首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Recently collected naturally occurring geochemical and isotopic groundwater tracers were combined with historic data from the Pahute Mesa area of the Nevada National Security Site (NNSS), Nevada, USA, to provide insights into long-term regional groundwater flow patterns, mixing and recharge. Pahute Mesa was the site of 85 nuclear detonations between 1965 and 1992, many of them deeply buried devices that introduced radionuclides directly into groundwater. The dataset examined included major ions and field measurements, stable isotopes of hydrogen (δ2H), oxygen (δ18O), carbon (δ13C) and sulfur (δ34S), and radioisotopes of carbon (14C) and chloride (36Cl). Analysis of the patterns of groundwater 14C data and the δ2H and δ18O signatures indicates that groundwater recharge is predominantly of Pleistocene age, except for a few localized areas near major ephemeral drainages. Steep gradients in sulfate (SO4) and chloride (Cl) define a region near the western edge of the NNSS where high-concentration groundwater flowing south from north of the NNSS merges with dilute groundwater flowing west from eastern Pahute Mesa in a mixing zone that coincides with a groundwater trough associated with major faults. The 36Cl/Cl and δ34S data suggest that the source of the high Cl and SO4 in the groundwater was a now-dry, pluvial-age playa lake north of the NNSS. Patterns of groundwater flow indicated by the combined data sets show that groundwater is flowing around the northwest margin of the now extinct Timber Mountain Caldera Complex toward regional discharge areas in Oasis Valley.

  相似文献   

2.
The Kingston Basin in Jamaica is an important hydrologic basin in terms of both domestic and industrial sector. The Kingston hydrologic basin covers an area of approximately 258 km2 of which 111 km2 underlain by an alluvium aquifer, 34 km2 by a limestone aquifer and the remainder underlain by low permeability rocks with insignificant groundwater resources. Rapid development in recent years has led to an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. A detailed knowledge of the water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To achieve this, a hydrochemical investigation was carried out in the Kingston Basin. Results showed that the water is Na–Ca–Cl–HCO3 and Na–Ca–HCO3 type with higher concentrations of nitrate, sodium and chloride as the leading causes of contamination in most of the wells. High concentrations of nitrate correlate with wells from areas of high population density and could be attributed to anthropogenic causes, mainly involving improper sewage treatment methodologies or leaking sewer lines. Jamaica, owing to its island nature, has the continuous problem of saline water intrusion, and this is reflected in the higher levels of chloride, sodium and conductivity in the water samples collected from the wells. The wells studied show higher concentrations of chloride ranging from around 10.2 mg/l in wells located approximately (4931.45 m) from the coast to around 234 mg/l in the well located near to the coast. The conductivity values also closely correlate with the chloride levels found in the wells.  相似文献   

3.
Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55–71 mm yr?1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160–400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July–September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.  相似文献   

4.
Agricultural activities act as dominant polluter of groundwater due to increased fertilizers and pesticides usage. Bist-Doab region, Punjab, India, is one such region facing deterioration of groundwater quality due to usage of fertilizers. This study aims in delineating and evaluating the groundwater quality in the region. Water samples are collected from canals, reservoir, and shallow and deep groundwater. Water types in canal and reservoir in Kandi region are Mg2+HCO3 ? and Mg2+Ca2+Na+HCO3 ?, respectively. While water types of shallow and deep groundwaters are found to be of two types: Na+Mg2+Ca2+HCO3 ? and Ca2+Mg2+Na+HCO3 ?. Presence of Mg2+ in groundwater at locations adjoining canals indicates recharge due to canal. The major ion (Na+, Mg2+, Ca2+, HCO3 ?) chemistry of the region is due to weathering of rocks that are rich in sodic minerals and kankar. Deep groundwater quality in the region meets BIS and WHO standards for drinking purpose, unlike shallow groundwater which is of poor quality at many locations. Both shallow and deep groundwater with high sodium concentration (>1.5 meq/l) affect cropping yield and permeability of soil matrix. High concentration of SO4 2? and NO3 2? (>1 meq/l) in shallow groundwater at few locations indicates influence of anthropogenic (fertilizer) activity. Factor analysis indicates that the major cations, bicarbonate and chloride are derived from weathering/dissolution of source rocks. Higher concentration of nitrate and presence of sulphate in shallow groundwater at few locations is due to usage of fertilizers and pesticides.  相似文献   

5.
Overextraction of groundwater is widely occurring along the coast where good quality groundwater is at risk, due to urbanization, tourist development and intensive agriculture. The Sabratah area at the northern central part of Jifarah Plain, Northwest Libya, is a typical area where the contamination of the aquifer in the form of saltwater intrusion, gypsum/anhydrite dissolution and high nitrate concentrations is very developed. Fifty groundwater samples were collected from the study area and analysed for certain parameters that indicate salinization and pollution of the aquifer. The results demonstrate high values of the parameters electrical conductivity, sodium, potassium, magnesium, chloride and sulphate which can be attributed to seawater intrusion. The intensive extraction of groundwater from the aquifer reduces freshwater outflow to the sea, creates drawdown cones and lowering of the water table to as much as 30 m below mean sea level. Irrigation with nitrogen fertilizers and domestic sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for the high nitrate concentration towards the south of the region. Seawater intrusion and deep salt water upconing result in general high SO4 2? concentrations in groundwater near the shoreline, where localized SO4 2? anomalies are also due to the dissolution of sebkha deposits for few wells in the nearby sebkhas. Upstream, the increase in SO4 2? concentrations in the south is ascribed to the dissolution of gypsum at depth in the upper aquifer.  相似文献   

6.
Hydrogeochemical investigations are carried out in the northeastern part of Nagpur urban to assess the quality of groundwater for its suitability for drinking and irrigation purposes. Groundwater samples are collected from both shallow and deep aquifers to monitor the hydrochemistry of various ions. The groundwater quality of the area is adversely affected by urbanization as indicated by distribution of EC and nitrate. In the groundwater of study area, Ca2+ is the most dominant cation and Cl and HCO3 are the dominant anions. Majority of the samples have total dissolved solids values above desirable limit and most of them belong to very hard type. As compared to deep aquifers, shallow aquifer groundwaters are more polluted and have high concentration of NO3 . The analytical results reveal that most of the samples containing high nitrate also have high chloride. Major hydrochemical facies were identified using Piper trilinear diagram. Alkaline earth exceeds alkalis and weak acids exceed strong acids. Shoeller index values reveal that base-exchange reaction exists all over the area. Based on US salinity diagram most of samples belong to high salinity-low sodium type. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purpose.  相似文献   

7.
El Shalal-Kema area is located east of Aswan town and Nile River. The Quaternary sediments (unconsolidated material of sands, gravels, and clays intercalation) represent the main aquifer in the studied area. Its water is under unconfined condition, and the water table is shallow (vary from 7.5 to 16.3 m). The concerned aquifer is recharged mainly from Aswan Dam Lake, from the excess irrigation water and from septic tanks, where the area is not served by sewage system. The direction of the groundwater movement is generally from south to north. The transmissivity values of the Quaternary aquifer (from three pumping tests) are relatively high (vary from 1,996 to 3,029 m2/day). The exploitation of groundwater is carried out where there is continuous withdrawal for industrial and domestic uses with a total average quantity of groundwater of 71,304 m3 per day (25.67 million m3 per year). The hydrochemical characteristics of the Quaternary aquifer is studied based on the chemical analysis of 29 groundwater and four surface water samples collected from different sites. The chemical composition of the groundwater is dominated by calcium Ca2+ from the cations and bicarbonate (HCO 3 ? ) from the anions, and the order of cation abundance is Ca2+ > Na+ > Mg2+ > K+ and HCO 3 ? > SO 4 2? > Cl? among the anions. The groundwater types are normal chloride water, normal sulfate water, and normal carbonate water. The hypothetical salt combination revealed the presence of different salts arranged in terms of their predominant as Ca(HCO3)2, Mg(HCO3)2, NaCl, Na2SO4, MgSO4, KCL, NaHCO3, MgCl2, CaSO4, and K2SO4. The analytical measurements to the NO2 and NH3 reveal that their values decrease in summer and increase in winter due to the stoppage of pumping which leads to the increase of the wastewater quantities that reach the groundwater. The chemical and microbiological analyses show that the aquifer in this area is contaminated with fecal and disease-causing bacteria. The main cause of this contamination is the outflow from the septic tanks; therefore, the construction of sewage network is a vital solution. Chlorination is important to disinfect the groundwater at the tanks before its distribution to the houses.  相似文献   

8.
High fluoride groundwater with F concentration up to 6.20 mg/L occurs in Taiyuan basin, northern China. The high fluoride groundwater zones are mainly located in the discharge areas, especially in places where shallow groundwater occurs (the groundwater depth is less than 4 m). Regional hydrogeochemical investigation indicates that processes including hydrolysis of silicate minerals, cation exchange, and evaporation should be responsible for the increase in average contents of major ions in groundwater from the recharge areas to the discharge areas. The concentration of F in groundwater is positively correlated with that of HCO3 and Na+, indicating that groundwater with high HCO3 and Na+ contents help dissolve some fluoride-rich minerals. The water samples with high F concentration generally have relatively higher pH value, implying that alkaline environment favors the replacement of exchangeable F in fluoride-rich minerals by OH in groundwater. In addition, the mixing of karst water along the western mountain front and the evaporation may also be important factors for the occurrence of high fluoride groundwater. The inverse geochemical modeling using PHREEQC supports the results of hydrogeochemical analyses. The modeling results show that in the recharge and flow-through area of the northern Taiyuan basin, interactions between groundwater and fluoride-rich minerals are the major factor for the increase of F concentration, whereas in the discharge area of the northern basin, the evaporation as well as the mixing of karst water has greater contribution to the fluoride enrichment in groundwater.  相似文献   

9.
A vegetable- and meat-canning facility located in the karst of southeastern Minnesota disposes ≈2.85×105 m3 yr?1 of wastewater by spray irrigation of an 83.7-ha field located atop the local groundwater divide. Cannery effluent contains high levels of chloride and nitrogen (organic and ammonia), in excess of 7000 mg/l and 400 mg/l, respectively. Nitrate-nitrogen concentrations are generally < 5 mg/l. Agricultural, domestic, and municipal sources of chloride and nitrate are common in the region, and water supplies frequently exceed the drinking-water limit for nitrate-nitrogen of 10 mg/l. Fifty-two area wells and thirteen surface-water locations were sampled and analyzed for five ionic species, including: chloride (Cl), nitrate-nitrogen (NO3-N), sulfate (SO4), nitrite-nitrogen (NO2-N), and phosphate (PO4). Two distinct chloride plumes flowing outward from the groundwater divide were identified, and 65% of the wells sampled had nitrate-nitrogen concentrations in excess of 10 mg/l. The data were divided into two groups: one group of samples from wells located near the canning facility and another group from outside that area. A correlation coefficient of R2= 0.004 for Cl vs. NO3-N in the vicinity of the irrigation fields indicates essentially no relationship between the source of Cl and NO3. In areas of agricultural and domestic activities located away from the cannery, an R2 of 0.54 suggests that Cl and NO3 have common sources in these areas.  相似文献   

10.
The overexploitation of groundwater in some parts of the country induces water quality degradation. The untreated industrial effluents discharged on the surface causes severe groundwater pollution in the industrial belt of the country. This poses a problem of supply of hazard free drinking water in the rural parts of the country. There are about 80 tanneries operating in and around Dindigul town in upper Kodaganar river basin, Tamilnadu, India. The untreated effluents from the tanneries have considerably affected the quality of groundwater in this area. To assess the extent of groundwater deterioration, a detailed analysis of groundwater quality data has been carried out. The concentration of cations such as Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+) and Potassium (K+), and anions such as Bicarbonate (HCO3), Sulphate (SO42–), Chloride (Cl) and Nitrate (NO3) in the groundwater have been studied. Apart from these constituents, pH, electrical conductivity (EC), total dissolved solid and total hardness (TH as CaCO3) were also studied. The correlation of these constituents with the EC has been carried out. The highest correlation is observed between EC and chloride with a correlation coefficient of 0.99. Progressive reduction in correlation coefficients for Mg2+, (Na+ + K+), Ca2+ and SO42– are observed as 0.91, 0.87, 0.86 and 0.56, respectively. It is found that the quality of groundwater in the area under investigation is deteriorated mainly due to extensive use of salt in the leather industries.  相似文献   

11.
Groundwater is an important source of drinking and irrigation purpose and the greater part of the total populace relies on groundwater for survival. Present study investigates the hydrogeochemistry and groundwater quality of the study area for drinking and irrigation purpose. In this study, total 100 numbers groundwater samples were collected and analyzed using standard methods (APHA, 1995) during pre-monsoon period (May, 2016). In the study area, there is occurrence of mainly Ca+2–Mg+2–HCO3 and Ca+2–Mg+2–SO 4 –2 water type and the dominant cations and anions are Ca>Mg>Na>K>Fe=HCO3>Cl>CO3> SO4>Fe>F>NH3. The Gibbs plot shows that, hydrogeochemistry of ground-water is depending upon rock-water interaction. Present study, indicate that groundwater quality in the study area is suitable for irrigation and drinking purpose except some groundwater sample, which are showing high Nitrate, Iron, Sulphate, Ammonia and Calcium concentration.  相似文献   

12.
Groundwater is the most important source of water supply in Iran and understanding the geochemical evolution of groundwater is important for sustainable development of the water resources in Tabas area. A total of 29 samples of groundwater in Tabas area have been analyzed for ions and major elements. Groundwater of the study area is characterized by the dominance of Na–Cl water type. Groundwater was generally acidic to high alkaline with pH ranging from 5.42 to 10.75. The TDS as a function of mineralization characteristics of the groundwater ranged from 479 to 10,957 mg/l, with a mean value of 2,759 mg/l. The Ca2+, Mg2+, SO4 2? and HCO3 ? were mainly derived from the dissolution of calcite, dolomite and gypsum. The Cu, Pb and Zn ions are not mobile in recent pH–Eh, but these conditions controlled dissolved Se, V and Mo in groundwater. The As is released in groundwater as a result of the weathering of sulfide minerals like arsenopyrite.  相似文献   

13.
Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Electronic Publication  相似文献   

14.
Figeh watershed spring is one of the important groundwater aquifer, which is considered a major source for drinking waters of Damascus city and countryside. The origin identification and recharge estimates of groundwater are significant components of sustainable groundwater development in this Mountain karst aquifer of Figeh spring. During the period 2001–2009, monthly groundwater and precipitation samples were taken and the isotopic compositions of δ18O, δ2H, and chloride contents were analyzed to identify groundwater origins and to estimate recharge rates. The δ18O, δ2H of the groundwater show that the groundwater recharge is of meteoric origin. The chloride mass balance (CMB) method was used to quantify recharge rates of groundwater in the Mountain karst aquifer of Figeh spring. The recharge rate varies from 192 to 826 mm/year, which corresponds to 43 and 67% of the total annual rainfall. Recharge rates estimated by CMB were compared with values obtained from other methods and were found to be in good agreement. This study can be used to develop effective programs for groundwater management and development.  相似文献   

15.
Groundwater is the most important source of water supply in the Yeniceoba Plain in Central Anatolia,Turkey.An understanding of the geochemical evolution of groundwater is important for the sustainable development of water resources in this region.A hydrogeochemical investigation was conducted in the Plio-Quaternary aquifer system using stable isotopes(δ~(18)O andδD),tritium(~3H),major and minor elements(Ca,Na,K,Mg,Cl,SO_4,NO_3,HCO_3 and Br)in order to identify groundwater chemistry patterns and the processes affecting groundwater mineralization in this system.The chemical data reveal that the chemical composition of groundwater in this aquifer system is mainly controlled by rock/water interactions including dissolution of evaporitic minerals,weathering of silicates,precipitation/dissolution of carbonates,ion exchange,and evaporation.Based on the values of Cl/Br ratio(300 mg/l)in the Plio-Quaternary groundwater,dissolution of evaporitic minerals in aquifer contributes significantly to the high mineralization.The stable isotope analyses indicate that the groundwater in the system was influenced by evaporation of rainfall during infiltration.Low tritium values(generally1 tritium units)of groundwater reflect a minor contribution of recent recharge and groundwater residence times of more than three or four decades.  相似文献   

16.
Fluoride contamination in groundwater resources of Alleppey,southern India   总被引:1,自引:0,他引:1  
Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India.Groundwater is the main source of drinking water for the 240,991 people living in this region.The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations,which range in age from Recent to Tertiary.The public water distribution system uses dug and tube wells.Though there were reports on fluoride contamination,this study reports for the first time excess fluoride and excess salinity in the drinking water of the region.The quality parameters,like Electrical Conductivity(EC) ranges from 266 to 3900 μs/cm,the fluoride content ranges from 0.68 to2.88 mg/L,and the chloride ranges between the 5.7 to 1253 mg/L.The main water types are Na-HC03,NaCO_3 and Na-Cl.The aqueous concentrations of F~- and CO_3~(2-) show positive correlation whereas F~- and Ca~(2+) show negative correlation.The source of fluoride in the groundwater could be from dissolution of fluorapatite,which is a common mineral in the Tertiary sediments of the area.Long residence time,sediment-groundwater interaction and facies changes(Ca-HCO_3 to Na-HCO_3) during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area.High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area.The water quality index computation has revealed that 62%of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards.Since the groundwater is the only source of drinking water in the area,proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.  相似文献   

17.
Conventional hydrochemical techniques and statistical analyses were applied to better understand the solute geochemistry and the hydrochemical process of shallow groundwater in the Qinghai Lake catchment. Shallow groundwater in the Qinghai Lake catchment is slightly alkaline, and is characterized by a high ion concentrations and low water temperature. The total dissolved solids (TDS) in most of the samples are <1,000?mg/L, i.e. fresh water and depend mainly on the concentration of SO4 2?, Cl? and Na+. Groundwater table is influenced directly by the residents?? groundwater consumption. Most of the groundwaters in the Qinghai Lake catchment belong to the Ca2+(Na+) ?CHCO3 ? type, while the Qinghai Lake, part of the Buha (BHR) and the Lake Side (LS) samples belong to the Na+?CCl? type. The groundwater is oversaturated with respect to aragonite, calcite and dolomite, but not to magnesite and gypsum. Solutes are mainly derived from strong evaporite dissolution in Daotang, BHR and LS samples and from strong carbonate weathering in Hargai and Shaliu samples. Carbonate weathering is stronger than evaporite dissolution with weak silicate weathering in the Qinghai Lake catchment. Carbonate weathering, ion exchange reaction and precipitation are the major hydrogeochemical processes responsible for the solutes in the groundwater in the Qinghai Lake catchment. Most of the shallow groundwaters are suitable for drinking. More attention should be paid to the potential pollution of nitrate, chloride and sulfide in shallow groundwater in the future.  相似文献   

18.
The distribution of 18O and 2H in various water sources indicates that groundwater recharge is due to local rainfall occurring within the basins. Groundwater recharge takes place under a bypass flow mechanism and matrix diffuse flow and is 3% and 2% of the long-term mean annual rainfall of 550 mm for the Makutapora and Hombolo basins, respectively. Chloride mass balance indicates that 60% and 40% of the total groundwater recharge takes place through macropores and matrix flow, respectively. Sporadic variations in 18O, 2H and chloride among adjacent boreholes suggest existence of a discrete fractured aquifer and/or dominance of local recharge. The relationship between δ2H and chloride indicates that groundwater salinization is due to the leaching of surficial and soil salts during high intensity rainfall, which causes high surface runoff and flash floods. It has been concluded that the isotopic and chemical character of groundwater in fractured semi-arid areas may provide the most effective complementary means of groundwater recharge assessment and therefore is very useful in the management of the water resources.  相似文献   

19.
This study aims to investigate the hydrochemical characteristics of shallow aquifer in a semi-arid region situated in northwest Algeria, and to understand the major factors governing groundwater quality. The study area is suffering from recurring droughts, groundwater resource over-exploitation and groundwater quality degradation. The approach used is a combination of traditional hydrochemical analysis methods of multivariate statistical techniques, principal component analysis (PCA), and ratios of major ions, based on the data derived from 33 groundwater samples collected in February 2014. Results show that groundwater in the study area are highly mineralized and collectively has a high concentration of chloride (as Cl?). The dominant water types are Na-Cl (27%), Mg-HCO3 (24%) and Mg-Cl (24%). According to the (PCA) approach, salinization is the main process that controls the hydrochemical variability. The PCA analysis reveal the impact of anthropogenic factor especially the agricultural activities on the groundwater quality. The PCA highlighted two types of recharge: Superficial recharge from effective rainfall and excess irrigation water distinguished by the presence of nitrate and lateral recharge or vertical leakage from carbonate formations marked by the omnipresence of HCO3?. Additionally, three categories of samples were identified: (1) samples characterized by good water quality and receiving notable recharge from carbonate formations; (2) samples impacted by the natural salinization process; and (3) samples contaminated by anthropogenic activities. The major natural processes influencing water chemistry are the weathering of carbonate and silicate rocks, dissolution of evaporite as halite, evaporation and cation exchange. The study results can provide the basis for local decision makers to ensure the sustainable management of groundwater and the safety of drinking water.  相似文献   

20.
Hydrogeochemical investigations are carried out in the different blocks of Burdwan district, West Bengal, India in order to assess its suitability for drinking as well as irrigation water purpose. Altogether 49 representative groundwater samples are collected from bore wells and the water chemistry of various ions viz. Ca2+, Mg2+, Na+, K+, CO32−, HCO3, Cl, SO42− and NO3 are carried out. The chemical relationships in Piper and Gibbs diagram suggest that the groundwater mainly belongs to alkali type and Cl group and are controlled by rock dominance. A comparison of groundwater quality in relation to drinking water quality standards proves that most of the water samples are suitable for drinking water purpose whereas groundwater in some areas of the district has high salinity and high sodium adsorption ratio (SAR), indicating unsuitability for irrigation water and needs adequate drainage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号