首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用新型分析技术三维荧光谱图方法对深圳东江水源工程水体中藻类进行了荧光分析。实验结果表明,水体中有较丰富的藻类,其中蓝藻、绿藻呈优势藻种,实验期间沿程水体叶绿素a浓度在1.71~16.43μg/L之间,藻密度在72.92万~1 375万个/L之间。三维荧光方法能较好表征水体中生长藻类种类和数量,三维荧光强度F(A.U)与叶绿素a浓度Chla(μg/L)、藻密度N(104个/L)呈较好的线性关系。三维荧光方法能较好的鉴别水体中可溶性有机物腐殖酸和蛋白质,并表征其含量多少。  相似文献   

2.
该研究通过批次和动态实验,考查含锰褐铁矿和合成针铁矿对Ce(Ⅲ)的氧化和固定作用,并在此基础上探讨共存铁和锰氧化物氧化和固定Ce的机制及地质意义。批次实验结果显示,含锰褐铁矿对Ce的氧化和固定有重要促进作用,在初始Ce浓度为6000μg/L,含锰褐铁矿添加量为1 g/L时,可在48 h实现对Ce的完全固定;初始Ce(Ⅲ)浓度在300~4500μg/L时,含锰褐铁矿对Ce(Ⅲ)氧化和沉淀的促进作用与Mn含量正相关,而合成针铁矿相对于无矿体系体现出抑制效应。动态实验结果显示,对高锰褐铁矿固定的Ce,其分布不受锰氧化物的制约,与铁氧化物的分布一致。对结果的分析表明Ce氧化和沉淀的过程为:吸附—氧化—CeO2沉淀生成—CeO2自催化氧化Ce(Ⅲ);锰和铁氧化物共存时,对Ce氧化和固定的贡献分别是:前者促进Ce氧化,后者通过静电吸附作用促进CeO2的固定。研究对于解释“锰氧化物氧化Ce(Ⅲ)的能力强于铁氧化物,但二者共存时铁氧化物更易于固定Ce”这一地质现象有一定启示意义。  相似文献   

3.
BIF成因研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
刘利  张连昌  代堰锫 《地质科学》2014,(3):1018-1033
BIF在全球广泛分布,BIF型铁矿是铁的重要来源。根据产出的构造背景将其分为阿尔戈玛型(Algoma-type)和苏必利尔湖型(Lake Superior-type)。BIF主要产出于前寒武纪的古老克拉通和/或年轻地体,形成时代集中在3.0~2.0 Ga,峰期为2.5 Ga左右。前人对BIF型铁矿的成因研究着重于BIF的物质来源和Fe2+ 氧化沉淀机制两个方面,但都尚未达成共识。物质来源的观点主要有大陆风化剥蚀、海底热液、海底热液和海水的混合物、热液淋滤洋壳、既有大陆物质来源又有热液来源,沉淀机制主要有生物沉淀和非生物沉淀两种认识,前者是指Fe2+ 利用微生物(如蓝藻)光合作用产生的O2氧化成Fe3+,或Fe2+ 直接被微生物代谢氧化,后者主要包括热液与海水混合、密度流作用、相分离、紫外线引起Fe2+ 氧化沉淀等。  相似文献   

4.
刘咏  张琪  钱家忠  吴盾  张文永 《地学前缘》2022,29(3):248-255
采用图像分析法确定溶质浓度,以硫酸铜和EDTA二钠作为双分子反应物,在多孔介质模型中开展了不同粒径(1.52.0,2.53.0,3.54.0 mm)和流量(1.0,1.5,2.0 mL/s)下反应性溶质运移实验,探讨了应用不完全混合的对流弥散模型(IM-ADRE)对双分子反应溶质运移的模拟和预测,并进行了参数敏感性分析。结果表明:图像分析法可准确获取多孔介质中显色反应性溶质的浓度,灰度值与浓度的决定系数R2大于0.96;用IM-ADRE模型能够准确预测双分子反应性溶质硫酸铜和EDTA二钠在3种不同多孔介质中的运移过程,误差低于3.71%;实验条件的改变对IM-ADRE模型参数Dmβ0的影响显著,说明模型参数依赖于环境条件,其变化规律需要根据实际环境条件进一步率定,便于IM-ADRE模型的进一步推广应用。  相似文献   

5.
黔东南石英脉型金矿床中铁白云石流体包裹体研究   总被引:1,自引:1,他引:0       下载免费PDF全文
铁白云石是黔东南石英脉型金矿主成矿阶段的主要脉石矿物之一,与金的矿化关系十分密切,在金的运移、沉淀等方面起着重要作用,其流体包裹体特征可以反映成矿流体性质。通过对铁白云石开展系统的流体包裹体岩相学观察、均一法测温和冰点测定,计算出包裹体盐度和密度等数据。结果表明: 铁白云石包裹体较为发育,以含CO2的包裹体为主; 均一温度集中在240~300 ℃范围内,平均均一温度为267.21 ℃; 成矿流体的盐度为7.31%~21.40%(NaCl),平均为15.31%(NaCl); 成矿流体的密度介于0.72~0.97 g/cm3之间,平均为0.89 g/cm3。认为黔东南石英脉型金矿床属于低盐度、高密度的中温热液矿床。  相似文献   

6.
实验室合成制得的纳米铁BET比表面积为49.16 m2/g, 直径范围为20~40 nm.通过批实验考察纳米铁对As(Ⅲ)吸附动力学情况.结果表明, 在20℃、pH为7时, 纳米铁能够快速地去除As(Ⅲ), 在60 min内, 0.1 g纳米铁对起始浓度为910 μg/L溶液As(Ⅲ)去除率大于99%.反应遵循准一级反应动力学方程, 标准化后的As(Ⅲ)速率常数kSA为2.6 mL/(m2·min).纳米铁对As(Ⅲ)的吸附等温曲线能够很好地满足Langmuir和Freundlich方程, 相关系数R2>0.95, 由Langmuir模型获得单层纳米铁的最大吸附量为76.3 mg/g.0.1 mol/L NaOH对吸附在纳米零价铁(NZVI)的As(Ⅲ)解吸率为21%.在竞争阴离子中, SiO32-和H2PO4-对As(Ⅲ)的去除有明显阻碍作用, 而其他离子基本上没有影响.纳米铁对As(Ⅲ)的去除机理主要是吸附和共沉淀.   相似文献   

7.
于2008年9月至2009年8月在南太湖入湖口进行了浮游植物统计、鉴定和相关环境因子监测分析。应用CANOCO4.5软件对获得的浮游植物物种数据和环境因子数据进行了典范对应分析(CCA),并作出了物种分布与环境因子关系的二维排序图。结果表明,共检出浮游植物8门93种,所选取的主要环境因子对浮游植物生长影响大小依次为:氮磷比(N/P)总磷(TP)总氮(TN)溶解氧(DO)水温(T)。以水华微囊藻(Microcystis aeruginosa Kütz)为代表的蓝藻门,以简单衣藻(Chlamydomonas simplex Pasch)为代表的衣藻门和啮蚀隐藻(Cryptomonas erosa Her)为代表的隐藻门中浮游植物受总磷(TP)浓度影响较大。包括小球藻(Chlorella vulgaris Beij)、四角十字藻(Crucigeniaquadrata Morr)、长尾囊裸藻(Phacus longicauda Duj)等多数蓝藻门、绿藻门、硅藻门、裸藻门内的绝大多数浮游植物受水体中氮磷比(N/P)影响较大。  相似文献   

8.
利用2015年4~9月对滇池从北到南4个部位的水体水温(Temperature或Temp)、溶解氧(DO)、pH值、叶绿素a(Chl-a)、藻蓝蛋白(Phycocyanin或PC)和电导率(Conductivity或CD)浓度等监测数据,分析了各参数从旱季向雨季转化以及雨季的特征和空间变化;通过表征蓝藻的藻蓝蛋白浓度和所有藻类的叶绿素浓度之比计算获得了水体中的蓝藻相对数量指数(Cyanophyte Relative Quantity Index,CRQI),并估算了蓝藻在湖泊中的相对数量。结果表明:滇池水温经4~5月增温后在6月达到最高值,之后7~9月在保持一定稳定性的背景下逐步降温,水体温度的变化过程不但会受到水深的影响,表现出在快速升温期不同部位升温速度不同、表层水温快的特点。实测数据分析发现,以叶绿素a值所代表的真核生物在4月快速增加并达到最大值,但以藻蓝蛋白所指示的蓝藻却在9月暴发,这与湖泊表层和底层水温一致、溶解氧含量丰富、pH值达最高并均一及水体盐度较低等因素直接相关。  相似文献   

9.
活性TiO2的制备与去除地下水中氟离子(F-)性能的研究   总被引:4,自引:0,他引:4  
通过静态和动态(柱)吸附实验,探讨了活性TiO2去除地下水中氟离子(F)时活性TiO2的投加量、处理时间、酸度等影响因素。实验结果表明:在静态实验中,在50 mL,F-浓度为10 mg/L的地下水样中,加入0.3 g活性TiO2,处理15 min,F-的去除率可达90%以上,且处理前后水样的pH值不变。在动态实验中,0.3 g的活性TiO2和120 g砾石可使150 mL水样的除氟率达到90%以上。处理后均可达到饮用水的标准。  相似文献   

10.
淡水中丝状绿藻对重金属Pb2+的吸附   总被引:3,自引:0,他引:3  
通过淡水中绿藻门的一些丝状种类,如毛枝藻(Stigeoclonium)、刚毛藻(Cladophora)、水绵(Spirogyra)对铅的吸附实验,研究淡水藻类与铅的吸附关系及影响因素。结果表明,淡水中丝状绿藻对铅有较强的吸附能力, 当pH值和温度以及包埋藻类的量控制在一定条件下,即pH值约为4,温度为28℃左右,按照2 g藻类处理20 mL 质量浓度为100 mg/L Pb2+溶液原则包埋藻类,就可以使单位藻类吸附效率达到40%。  相似文献   

11.
Members of the lazulite–scorzalite (MgAl2- (PO4)2(OH)2-FeAl2(PO4)2(OH)2) solid-solution series were synthesized in compositional steps of 12.5?mol% at T?=?485?°C and P?=?0.3?GPa under hydrothermal conditions and controlled oxygen fugacities of the Ni/NiO-buffer. X-ray powder diffraction and 57Fe-Mössbauer studies show that under these conditions a complete solid-solution series is formed which is characterized by the substitution of Mg2+ and Fe2+ on the octahedral Me 2+ site. The 57Fe-Mössbauer spectra which reveal the presence of both ferrous and ferric iron and the compositional data were interpreted in terms of a defect model with a distribution of the ferric ions over both the Me 2+ and the Al3+ positions and vacancies on the Me 2+ site. The 57Fe-Mössbauer parameters of the synthetic compounds correspond to those of natural lazulites except for the total absorption ratio of the ferric iron A(Fe3+)/(A(Fe3+)+A(Fe2+)), which is significantly higher in natural lazulites of the same composition. The total absorption ratio of the ferric iron increases from 4% in pure scorzalite to 15% in a Mg-rich solid-solution with x Fe ?=?12(1)%  相似文献   

12.
Ferrous and ferric iron concentrations in feldspars with low total iron content (<0.32 wt% total Fe) were determined from optical and electron paramagnetic resonance (EPR) spectra to better than ±15 percent of the amount present. Optical spectra indicate that Fe2+ occupies two distorted M-sites in plagioclases of intermediate structural state. The linear dependence of the Fe2+/Fe total ratio on An content demonstrates that Fe2+ substitutes for Ca (not Na) so that the number of Ca-sites is a principal factor in iron partitioning in plagioclase. EPR powder spectra show that the number of sites for Fe3+ depends on structural state rather than on plagioclase chemistry. The observed linear correspondence of EPR double-integrated intensities with optical peak areas shows that all Fe3+ is tetrahedrally coordinated in both plagioclase and disordered potassium feldspar. Microcline perthites show, in addition to tetrahedral Fe3+, a signal due to axially coordinated ferric iron, which we associate with formation of hematite inclusions.  相似文献   

13.
Mössbauer spectroscopy has been used widely to characterize the ferric (Fe3+) and ferrous (Fe2+) proportions and coordination of solid materials. To obtain these accurately, the recoilless fraction is indispensible. The recoilless fractions (f) of iron-bearing minerals, including oxides, oxyhydroxides, silicates, carbonates, phosphates and dichalcogenides, and silicate glasses were evaluated from the temperature dependence of their center shifts or absorption area with the Debye model approximation. Generally, the resolved Debye temperature (θD) of ferric iron in minerals, except dichalcogenides, through their center shifts ranging from 400 to 550 K, is significantly larger than ferrous iron ranging from 300 to 400 K, which is consistent with the conclusion from previous work. The resolved f (Fe3+)RT with the center shift model (CSM) ranges from 0.825 to 0.925, which is larger than that obtained for f(Fe2+)RT, which ranges from 0.675 to 0.750. Meanwhile, the θD and f resolved from temperature-dependence of absorption are generally lower than from center shifts, especially for ferric iron. The significant difference between f(Fe3+) and f(Fe2+) indicates the necessity of recoilless fraction correction on the Fe3+/(Fe3++Fe2+) resolved from Mössbauer spectra.  相似文献   

14.
The effect of TiO2 and P2O5 on the ferric/ferrous ratio in silicate melts was investigated in model silicate melts at air conditions in the temperature range 1,400–1,550 °C at 1-atm total pressure. The base composition of the anorthite–diopside eutectic composition was modified with 10 wt % Fe2O3 and variable amounts of TiO2 (up to 30 wt %) or P2O5 (up to 20 wt %). Some compositions also contained higher SiO2 concentrations to compare the role of SiO2, TiO2, and P2O5 on the Fe3+/Fe2+ ratio. The ferric/ferrous ratio in experimental glasses was analyzed using a wet chemical technique with colorimetric detection of ferrous iron. It is shown that at constant temperature, an increase in SiO2, TiO2, and P2O5 content results in a decrease in the ferric/ferrous ratio. The effects of TiO2 and SiO2 on the Fe3+/Fe2+ ratio was found to be almost identical. In contrast, adding P2O5 was found to decrease ferric/ferrous ratio much more effectively than adding silica. The results were compared with the predictions from the published empirical equations forecasting Fe3+/Fe2+ ratio. It was demonstrated that the effects of TiO2 are minor but that the effects of P2O5 should be included in models to better describe ferric/ferrous ratio in phosphorus-bearing silicate melts. Based on our observations, the determination of the prevailing fO2 in magmas from the Fe3+/Fe2+ ratio in natural glasses using empirical equations published so far is discussed critically.  相似文献   

15.
This study aims to investigate the effect of microalgae and their carbonic anhydrase (CAex) on limestone dissolution. The dynamics of Ca2+ and Mg2+ release, the model for the amount of Mg2+ released and biological cumulative effect time by the microalgae Chlamydomonas reinhardtii (CR) and Chlorella pyrenoedosa (CP), and the algal stable carbon isotopic composition (δ13C) in the presence and absence of the membrane-impermeable CAex inhibitor acetazolamide (AZ) were compared in a medium containing limestone. The amount of Mg2+ released from the limestone in the treatment without AZ was more than that with AZ during the logarithmic phase. The amounts of Mg2+ release unit algal biomass and unit time in CR and CP were 3.37 × 10?4 and 2.44 × 10?4 mg/μg days in the treatment without AZ, respectively, and only 1.99 × 10?4 and 2.19 × 10?4 mg/μg days in the treatment with AZ, respectively. The biological dissolution of the algae increased with increasing algal CAex activity. The variation of Ca2+ was influenced by reprecipitation, and the algal limestone dissolution cannot be shown distinctly. The CAex of the microalgae may be beneficial for CaCO3 reprecipitation, and the δ13C values of the algal cells with AZ were lower than those without AZ. Therefore, AZ not only can inhibit limestone dissolution by inhibiting microalgal growth, but also can reduce limestone dissolution by decreasing CAex catalysis. The results suggest the important influence of microalgae and their CAex on the biokarst process.  相似文献   

16.
X-ray absorption spectroscopy, including extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) techniques, have been used to determine the structure and speciation of complexes for Fe2+ and Fe3+ chloride solutions at a variety of pH's, ionic strengths, and chloride/iron ratios.Low intensity K-edge transition features and analysis of modified pair correlation functions, derived from Fourier transformation of EXAFS spectra, show a regular octahedral coordination of Fe(II) by water molecules with a first-shell Fe2+-O bond distance, closely matching octahedral Fe2+-O bonds obtained from solid oxide model compounds. Solution Fe2+-O bond distances decrease with chloride/iron ratio, pH, and total FeCl2 concentration. A slight intensification of the 1s → 3d transition with increasing FeCl2 concentration suggests that chloride may begin to mix with water as a nearest-neighbor octahedral ligand. Fe3+ solutions show a pronounced increase in the 1s → 3d transition intensities between 1.0 M FeCl3/7.8 M Cl? to 1.0 M FeCl3/ 15 M Cl?, indicating a coordination change from octahedral to tetrahedral complexes. EXAFS analyses of these solutions show an increase in first-shell Fe3+-ligand distances despite this apparent reduction in coordination number. This can be best explained by a change from regular octahedral complexes of ferric iron (either Fe(H2O)63+ or trans-Fe(H2O)4Cl2 or both; Fe3+-O bond distances of 2.10 Å) to tetra-chloro complexes [Fe3+-Cl bond distances of 2.25 Å].  相似文献   

17.
The Fe3+/Fetot of all Fe-bearing minerals has been analysed by Mössbauer spectroscopy in a suite of biotite-rich to biotite-free graphitic metapelite xenoliths, proxies of an amphibolite-granulite transition through progressive biotite melting. Biotite contains 9 to 16% Fe3+/Fetot, whereas garnet, cordierite and ilmenite are virtually Fe3+ -free (0–1% Fe3+/Fetot) in all samples, regardless of biotite presence. Under relatively reducing conditions (graphite-bearing assemblages), biotite is the only carrier of Fe3+ during high-temperature metamorphism; therefore, its disappearance by melting represents an important event of iron reduction during granulite formation, because haplogranitic melts usually incorporate small amounts of ferric iron. Iron reduction is accompanied by the oxidation of carbon and the production of CO2, according to the redox reaction:
Depending on the nature of the peritectic Fe-Mg mineral produced (garnet, cordierite, orthopyroxene), the CO2 can either be present as a free fluid component, or be completely stored within melt and cordierite. The oxidation of graphite by iron reduction can account for the in situ generation of CO2, implying a consequential rather than causal role of CO2 in some granulites and migmatites. This genetic model is relevant to graphitic rocks more generally and may explain why CO2 is present in some granulites although it is not required for their formation.  相似文献   

18.
A well crystallized and homogeneous specimen of lizardite from Monte Fico, Elba, Italy, has been studied by Mössbauer and Fourier transform infrared (FTIR) spectrometries. One of the aims was the determination of the oxidation state and the distribution of iron in the structure of this reference sample. Mössbauer data indicate the presence of octahedral ferrous iron, octahedral ferric iron and tetrahedral ferric iron (59.9, 31.3 and 8.8% of total iron, respectively). The existence of only one octahedral site, previously suggested by X-ray structure refinement, is confirmed. The occurrence of tetrahedrally coordinated iron is indicated also by FTIR spectrometry, in particular by the presence of an absorption band at 790 cm–1. Based also on new electron microprobe data, the improved crystal chemical formula for lizardite from Monte Fico is: (Mg2.74Fe2+ 0.10Fe3+ 0.05Al0.11)Σ=3.00 ?· (Si1.94Al0.05Fe3+ 0.01)Σ=2.00O5.05(OH)3.95.  相似文献   

19.
The nature of the surface oxidation phase on pyrite, FeS2, reacted in aqueous electrolytes at pH = 2 to 10 and with air under ambient atmospheric conditions was studied using synchrotron-based oxygen K edge, sulfur LIII edge, and iron LII,III edge X-ray absorption spectroscopy. We demonstrate that O K edge X-ray absorption spectra provide a sensitive probe of sulfide surface oxidation that is complementary to X-ray photoelectron spectroscopy. Using total electron yield detection, the top 20 to 50 Å of the pyrite surface is characterized. In air, pyrite oxidizes to form predominantly ferric sulfate. In aqueous air-saturated solutions, the surface oxidation products of pyrite vary with pH, with a marked transition occurring around pH 4. Below pH = 4, a ferric (hydroxy)sulfate is the main oxidation product on the pyrite surface. At higher pH, we find iron(III) oxyhydroxide in addition to ferric (hydroxy)sulfate on the surface. Under the most alkaline conditions, the O K edge spectrum closely resembles that of goethite, FeOOH, and the surface is oxidized to the extent that no FeS2 can be detected in the X-ray absorption spectra. In a 1.667 × 10−3 mol/L Fe3+ solution with ferric iron present as FeCl3 in NaCl, the oxidation of pyrite is autocatalyzed, and formation of the surface iron(III) oxyhydroxide phase is promoted at low pH.  相似文献   

20.
Kent Brooks 《Geology Today》2015,31(5):176-180
We live in an oxidized world: oxygen makes up 22 percent of the atmosphere and by reacting with organic matter produces most of our energy, including the energy our bodies use to function: breathe, think, move, etc. It has not always been thus. Originally the Earth, in common with most of the Solar System, was reduced. The oxidized outer layers of the Earth have formed by two processes. Firstly, water is decomposed to oxygen and hydrogen by solar radiation in the upper parts of the atmosphere, the light hydrogen diffusing to space, leaving oxygen behind. Secondly, plants, over the course of geological time have utilized solar energy in the process of photosynthesis to produce carbon‐rich materials and release oxygen to the atmosphere. Of these, the second is by far the most important. It is a consequence of life and since about 2.4 billion years ago we have had an oxidizing atmosphere, a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call ‘rust’. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost unique examples of iron metal, otherwise called ‘native iron’ or ‘telluric iron’, occur naturally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号