首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
用三维梁-颗粒模型BPM3D(beam-particlemodelinthreedimensions)对岩石类非均质脆性材料的力学性质和破坏过程进行了数值模拟。梁-颗粒模型是在离散单元法基础上,结合有限单元法中的网格模型提出的用于模拟岩石类材料损伤破坏过程的数值模型。在模型中,材料在细观层次上被离散为颗粒单元集合体,相邻颗粒单元由有限单元法中的弹脆性梁单元联结。梁单元的力学性质均按韦伯(Weibull)分布随机赋值,以模拟岩石类材料力学参数的空间变异性。材料内部裂纹通过断开梁单元来模拟。通过自动生成的非均质材料模型对岩石类材料的破坏机理进行研究。岩石类非均质脆性材料在单轴压缩状态下破坏过程细观数值模拟结果显示,岩石材料宏观破坏是由于其内部细观裂纹产生、扩展、贯通的结果。通过数值模拟结果之间的对比分析,揭示出岩石试样宏观破坏模式随细观层次上韦伯分布参数的变化而不同。与实际矿柱破坏形态的对比分析表明了模型的适用性。根据数值模拟结果对岩石类非均质材料的破坏机理进行了探讨。  相似文献   

2.
Li  Xiang  Konietzky  Heinz  Li  Xibing  Wang  Yan 《Acta Geotechnica》2019,14(5):1437-1457

Fracturing processes of rock are simulated using a micro- and fracture mechanical-based numerical modeling approach. The numerical model considers material heterogeneity and initial microcrack distributions. The gradual formation of macroscopic fractures by coalesced microcracks is successfully reproduced. Distinct failure modes are observed in the model under different loadings. Agreement is shown between the numerical results and laboratory observations. The influence of microcrack orientations on the fracture patterns is quantified by the numerical models. Possible mechanisms describing the splitting failure of hard brittle rocks under uniaxial compression are proposed and discussed.

  相似文献   

3.
基于强度折减法的三维边坡稳定性与破坏机制   总被引:1,自引:0,他引:1  
基于强度折减技术的三维弹塑性有限元法是当前较为有效的边坡稳定性评价方法,但很少应用于复杂地质环境及负载条件下的三维边坡稳定性与破坏机制分析。拓展这一方法,利用典型算例,探讨了单元尺寸、边界条件、土体强度、局部超载和地震荷载等因素对三维边坡稳定性及潜在滑动面的影响;在此基础上,着重研究含软弱夹层及地下水的复杂三维边坡在负载条件(坡顶局部超载及地震荷载)下的破坏模式及滑动机制。结果表明:随着黏聚力的增加,潜在滑坡体的剪出位置远离坡脚,滑坡后沿远离坡肩,滑坡深度加深;坡顶超载强度较低时,边坡表现为整体破坏模式,而高超载强度下表现为局部地基破坏;考虑地下水后边坡的稳定性显著下降,且潜在滑动面加深,滑坡体体积有所增大。含软弱夹层的三维边坡,其潜在滑动面呈折线型,当受超载作用时,其破坏模式和滑动机制与地震荷载作用下不同:前者为竖向剪切和水平错动的联合作用,而后者为软弱夹层水平错动起主导作用。  相似文献   

4.
Preexisting flaws and rock heterogeneity have important ramifications on the process of rock fracturing and on rock stability in many applications. Therefore, there is great interest in numerical modelling of rock fracture and the underlying mechanisms. We simulated damage evolution and fracture propagation in sandstone specimens containing a preexisting 3-D surface flaw under uniaxial compression. We applied the linear elastic damage model based on the unified strength theory following the rock failure process analysis code. However, in contrast to the rock failure process analysis code, we used the finite element method with tetrahedron elements on unstructured meshes. It provided higher geometrical flexibility and allowed for a more accurate representation of the disk-shaped flaw with various flaw depths, angles, and lengths through locally adapted meshes. The rock heterogeneity was modelled by sampling the initial local Young's modulus from a Weibull distribution over a cubic grid. The values were then interpolated to the computational finite element method mesh. This method introduced an additional length scale for the rock heterogeneity represented by the cell size in the sampling grid. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks, and far-field cracks, were identified in the simulation results. These depend on the geometry of the preexisting surface flaw. The simulated fracture propagation, coalescence types, and failure modes for the specimens with preexisting surface flaw show good agreement with recent experimental studies.  相似文献   

5.
严成增  郑宏  孙冠华  葛修润 《岩土力学》2014,35(8):2408-2414
将数字图像技术与Munjiza提出的有限元法-离散元法(FDEM)耦合分析方法结合,研制了可表征岩石真实非均质性的FDEM分析系统,为从细观角度对岩体进行建模以及研究岩体的破裂机制提供了新途径。该系统借助数字图像技术从岩石断面的图像获取岩石材料的真实细观结构,借助成熟的网格剖分技术,将其映射到FDEM计算网格中,从而克服了原有FDEM在考虑材料非均质性所存在的不足。利用该系统,进行了巴西圆盘劈裂试验的数值模拟,再现了花岗岩在荷载作用下的真实破裂过程。数值模拟结果表明,考虑非均质性的岩样应力分布呈现出非对称性,岩石的细观结构对岩石中裂纹的扩展及应力分布有重要影响。  相似文献   

6.
Natural damage such as fissures and pores make the rock microstructure show strong heterogeneity,which influences the failure process and mode. In this paper,the numerical test of freeze-thaw sandstone splitting failure with natural damage was carried out based on CT non-destructive identification technology,combined with digital image processing technology and CASRock numerical simulation software. The analysis of splitting failure mode,deformation localization and crack evolution process of freeze-thaw sandstone with natural damage reveals the failure mechanism of sandstone with natural damage under freeze-thaw and load. The results show that the expansion of primary pores(cracks)and the formation of new pores in sandstone are the main forms of freeze-thaw rock failure evolution. The failure of rock containing natural damage under freeze-thaw and load is related to the degree and distribution of natural damage. The generation of secondary cracks mostly occurs in natural damage-intensive areas. During the loading process,the stress in the localized damage zone is far greater than sandstone’s overall stress,and rock’s failure in the localized damage zone is synchronized with the energy release and stress release in the region. Localized damage reflects the evolution of cracks in rocks and helps to predict the direction of sandstone crack development. The failure mode of rock is related to the number of freeze-thaw cycles. The freeze-thaw cycles make the sandstone with natural damage gradually change from brittle failure to ductile failure,and the change of the overall strength of the rock is a gradual deterioration process. © 2022 Science Press (China).  相似文献   

7.
Indirect tension tests using Brisbane tuff Brazilian disc specimens under standard Brazilian jaws and various loading arcs were performed. The standard Brazilian indirect tensile tests caused catastrophic, crushing failure of the disc specimens, rather than the expected tensile splitting failure initiated by a central crack. This led to an investigation of the fracturing of Brazilian disc specimens and the existing indirect tensile Brazilian test using steel loading arcs with different angles. The results showed that the ultimate failure load increased with increasing loading arc angles. With no international standard for determining indirect tensile strength of rocks under diametral load, numerical modelling and analytical solutions were undertaken. Numerical simulations using RFPA2D software were conducted with a heterogeneous material model. The results predicted tensile stress in the discs and visually reproduced the progressive fracture process. It was concluded that standard Brazilian jaws cause catastrophic, crushing failure of the disc specimens instead of producing a central splitting crack. The experimental and numerical results showed that 20° and 30° loading arcs result in diametral splitting fractures starting at the disc centre. Moreover, intrinsic material properties (e.g. fracture toughness) may be used to propose the best loading configuration to determine the indirect tensile strength of rocks. Here, by using numerical outcomes and empirical relationships between fracture toughness and tensile strength, the best loading geometry to obtain the most accurate indirect tensile strength of rocks was the 2α?=?30° loading arc.  相似文献   

8.
油井开采过程中油层变形的流固耦合分析   总被引:7,自引:0,他引:7  
在油气开采过程中,随着油气的不断采出,必然造成孔隙流体压力的逐渐降低,由此导致储层岩石骨架的有效应力增大,使得油层产生变形或压实。当油层产生变莆或压实时,对油气生产将造成不利影响。比如:使得油藏的渗透率降低,继而使油井的产能降低,同时,油层的变形直接影响着油井和套管的变形与破坏等等。敢开采过程中油层的变形可以描述为三维变形与三维流体流动场的耦合问题,利用可变形多孔介质中流体渗流的流固耦合有限元数值  相似文献   

9.
Numerical analysis of slope stability based on the gravity increase method   总被引:2,自引:0,他引:2  
A micromechanical model is proposed for studying the stability and failure process of slopes based on the gravity increase method (GIM). In this numerical model the heterogeneity of rock at a mesoscopic level is considered by assuming that the material properties conform to the Weibull distribution. Elastic damage mechanics is a method used for describing the constitutive law of the meso-level element, the finite element method (FEM) is employed as the basic stress analysis tool, and the maximum tensile strain criterion and the Mohr–Coulomb criterion are utilised as the damage threshold. The numerical model is implemented into the Realistic Failure Process Analysis (RFPA) code using finite element programming, and an extended version of RFPA, i.e., RFPA-GIM, is developed to analyse the failure process and stability of slopes. In the numerical modelling with RFPA-GIM, the critical failure surface of slopes is obtained by increasing the gravity gradually but keeping material properties constant. The acoustic emission (AE) event rate is employed as the criterion for slope failure. The salient feature of the RFPA-GIM in stability analysis of slopes is that the critical failure surface as well as the safety factor can be obtained without any presumption for the shape and location of the failure surface. Several numerical tests have been conducted to demonstrate the feasibility of RFPA-GIM. Numerical results agree well with experimental results and those predicted using the FEM strength reduction method and conventional limit equilibrium analysis. Furthermore it is shown that selection of the AE rate as the criterion for slope failure is reasonable and effective. Finally, the RFPA-GIM is applied to several more complex cases, including slopes in jointed rock masses and layered rock formations. The results indicate that the RFPA-GIM is capable of capturing the mechanism of slope failure and has the potential for application in a larger range of geo-engineering.  相似文献   

10.
Micromechanical Model for Simulating the Fracture Process of Rock   总被引:25,自引:3,他引:25  
Summary A micromechanical model is proposed to study the deformation and failure process of rock based on knowledge of heterogeneity of rock at the mesoscopic level. In this numerical model, the heterogeneity of rock at the mesoscopic level is considered by assuming the material properties in rock conform to the Weibull distribution. Elastic damage mechanics is used to describe the constitutive law of meso-level elements, the finite element method is employed as the basic stress analysis tool and the maximum tensile strain criterion as well as the Mohr-Coulomb criterion is utilized as the damage threshold. A simple method, similar to a smeared crack model, is used for tracing the crack propagation process and interaction of multiple cracks. Based on this model, a numerical simulation program named Rock Failure Process Analysis Code (RFPA) is developed. The influence of parameters that include the Weibull distribution parameters, constitutive parameters of meso-level elements and number of elements in the numerical model, are discussed in detail. It is shown that the homogeneity index is the most important factor to simulate material failure with this model. This model is able to capture the complete mechanical responses of rock, which includes the crack patterns associated with different loading stages and loading conditions, localization of deformation, stress redistribution and failure process. The numerical simulation of rock specimens under a variety of static loading conditions is presented, and the results compare well with experimental results.  相似文献   

11.
Yang  Jie  Yin  Zhen-Yu  Laouafa  Farid  Hicher  Pierre-Yves 《Acta Geotechnica》2019,14(6):1615-1627

One of the major causes of instability in geotechnical structures such as dikes or earth dams is the phenomenon of suffusion including detachment, transport and filtration of fine particles by water flow. Current methods fail to capture all these aspects. This paper suggests a new modeling approach under the framework of the porous continuous medium theory. The detachment and transport of the fine particles are described by a mass exchange model between the solid and the fluid phases. The filtration is incorporated to simulate the filling of the inter-grain voids created by the migration of the fluidized fine particles with the seepage flow, and thus, the self-filtration is coupled with the erosion process. The model is solved numerically using a finite difference method restricted to one-dimensional (1-D) flows normal to the free surface. The applicability of the model to capture the main features of both erosion and filtration during the suffusion process has been validated by simulating 1-D internal erosion tests and by comparing the numerical with the experimental results. Furthermore, the influence of the coupling between erosion and filtration has been highlighted, including the development of material heterogeneity induced by the combination of erosion and filtration.

  相似文献   

12.
The influence of the intermediate principal stress on rock strength has been studied comprehensively by previous researchers. However, the reason why rock strength firstly increases and subsequently decreases with the increase of intermediate principal stress is still unclear. In this paper, the mechanism of the intermediate principal stress effect on rock failure behaviour is revealed through a numerical method using the EPCA3D system (Elasto-Plastic Cellular Automaton). In this study, both homogeneous and heterogeneous rocks are considered. The heterogeneity of a rock specimen is modelled by introducing Weibull's statistical distribution. Two criteria, i.e. the Drucker–Prager and Mohr–Coulomb models, are used to determine whether a meso-scopic element in the rock specimen is in a failure state or not during the polyaxial stress loading process. The EPCA3D simulation reproduces the typical phenomenon of the intermediate principal stress effect that occurs in some rock experiments. By studying the EPCA3D simulated acoustic emission and complete stress–strain curves illustrating failure initiation, propagation and coalescence in the failure process of rocks, the essence of the intermediate principal stress effect is tracked. It is concluded that the heterogeneous stress distribution induced by the natural heterogeneity of rocks and the effect of the loading platen are two of the reasons producing the intermediate stress effect. Studies indicate that a moderate intermediate principal stress delays the onset of local failure, which in turn leads to an increase in the rock strength. However, once the intermediate principal stress reaches a certain value, local failure will be formed through the application of the intermediate principal stress. It is the number of failed elements in the pre-peak region that determines whether the rock strength decreases or not. The extent of rock strength reduction when the intermediate principal stress reaches a certain value is lessened with the increase in the minimum principal stress.  相似文献   

13.
单轴压缩下横观各向同性岩石破裂过程的数值模拟   总被引:16,自引:0,他引:16  
采用基于细观损伤力学基础上开发的RFPA2D数值模拟软件,用2种不同的岩石材料来组成7个不同岩层倾角的横观各向同性的岩石试件,通过单轴加载数值模拟试验,模拟横观各向同性岩石渐进破裂的整个过程,分析了岩层与最大主应力之间的倾角和强度之间的关系,讨论了不同岩层倾角的横观各向同性岩体的不同破裂模式及其破坏准则。  相似文献   

14.
The diametrical compression of a circular disc (Brazilian test) or cylinder with a small eccentric hole is a simple but important test to determine the tensile strength of rocks. This paper studies the failure mechanism of circular disc with an eccentric hole by a 3D numerical model (RFPA3D). A feature of the code RFPA3D is that it can numerically simulate the evolution of cracks in three-dimensional space, as well as the heterogeneity of the rock mass. First, numerically simulated Brazilian tests are compared with experimental results. Special attention is given to the effect of the thickness to radius ratio on the failure modes and the peak stress of specimens. The effects of the compressive strength to tensile strength ratio (C/T), the loading arc angle (2α), and the homogeneity index (m) are also studied in the numerical simulations. Secondly, the failure process of a rock disc with a central hole is studied. The effects of the ratio of the internal hole radius (r) to the radius of the rock disc (R) on the failure mode and the peak stress are investigated. Thirdly, the influence of the vertical and horizontal eccentricity of an internal hole on the initiation and propagation of cracks inside a specimen are simulated. The effect of the radius of the eccentric hole and the homogeneity index (m) are also investigated.  相似文献   

15.
岩石介质的宏观非线性主要是由非均质性和各向异性造成的,应用新的数值计算软件RFPA(2D)——基于岩石宏观非线性行为可能是由具弹脆性特征的细观微元体不断破裂造成的,造成微元体不断破裂(并非某一时刻同时破裂)的原因是微元体材料性质(微元体强度、弹性模量和泊松比等参数)的非均匀性,是一个数学上相对简单但能充分考虑岩石介质复杂性的方法,对采动引起岩体失稳破坏的全过程进行了数值模拟研究,表明应用RFPA(2D)是切实可行的。   相似文献   

16.
应用数值模拟方法,对脆性岩石单轴压缩情况下破坏规律进行了初步研究,主要讨论了脆性岩石的破坏机理、脆性岩石破坏数值模拟试验中的端部效应问题,并得出了一些初步的结论。在单轴压缩试验中,脆性岩石破坏过程主要以拉伸破坏为主。端部效应则是除了岩石试件本身所具有的材料非均匀性外影响岩石试件破坏形式的另一个重要因素。总体上存在这样的规律,即端部约束越大,岩石试件破坏型式越趋近于“X”型剪胀破坏,端部约束越小,则岩石试件破坏型式越趋近于张拉破坏。  相似文献   

17.
The unloading process of rocks under high initial stress is complex, and verifying the mechanism of the unloading process in the field or in a laboratory is not straightforward. In this study, the unloading process of rocks under high initial stress was characterised by a mathematical physics model, which was then implemented in the finite element program LS-DYNA for analysis. In particular, the implicit and explicit methods were performed in sequence in the finite element simulation of rocks with initial stresses. In the numerical simulation, the characteristics of the dynamic unloading process of rocks were investigated for various peak initial stresses, initial stress release paths and initial stress release rates (ISRRs). The numerical results indicated that the rock failure could be induced by the release of the initial stress; furthermore, there is a relationship between the magnitude of the unloading failure and the peak initial stresses, the initial stress release paths and the ISRRs. When the initial stresses were at the same level, the equivalent initial stress release rate (EISRR) was introduced to quantitatively describe the characteristics of the unloading process. Using the numerical results, the unloading failure process was characterised, and a method for the static stress initialisation-dynamic unloading of rock was developed.  相似文献   

18.
The process of cutting homogeneous soft material has been investigated extensively. However, there are not so many studies on cutting heterogeneous brittle material. In this paper, R‐T2D (Rock and Tool interaction), based on the rock failure process analysis model, is developed to simulate the fracture process in cutting heterogeneous brittle material. The simulated results reproduce the process involved in the fragmentation of rock or rock‐like material under mechanical tools: the build‐up of the stress field, the formation of the crushed zone, surface chipping, and the formation of the crater and subsurface cracks. Due to the inclusion of heterogeneity in the model, some new features in cutting brittle material are revealed. Firstly, macroscopic cracks sprout at the two edges of the cutter in a tensile mode. Then with the tensile cracks releasing the confining pressure, the rock in the initially high confining pressure zone is compressed into failure and the crushed zone gradually comes into being. The cracked zone near the crushed zone is always available, which makes the boundary of the crushed zone vague. Some cracks propagate to form chipping cracks and some dip into the rock to form subsurface cracks. The chipping cracks are mainly driven to propagate in a tensile mode or a mixed tensile and shear mode, following curvilinear paths, and finally intersect with the free surface to form chips. According to the simulated results, some qualitative and quantitative analyses are performed. It is found that the back rake angle of the cutter has an important effect on the cutting efficiency. Although the quantitative analysis needs more research work, it is not difficult to see the promise that the numerical method holds. It can be utilized to improve our understanding of tool–rock interaction and rock failure mechanisms under the action of mechanical tools, which, in turn, will be useful in assisting the design of fragmentation equipment and fragmentation operations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
单轴压缩下含孔脆性材料的力学行为研究   总被引:3,自引:1,他引:2  
段进超  唐春安  常旭  陈奇栓 《岩土力学》2006,27(8):1416-1420
运用材料破裂过程分析MFPA2D系统,在单轴压缩条件下对含单孔和双孔脆性材料破坏过程进行数值模拟。结果表明:原始的萌生裂纹不一定是最后形成宏观贯通破坏的主裂纹。岩石等脆性材料破坏的局部化特征,说明非均匀性是岩石类脆性材料发生局部破裂的根本原因。分析了孔的分布对材料强度以及破坏模式的影响,并给出破坏过程的应力-应变关系。指出了有的孔洞分布会增加应力的集中程度,而有的孔洞分布可以降低应力集中。数值模拟与试验结果具有较好的一致性。  相似文献   

20.
Undrained capacity of strip and circular surface foundations with a zero-tension interface on a deposit with varying degrees of strength heterogeneity is investigated by finite element analyses. The method for simulating the zero-tension interface numerically is validated. Failure envelopes for strip and circular surface foundations under undrained planar V-H-M loading are presented and compared with predictions from traditional bearing capacity theory. Similar capacity is predicted with both methods in V-H and V-M loading space while the traditional bearing capacity approach under-estimates the V-H-M capacity derived from the numerical analyses due to superposition of solutions for load inclination and eccentricity not adequately capturing the true soil response. An approximating expression is proposed to describe the shape of normalised V-H-M failure envelopes for strip and circular foundations with a zero-tension interface. The unifying expression enables implementation in an automated calculation tool resulting in essentially instantaneous generation of combined loading failure envelopes and optimisation of a foundation design as a function of foundation size or material factor. In contrast, the traditional bearing capacity theory approach or direct numerical analyses for a given scenario requires ad-hoc analyses covering a range of input variables in order to obtain the ‘best’ design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号