首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
江西省都昌县阳储岭钨钼矿床位于江南造山带东段,为准确厘定阳储岭钨钼矿床的成岩成矿时代,本次在详实的野外地质调查基础上,对阳储岭成矿花岗闪长斑进行锆石U-Pb定年工作,同时开展辉钼矿Re-Os同位素定年研究。LA-ICP-MS锆石U-Pb年龄为(145.08±0.35)Ma(MSWD=0.51,n=7);辉钼矿Re-Os模式年龄为(143.3±2.0)Ma~(145.5±2.2)Ma,等时线年龄为(145.4±1.0)Ma。阳储岭成矿花岗闪长斑岩锆石U-Pb年龄与辉钼矿Re-Os等时线年龄基本一致,表明阳储岭钨钼矿床成岩成矿时代约为145 Ma。辉钼矿中Re含量为16.62×10-6~87.76×10-6,平均值为44.68×10-6,与壳幔混源岩浆热液矿床中Re的含量相似,指示阳储岭钨钼矿床成矿物质来源于壳幔混源。  相似文献   

2.
通过辉钼矿Re-Os及锆石SHRIMP U-Pb同位素年代学的研究,测得辉钼矿的Re-Os等时线年龄为(298.1±3.6) Ma,赋矿似斑状花岗岩中锆石SHRIMP U-Pb年龄为(298.2±3.1) Ma,确定准苏吉花斑岩型钼矿床成岩成矿时代为早二叠世。辉钼矿中Re的含量指示成矿物质可能为壳幔混合来源。结合区域内其他斑岩型矿床的成矿年代,可以将区内斑岩型矿化时代划分为4个阶段,即晚泥盆世成矿阶段、早二叠世成矿阶段、三叠纪成矿阶段及白垩纪成矿阶段。根据这些斑岩型矿床矿化形式在不同地质历史时期的演化,可以将其划分为2期,即晚泥盆世时期以铜为主的斑岩型矿化和早二叠世及其后的以钼为主的斑岩型矿化,早二叠世斑岩型钼矿化可能与板块俯冲过程中弧后伸展作用岩浆作用有关,而三叠纪及白垩纪期间斑岩型钼矿化则是西伯利亚板块与华北板块拼接后多期伸展作用的产物。中蒙边境中东部地区的这些斑岩型矿床矿化形式上的差异是该区域内成矿环境变化的反映。  相似文献   

3.
内蒙碾子沟钼矿床辉钼矿Re-Os同位素年龄及其地质意义   总被引:21,自引:4,他引:17  
内蒙古碾子沟石英脉型钼矿床是一新发现的钼矿床,通过对主要钼矿体6件辉钼矿样品的Re-Os同位素分析,获得了150.2±2.2~154.4±2.2Ma之间、平均152.4±1.3Ma(2σ误差,MSWD=1.6)的同位素模式年龄,及一个相关性很好的等时线年龄154.3±3.6Ma(2σ误差,MSWD=1.9),表明碾子沟钼矿床形成于晚侏罗世,属中国东部燕山期大规模钼成矿期成矿,是中国东部中生代构造体制大转折背景下的产物。碾子沟钼矿床辉钼矿的铼含量介于12.6×10-6~37.0×10-6,平均24.9×10-6,通过与其它钼矿床对比,初步认为碾子沟钼矿床成矿物质具有壳幔混源、偏壳源特征。  相似文献   

4.
为研究辽宁宽甸地区近年来新发现的东北沟钼矿的成矿时代及其物质来源,对东北沟钼矿床中的5件辉钼矿样品进行了Re-Os同位素地球化学测试和定年。结果表明,辉钼矿的模式年龄为127.1~132.6 Ma,等时线年龄为(128.1±5.1)Ma,与赋矿围岩二长花岗岩的成岩时代(129.4 Ma)一致,由此认为二者均为燕山期构造-岩浆-成矿作用的产物;辉钼矿Re含量为(5.10~23.38)×10~(-6),与内生钼矿床辉钼矿Re含量对比介于壳源-壳幔混合源之间,初步判定东北沟钼矿成矿物质来源介于壳源与壳幔混合源之间,有可能以壳幔混合源为主。结合区域构造演化,认为东北沟钼矿可能是古太平洋板块向欧亚大陆俯冲构造背景下岩浆活动的产物。  相似文献   

5.
黑龙江鹿鸣钼矿床是近年来新发现的特大型钼矿床,矿体呈浸染状赋存于燕山早期的二长花岗岩中,属典型的斑岩型钼矿床。笔者对鹿鸣钼矿床的辉钼矿进行了Re-Os同位素测试分析,结果显示:辉钼矿中Re含量为11.896~15.714μg/g,矿床的成矿物质来源为壳幔混合源,以壳源为主;Re-Os模式年龄为(180.2~185.9)Ma,加权平均年龄为(183.4±2.2)Ma。结合最新的赋矿围岩成岩年龄,显示成矿与成岩同时或稍晚于成岩,即鹿鸣钼矿床形成于早侏罗世,为小兴安岭—张广才岭成矿带燕山早期大规模构造-岩浆-成矿事件的产物,成矿与古太平洋板块的俯冲有关。  相似文献   

6.
张可  聂凤军  侯万荣  李超  刘勇 《矿床地质》2012,31(1):129-138
内蒙古哈什吐矿床是新发现的钼矿床。为进一步查明哈什吐钼矿床的形成时间,首次对主要钼矿体的10件辉钼矿样品进行铼-锇同位素分析,所获铼-锇同位素模式年龄变化范围为(147.0±2.1) Ma~(149.5±2.2) Ma,加权平均值为(148.22±0.67) Ma,获得等时线年龄为(148.8±1.6) Ma,MSWD值为0.95。铼-锇同位素年代数据及野外地质证据表明,哈什吐钼矿床为晚侏罗世构造-岩浆作用及相关流体活动的产物。哈什吐钼矿床辉钼矿的w(Re)介于(0.65~2.06)×10-6,平均值为1.28×10-6,通过与区域内同时期形成的若干相似类型钼矿床的Re含量对比分析,初步推测认为哈什吐钼矿床成矿物质源区具有更偏向于壳源的特征。哈什吐斑岩型钼矿床形成时代的厘定对于提高该矿床的理论研究水平和指导隐伏金属矿床的找矿勘查工作均具有重要意义。  相似文献   

7.
通过对平和包围山钼矿床成矿岩体、赋矿火山岩及辉钼矿开展同位素年代学研究,结果表明:包围山深部花岗斑岩LA-ICP-MS锆石U-Pb年龄为(98.1±1.1)Ma,容矿围岩-石帽山群底部凝灰熔岩成岩年龄为(104.6±1.1)Ma;矿体中辉钼矿的Re-Os同位素模式年龄为(95.2±1.5)Ma。辉钼矿中Re的含量指示成矿来源与壳幔物质混合或幔源物质进一步演化有关。结合矿床地质特征及已有的研究成果,笔者认为包围山钼矿床的形成可能与125~92 Ma古太平洋板块的俯冲作用机制有关。受该期区域伸展构造背景的影响,上杭-云霄成矿带下地壳或上地幔部分熔融诱发了平和包围山一带岩浆-热液-成矿事件。  相似文献   

8.
周小栋 《华东地质》2019,(4):241-252
西朝钼矿是近年来在闽东地区新发现的中型斑岩型钼矿床。通过LA-ICP-MS锆石U-Pb定年及辉钼矿Re-Os等时线定年,获得与成矿密切相关的黑云母二长花岗岩锆石U-Pb年龄为115±1.2 Ma(MSWD=0.90),辉钼矿~(187)Re-~(187)Os模式年龄加权平均值为112.6±0.7 Ma(MSWD=0.82),~(187)Re-~(187)Os同位素等时线年龄为113.4±0.9 Ma(MSWD=0.11),成岩、成矿年龄基本一致,成矿稍晚于成岩,二者均为早白垩世晚期岩浆-成矿作用的产物。根据辉钼矿Re含量特征,认为西朝钼矿成矿物质为深部壳幔混合来源。西朝钼矿形成于古太平洋板块向欧亚板块持续俯冲下的伸展构造环境,是岩石圈减薄、局部软流圈物质上涌导致下地壳部分熔融形成的产物。  相似文献   

9.
黑龙江鹿鸣钼矿床是近年来新发现的特大型钼矿床,矿体呈浸染状赋存于燕山早期的二长花岗岩中,属典型的斑岩型钼矿床。笔者对鹿鸣钼矿床的辉钼矿进行了 Re--Os 同位素测试分析,结果显示: 辉钼矿中 Re 含量为 11. 896 ~15. 714 μg/g,矿床的成矿物质来源为壳幔混合源,以壳源为主; Re --Os 模式年龄为 ( 180. 2 ~185. 9) Ma,加权平均年龄为 ( 183. 4 ± 2. 2) Ma。结合最新的赋矿围岩成岩年龄,显示成矿与成岩同时或稍晚于成岩,即鹿鸣钼矿床形成于早侏罗世,为小兴安岭-张广才岭成矿带燕山早期大规模构造--岩浆--成矿事件的产物,成矿与古太平洋板块的俯冲有关。  相似文献   

10.
内蒙古克什克腾旗查木罕钨钼矿床是近年新发现的矿床。本文通过5件辉钼矿样品的Re-Os同位素测定与分析,获得模式年龄137.8~139.3Ma,加权平均值为138.8±2.8Ma,对应的等时线年龄为139.3±1.5Ma,表明查木罕钨钼矿床形成于早白垩世,与中国东部燕山期大规模钨钼成矿期一致。查木罕钨钼矿床辉钼矿的铼含量介于0.127~2.317μg/g之间,平均0.875μg/g,表明查木罕矿床成矿物质主要来源于上地壳。结合区域上已有研究成果,早白垩世是西拉木伦钼成矿带一期重要的成矿作用,并与中国东部大规模成矿时限相一致,该期成矿作用发生于中国东部岩石圈减薄构造背景。  相似文献   

11.
雷公嶂钼矿床是赣南地区新发现的一座具中型钼矿找矿前景的独立钼矿床,成矿特征明显区别于赣南已发现的与钨多金属共(伴)生的钼矿床。为确定矿床成矿时代,文章利用高精度ICP-MS辉钼矿Re-Os同位素测年技术,首次获得了雷公嶂钼矿床的辉钼矿Re-Os同位素加权平均模式年龄,为(156.3±1.0)Ma,等时线年龄为(156.9±3.6)Ma,证实了矿床成岩与成矿作用同时发生,形成于南岭地区燕山早期中晚侏罗世(165~150 Ma)。矿床中辉钼矿的w(Re)为6.104×10-6~13.974×10-6,平均为8.507×10-6,结合矿床地质特征和成矿岩体主量元素及Hf同位素等证据,文章认为成矿物质来自地壳,没有地幔物质加入。结合赣南地区成岩与成矿年代学资料,文章认为区内钨钼多金属矿床形成于华南中生代岩石圈大规模伸展-减薄的地球动力学背景。  相似文献   

12.
项新葵  王朋  孙德明  钟波 《地质通报》2013,32(11):1824-1831
赣北石门寺钨多金属矿床位于下扬子成矿省江南地块中生代铜钼金银铅锌成矿带中,是燕山期花岗岩岩浆期后热液矿床,也是最近查明的中国规模最大的钨矿床大湖塘钨矿北矿段。通过对该矿床成矿期形成的6件辉钼矿样品进行Re-Os同位素定年,获得其等时线年龄149.6Ma±1.2Ma(n=6,MSWD=1.6)和模式年龄加权平均值150.4Ma±1.4Ma(n=6,MSWD=1.3),二者在误差范围内一致,说明该矿床形成于晚侏罗世。石门寺钨多金属矿床的辉钼矿Re元素含量为334.4×10-9~22600×10-9,其成矿物质主要来自于壳源或壳幔混合源。结合区域成矿地质背景推测,在晚侏罗世,石门寺矿区可能受古太平洋与欧亚板块聚合发生地球动力学调整的影响,大面积岩浆活动使之与围岩发生碱质交代作用,成矿物质被萃取,在成矿有利地段富集成矿。  相似文献   

13.
滇西北红山铜钼矿床辉钼矿Re-Os同位素测年及其成矿意义   总被引:10,自引:7,他引:3  
红山铜钼矿床是义敦岛弧南端格咱火山-岩浆弧中已探明规模最大的夕卡岩型铜矿床,近年来在其深部勘探过程中又发现斑岩型铜钼矿体.利用辉钼矿Re-Os同位素测年技术,分别对红山铜钼矿床中5件夕卡岩型矿石和1件斑岩型矿石中辉钼矿进行定年,首次获得红山铜钼矿床高精度成矿年龄.夕卡岩型矿石中辉钼矿Re-Os模式年龄为77.90 ~ 81.05Ma,加权平均值为79.32±0.87Ma,斑岩型矿石中辉钼矿模式年龄为80.71Ma,两者在误差范围内相一致;6件样品辉钼矿等时线年龄为80.0±1.8Ma,代表了红山铜钼矿床的成矿时代.辉钼矿中Re的含量为(4.074±0.035) ×l0-6~(94.21±0.75)×10-6,指示其物质来源以壳源为主,有少量幔源物质混入.红山铜钼矿床与格咱火山-岩浆弧燕山晚期岩浆侵入作用的高峰期及相关斑岩-夕卡岩型多金属矿床的成矿年龄一致,表明它们是弧陆碰撞的后造山伸展背景下同一区域地质事件的产物,该期夕卡岩-斑岩型铜钼多金属具有较大成矿潜力.  相似文献   

14.
河北省安妥岭钼矿床地质特征及辉钼矿Re-Os同位素年龄   总被引:1,自引:0,他引:1  
者萌  胡建中  周伟  丁海洋 《现代地质》2014,28(2):339-347
河北省安妥岭钼矿床位于太行山北段,是燕辽钼矿带内著名的钼矿床之一。辉钼矿化呈脉状、薄膜状、浸染状分布于斑岩体及其外接触带中,围岩蚀变为硅化、黄铁矿化、绢云母化、黄铁绢英岩化、青磐岩化等,具有斑岩型钼矿床的基本特征。对矿床中5件辉钼矿样品进行了Re-Os同位素分析,获得模式年龄为(145.7±2.4)~(148.8±2.6) Ma,平均模式年龄为(146.9±1.0) Ma,等时线年龄为(147.3±3.7) Ma,MSWD值为1.5, 187Os初始值为(-0.4±2.6) ng/g,表明钼成矿时代为晚侏罗世,属燕山中晚期构造-岩浆-流体活动的产物。样品Re含量为50.42×10-6~104.9×10-6,黄铁矿单矿物δ34S的变化范围为0.7‰~2.8‰,结合已有的Pb同位素结果,推断成矿物质为壳幔混源,矿床形成于中国北方中生代第二期大规模成矿作用期,处于中国东部构造体制转折阶段。  相似文献   

15.
安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄   总被引:9,自引:0,他引:9  
沙坪沟斑岩钼矿是大别成矿带近年发现的超大型矿床。在对矿化特征分析的基础上,对其进行了成岩成矿年代学研究。采用LA-ICP-MS锆石U-Pb测年技术,得到含矿岩体的成岩年龄。细粒石英正长岩与中粒石英正长岩分别形成于122.51±0.81Ma和121.5±1.3Ma,正长斑岩形成于120.7±1.1Ma。通过矿床辉钼矿Re-Os同位素分析,获得其模式年龄为100±1.8~113.6±1.7Ma。成岩与成矿时差约7Ma,指示含矿热液活动时限较长。长时间的热液活动可能是形成沙坪沟超大型斑岩钼矿床的重要因素。沙坪沟钼成矿时间与大别带钼矿化时间(133~110Ma)高度一致,与东秦岭晚期钼矿化时间相同。大别带钼矿是秦岭-大别成矿带的组成部分,形成于相同构造背景下,是区域构造岩浆作用的产物。  相似文献   

16.
龙门钼矿床是太行山北段成矿带内近些年探明的一个大型钼矿床,钼矿体主要产于花岗斑岩、闪长岩和新太古代片麻岩中,以角砾岩型矿石为主.矿区内辉钼矿化主要类型为浸染状、薄膜状、细脉状,发育钾长石化、硅化、绢云母化、黄铁矿化蚀变,类似典型的斑岩型矿床的矿化和蚀变特征.文章对龙门钼矿床的闪长岩和花岗斑岩进行了LA-ICP-MS锆石U-Pb同位素测年,获得闪长岩的锆石谐和年龄为(138.1±0.6)Ma(MSWD=0.6,n=21),花岗斑岩的锆石谐和年龄为(137.0±0.7)Ma(MSWD=1.03,n=17),结合地质特征,显示花岗斑岩晚于闪长岩形成.对主要矿石类型中的辉钼矿进行了Re-Os同位素测年,获得辉钼矿的Re-Os等时线年龄为(136.5±1.5)Ma,与赋矿的花岗斑岩的侵位年龄相一致,二者应为同一岩浆-流体活动的产物.龙门钼矿床辉钼矿样品的w(Re)为13.1×10-6~59.3×10-6,表明其成矿物质来源于壳幔混源.龙门矿区及太行山北段成矿带内的隐爆角砾岩体是下一步找矿勘查的方向.  相似文献   

17.
浙东南石平川钼矿床地质特征、成矿时代及成因   总被引:3,自引:0,他引:3  
石平川钼矿床位于浙东南政和—大埔断裂与长乐—南澳断裂之间的火山坳陷带相对隆起区,空间上和成因上均与燕山晚期侵入的钾长花岗岩体关系密切,矿体受断裂构造控制。矿化类型为石英脉型,围岩蚀变主要为绢云母化、黄铁矿化,次为碳酸盐化。石英流体包裹体Rb-Sr等时线年龄为(87±1)Ma[锶初始值I(Sr)=0.713 36],形成时间为晚白垩世。成矿期流体包裹体研究表明其均一温度为114.4~325.8℃,集中于170.2~227.0℃。氢氧同位素研究表明,成矿流体的δ(D)为-52.8‰~-64.9‰,δ(18O)为-3.85‰~-7.27‰,反映成矿流体来自混合的岩浆水与大气降水。黄铁矿的硫同位素研究表明δ(34S)为+3.14‰~+4.19‰,表现为岩浆硫特征。辉钼矿Re的质量分数为15.05×10-6~37.65×10-6,与其他钼矿床中辉钼矿Re质量分数的对比结果显示,成矿物质来源于下地壳。以上研究表明石平川钼矿床属中低温岩浆期后热液充填石英脉型钼矿床。  相似文献   

18.
The Huangsha-Tieshanlong quartz-vein tungsten polymetallic ore deposit, located in the northern Pangushan-Tieshanlong tungsten ore field in eastern Ganxian-Yudu prospecting areas of the Yushan metallogenic belt, is a well-known tungsten deposit in southern Jiangxi province, China. SHRIMP-determined dating of zircons from the Tieshanlong granite yields ages of 168.1±2.1 Ma (n=11, MSWD=1.3). Rhenium and osmium isotopic dating of molybdenite from the Huangsha quartz-vein tungsten deposit determined by ICP-MS yields a weighted average ages of 153±3 Ma and model ages of 150.2±2.1 Ma – 155.4±2.3 Ma. The age of the Huangsha tungsten deposit is 10 to 15 Ma later than the Tieshanlong granite, which shows that there might have been another early Late Jurassic magmatic activity between 150 and 160 Ma, a process which is closely related with tungsten mineralization in this area. The Tieshanlong granite, the Huangsha tungsten deposit and the Pangushan-Tieshanlong ore field were all formed around 150–170 Ma, belonging to products of a Mesozoic second large-scale mineralization. According to the collected molybdenite Re-Os dating results in southern Jiangxi province, the timescale of the associated molybdenum mineralization is 2–6 Ma in the tungsten deposit and the timescale of independent molybdenum mineralization is 1–4 Ma, implying the complexity of tungsten mineralization. Times of molybdenum mineralization are mainly concentrated in the Yanshanian, which includes three stages of 133~135 Ma, 150–162 Ma, and 166–170 Ma, respectively. The 150–162 Ma-stage is in accordance with ages of large-scale W-Sn mineralization, which is mainly molybdenum mineralization characterized by associated molybdenum mineralization with development of an even greater-intensity independent molybdenum mineralization. Independent molybdenum mineralization occurred before and after large-scale W-Sn mineralization, which indicates that favorable prospecting period for molybdenum may be in Cretaceous and early late Jurassic.  相似文献   

19.
赣中大王山钨钼多金属矿床位于钦杭结合带西缘大王山—于山W-U-Sn-Au多金属成矿带,为典型的石英脉型矿床,其赋矿岩体具有多阶段特征。通过LA-ICPMS锆石U-Pb测年技术,得到晚阶段细粒花岗岩成岩年龄为145.1±0.89 Ma,与早阶段形成的中粗粒花岗岩形成时间接近(147.8±1.9 Ma);利用辉钼矿Re-Os同位素测年技术,得到成矿年龄为147.6±1.8 Ma,表明该矿床形成于晚侏罗世,与南岭地区及其周边的燕山期石英脉型钨钼多金属矿床的成岩、成矿时代一致。辉钼矿中Re的含量具有指示成矿物质来源的重要参考价值,大王山钨多金属矿床的辉钼矿中Re含量较低,为2 215×10-9~10 183×10-9,与以钨为主、共生或伴生钼的矿床特征相吻合,指示其成矿物质主要来自于壳源或壳幔混合源,即在160~110 Ma之间,古太平洋板块与欧亚板块之间的主应力作用方向发生转变,促使我国东部岩浆活动频繁,岩浆期后热液与围岩碱交代明显,大量成矿物质被萃取,并在成矿有利部位富集。  相似文献   

20.
Based on the theoretical modelling of water-rock δD-δ18O isotopic exchange process, the evolution and sources of ore-forming fluid in four metallogenic epochs of the Jinduicheng superlarge-scale porphyry-type molybdenum deposit were investigated. It was revealed that in the pre-metallogenic and early-metallogenic epochs, the ore-forming fluid was a residual fluid derived from magmatic water-wall rock interaction at middle to high temperatures (T = 250–500°C) and lower W/R ratios (0.1> = W/R>0.001), while in the metallogenic and postmetallogenic epochs, the ore-forming fluid was a residual fluid derived from meteoric water-wall rock interaction at middle to lower temperatures (T = 150–310°C) and relatively high W/R ratios (0.5>W/R≥0.1). The meteoric water played an important role in molybdenum mineralization, and at the main metallogenic epoch the W/R ratio reached its maximum value. This project was financially supported by both the National Natural Science Foundation of China and the Key Research Project of the Ministry of Geology and Mineral Resources of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号