionsare compatible with a veined mantle source consisting of partialmelts of subducted Tethyan oceanic sediments and sub-continentallithospheric depleted mantle. Identification of the lamproitesand the delineation of their mantle source provide new evidencerelevant for models of the uplift and extension of the Tibetanplateau following the Indo-Asia collision. Metasomatism by partialmelts from isotopically evolved, old sediment subducted on theyoung Tethyan slab is an alternative explanation for PrecambrianNd and Pb model ages. In this model, differences in isotopiccomposition along-strike are attributed to differences in thetype of sediment being subducted, thus obviating the need formultiple metasomatic events over hundreds of million years.The distribution of lamproites, restricted within a north–south-trendinggraben, indicates that the initiation of east–west extensionin south Tibet started at 25 Ma. KEY WORDS: lamproites; subducted oceanic sediment; Tibetan active continental collision belt  相似文献   

10.
The South Auckland Volcanic Field is a Pleistocene (1·59–0·51Ma) basaltic intraplate, monogenetic field situated south ofAuckland City, North Island, New Zealand. Two groups of basaltsare distinguished based on mineralogy and geochemical compositions,but no temporal or spatial patterns exist in the distributionof various lava types forming each group within the field: GroupA basalts are silica-undersaturated transitional to quartz-tholeiiticbasalts with relatively low total alkalis (3·0–4·6wt %), Nb (7–29 ppm), and (La/Yb)N (3·4–7·6);Group B basalts are strongly silica-undersaturated basanitesto nepheline-hawaiites with high total alkalis (3·3–7·9wt %), Nb (32–102 ppm), and (La/Yb)N (12–47). GroupA has slightly higher 87Sr/86Sr, similar Nd, and lower 206Pb/204Pbvalues compared with Group B. Contrasting geochemical trendsand incompatible element ratios (e.g. K/Nb, Zr/Nb, Ce/Pb) areconsistent with separate evolution of Groups A and B from dissimilarparental magmas derived from distinct sub-continental lithosphericmantle sources. Differentiation within each group was controlledby olivine and clinopyroxene fractionation. Group B magmas weregenerated by <8% melting of an ocean island basalt (OIB)-likegarnet peridotite source with high 238U/204Pb mantle (HIMU)and enriched mantle (EMII) characteristics possibly inheritedfrom recycled oceanic crust. Group A magmas were generated by<12% melting of a spinel peridotite source also with HIMUand EMII signatures. This source type may have resulted fromsubduction-related metasomatism of the sub-continental lithospheremodified by a HIMU plume. These events were associated withMesozoic or earlier subduction- and plume-related magmatismwhen New Zealand was at the eastern margin of the Gondwana supercontinent. KEY WORDS: continental intraplate basalts; geochemistry; HIMU, EMII; Sr, Nd, and Pb isotopes; South Auckland; sub-continental lithospheric sources  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号