首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we follow a similar procedure as proposed by Koval (SPE J 3(2):145–154, 1963) to analytically model CO2 transfer between the overriding carbon dioxide layer and the brine layer below it. We show that a very thin diffusive layer on top separates the interface from a gravitationally unstable convective flow layer below it. Flow in the gravitationally unstable layer is described by the theory of Koval, a theory that is widely used and which describes miscible displacement as a pseudo two-phase flow problem. The pseudo two-phase flow problem provides the average concentration of CO2 in the brine as a function of distance. We find that downstream of the diffusive layer, the solution of the convective part of the model, is a rarefaction solution that starts at the saturation corresponding to the highest value of the fractional-flow function. The model uses two free parameters, viz., a dilution factor and a gravity fingering index. A comparison of the Koval model with the horizontally averaged concentrations obtained from 2-D numerical simulations provides a correlation for the two parameters with the Rayleigh number. The obtained scaling relations can be used in numerical simulators to account for the density-driven natural convection, which cannot be currently captured because the grid cells are typically orders of magnitude larger than the wavelength of the initial fingers. The method can be applied both for storage of greenhouse gases in aquifers and for EOR processes using carbon dioxide or other solvents.  相似文献   

2.
We consider a system of nonlinear partial differential equations that arises in the modeling of two-phase flows in a porous medium. The phase velocities are modeled using a Brinkman regularization of the classical Darcy’s law. We propose a notion of weak solution for these equations and prove existence of these solutions. An efficient finite difference scheme is proposed and is shown to converge to the weak solutions of this system. The Darcy limit of the Brinkman regularization is studied numerically using the convergent finite difference scheme in two space dimensions as well as using both analytical and numerical tools in one space dimension. The results suggest that the Brinkman regularization may not approximate the accepted entropy solutions of the Darcy model and raise fundamental questions about the use of Brinkman type models in two-phase flows.  相似文献   

3.
We consider the slightly compressible two-phase flow problem in a porous medium with capillary pressure. The problem is solved using the implicit pressure, explicit saturation (IMPES) method, and the convergence is accelerated with iterative coupling of the equations. We use discontinuous Galerkin to discretize both the pressure and saturation equations. We apply two improvements, which are projecting the flux to the mass conservative H(div)-space and penalizing the jump in capillary pressure in the saturation equation. We also discuss the need and use of slope limiters and the choice of primary variables in discretization. The methods are verified with two- and three-dimensional numerical examples. The results show that the modifications stabilize the method and improve the solution.  相似文献   

4.
We present a locally mass conservative scheme for the approximation of two-phase flow in a porous medium that allows us to obtain detailed fine scale solutions on relatively coarse meshes. The permeability is assumed to be resolvable on a fine numerical grid, but limits on computational power require that computations be performed on a coarse grid. We define a two-scale mixed finite element space and resulting method, and describe in detail the solution algorithm. It involves a coarse scale operator coupled to a subgrid scale operator localized in space to each coarse grid element. An influence function (numerical Greens function) technique allows us to solve these subgrid scale problems independently of the coarse grid approximation. The coarse grid problem is modified to take into account the subgrid scale solution and solved as a large linear system of equations posed over a coarse grid. Finally, the coarse scale solution is corrected on the subgrid scale, providing a fine grid representation of the solution. Numerical examples are presented, which show that near-well behavior and even extremely heterogeneous permeability barriers and streaks are upscaled well by the technique.  相似文献   

5.
We consider an iterative scheme for solving a coupled geomechanics and flow problem in a fractured poroelastic medium. The fractures are treated as possibly non-planar interfaces. Our iterative scheme is an adaptation due to the presence of fractures of a classical fixed stress-splitting scheme. We prove that the iterative scheme is a contraction in an appropriate norm. Moreover, the solution converges to the unique weak solution of the coupled problem.  相似文献   

6.
Flow of fluids and transport of solutes in porous media are subjects of wide interest in several fields of applications: reservoir engineering, subsurface hydrology, chemical engineering, etc. In this paper we will study two-phase flow in a model consisting of two different types of sediments. Here, the absolute permeability, the relative permeabilities and the capillary pressure are discontinuous functions in space. This leads to interior boundary value problems at the interface between the sediments. The saturation Sw will be discontinuous or experience large gradients at the interface. A new solution procedure for such problems will be presented. The method combines the modified method of characteristics with a weak formulation where the basis functions are discontinuous at the interior boundary. The modified method of characteristics will provide a good first approximation for the jump in the discontinuous basis functions, which leads to a fast converging iterative solution scheme for the complete problem. The method has been implemented in a two-dimensional simulator, and results from numerical experiments will be presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We continue the work that was initiated in (K. H. Karlsen, K.-A. Lie, and N. H. Risebro. A fast marching method for reservoir simulation. Comp. Geo., 4(2) (2000)185–206) on a marching method for simulating two-phase incompressible immiscible flow of water and oil in a porous medium. We first present an alternative derivation of the marching method that reveals a strong connection to modern streamline methods. Then, through the study of three numerical test cases we present two deficiencies: (i) the original marching algorithm does not always compute the correct solution of the underlying difference equations, and (ii) the method gives largely inaccurate arrival times in the presence of large jumps within the upwind difference stencil. As a remedy of the first problem, we present a new advancing-front method, which is faster than the original marching method and guarantees a correct solution of the underlying discrete linear system. To cure the second problem, we present two adaptive strategies that avoid the use of finite-difference stencils containing large jumps in the arrival times. The original marching method was introduced as a fast tool for simulating two-phase flow scenarios in heterogeneous formations. The new advancing-front method has limited applicability in this respect, but may rather be used as a fast and relatively accurate method for computing arrival times and derived quantities in heterogeneous media.  相似文献   

8.
This paper presents a numerical implementation of two-phase capillary hysteresis and its combination with a capillary interface condition for the treatment of heterogeneities. The hysteresis concepts chosen in this work are first implemented in a node-centered FV discretization scheme and subsequently combined with the interface condition that predicts sharp saturation discontinuities at material interfaces, based on a pressure equilibrium concept. This approach allows for the approximation of history-dependent, and at the same time discontinuous, saturations at material interfaces. The resulting model provides a well-defined evolution of the hysteretic capillary pressure–saturation relationships at material interfaces that is independent of the grid spacing. As demonstrated with a simple 1-D example, this concept therefore offers the advantage that the solution of a two-phase flow problem involving hysteresis does not relate to the grid resolution at the material interfaces.  相似文献   

9.
Multi-phase flow in porous media in the presence of viscous, gravitational, and capillary forces is described by advection diffusion equations with nonlinear parameters of relative permeability and capillary pressures. The conventional numerical method employs a fully implicit finite volume formulation. The phase-potential-based upwind direction is commonly used in computing the transport terms between two adjacent cells. The numerical method, however, often experiences non-convergence in a nonlinear iterative solution due to the discontinuity of transmissibilities, especially in transition between co-current and counter-current flows. Recently, Lee et al. (Adv. Wat. Res. 82, 27–38, 2015) proposed a hybrid upwinding method for the two-phase transport equation that comprises viscous and gravitational fluxes. The viscous part is a co-current flow with a one-point upwinding based on the total velocity and the buoyancy part is modeled by a counter-current flow with zero total velocity. The hybrid scheme yields C1-continuous discretization for the transport equation and improves numerical convergence in the Newton nonlinear solver. Lee and Efendiev (Adv. Wat. Res. 96, 209–224, 2016) extended the hybrid upwind method to three-phase flow in the presence of gravity. In this paper, we present the hybrid-upwind formula in a generalized form that describes two- and three-phase flows with viscous, gravity, and capillary forces. In the derivation of the hybrid scheme for capillarity, we note that there is a strong similarity in mathematical formulation between gravity and capillarity. We thus greatly utilize the previous derivation of the hybrid upwind scheme for gravitational force in deriving that for capillary force. Furthermore, we also discuss some mathematical issues related to heterogeneous capillary domains and propose a simple discretization model by adapting multi-valued capillary pressures at the end points of capillary pressure curves. We demonstrate this new model always admits a consistent solution that is within the discretization error. This new generalized hybrid scheme yields a discretization method that improves numerical stability in reservoir simulation.  相似文献   

10.
We construct a new class of locally conservative numerical methods for two-phase immiscible flow in heterogeneous poroelastic media. Within the framework of the so-called iteratively coupled methods and fixed-stress split algorithm we develop mixed finite element methods for the flow and geomechanics subsystems which furnish locally conservative Darcy velocity and transient porosity input fields for the transport problem for the water saturation. Such hyperbolic equation is decomposed within an operator splitting technique based on a predictor–corrector scheme with the predictor step discretized by a higher-order non-oscillatory finite volume central scheme. The proposed scheme adopts an inhomogeneous dual mesh with variable cell size ruled by the local wave speed of propagation to compute numerical fluxes at cell edges. In the limit of small time steps the central scheme gives rise to a semidiscrete formulation for the water saturation capable of incorporating heterogeneous porosity fields and generalized flux functions including the water transport due to the solid phase velocity. Numerical simulations of a water-flooding problem in secondary oil recovery are presented for different realizations of the input random fields (permeability, Young modulus and initial porosity). Comparison between the accuracies of the proposed approach and the traditional one-way coupled hydro-geomechanical formulation are presented. The effects of the cross-correlation between the input random fields and compaction drive mechanism upon finger growth and breakthrough curves are also analyzed. A notable feature of the formulation proposed herein is the accurate prediction of the influence of geomechanical effects upon the unstable movement of the water front, whose evolution is dictated by rock heterogeneity and unfavorable viscosity ratio, without deteriorating the local conservative character of the numerical schemes.  相似文献   

11.
In this paper, we present a numerical model for simulating two-phase (oil–water and air–water) incompressible and immiscible flow in porous media. The mathematical model which is based on a fractional flow formulation is formed of two nonlinear partial differential equations: a mean pressure equation and a water saturation equation. These two equations can be solved in a sequential manner. Two numerical methods are used to discretize the equations of the two-phase flow model: mixed hybrid finite elements are used to treat the pressure equation, h-based Richards' equation and the diffusion term in the saturation equation, the advection term in the saturation equation is treated with the discontinuous finite elements. We propose a better way to calculate the nonlinear coefficients contained in our equations on each element of the discretized domain. In heterogeneous porous media, the saturation becomes discontinuous at the interface between two porous media. We show in this paper how to use the capillary pressure–saturation relationship in order to handle the saturation jump in the mixed hybrid finite element method. The two-phase flow simulator is verified against analytical solutions for some flow problems treated by other authors.  相似文献   

12.
This article presents a new positivity-preserving finite-volume scheme with a nonlinear two-point flux approximation, which uses optimization techniques for the face stencil calculation. The gradient is reconstructed using harmonic averaging points with the constraint that the sum of the coefficients included in the face stencils must be positive. We compare the proposed scheme to a nonlinear two-point scheme available in literature and a few linear schemes. Using two test cases, taken from the FVCA6 benchmarks, the accuracy of the scheme is investigated. Furthermore, it is shown that the scheme is linearity-preserving on highly complex corner-point grids. Moreover, a two-phase flow problem on the Norne formation, a geological formation in the Norwegian Sea, is simulated. It is demonstrated that the proposed scheme is consistent in contrast to the linear Two-Point Flux Approximation scheme, which is industry standard for simulating subsurface flow on corner-point grids.  相似文献   

13.
This paper presents a numerical investigation on the effects of thermal shock as a pretreatment of rock prior to comminution. More specifically, the effect of heat shock-induced cracks on the uniaxial compressive strength of rock is numerically studied. The chosen constitutive model of rock employs a (strong) embedded discontinuity finite element formulation to describe cracks. The thermomechanical problem that governs the heat shock pretreatment of rocks is considered as an uncoupled problem because of a highly dominating role of the external heat influx. Two solution methods of the global problem are presented: an explicit-explicit dynamic scheme and an implicit-implicit quasi-static scheme. The model performance is tested in simulations on heterogeneous numerical rock samples subjected first to a heat shock pretreatment and then to a mechanical compression test. According to the results, the compressive strength of intact granite rock having the axial splitting failure mode can be substantially reduced by heat shock pretreatment.  相似文献   

14.
A theoretical formulation and a numerical solution method are proposed for the problem of the time dependent consolidation of an elasto-plastic soil subject to finite deformations. The soil is assumed to be a two-phase material with a skeleton which may yield according to a general yield criterion with plastic flow governed by a general flow law, and whose pore fluid flows according to Darcy's Law. Governing equations are cast in a rate form and constitutive laws are expressed in a frame indifferent manner. The method of analysis is illustrated by several examples of practical interest for both a soil with an elastic skeleton and a soil with an elasto-plastic skeleton which obeys a Morh–Coulomb yield criterion and a non-associated flow law.  相似文献   

15.
Numerical simulation of debris flow with application on hazard area mapping   总被引:3,自引:0,他引:3  
A numerical program developed for field application is presented in this paper. We use the generalized Julien and Lan [8] rheological model to simulate debris flows. Due to the derivative discontinuous nature of the constitutive law, flow is separated into plug region and bottom region (with stress greater than yield stress). The program solves the plug flow layer solution first, and then corrects the solution with the bottom layer approximation. Numerical scheme with upwind method and central difference in space and Adam–Bashforth third-order scheme in time is used for both layers. The scheme is tested against analytical solutions and laboratory experiments with very good results. Application to a field case with more complicated geometry also achieves good agreement, with error less than 5% compared to field measurements. The final example demonstrates how this numerical program is used in a preliminary design.  相似文献   

16.
A sequential solution procedure is used to simulate compositional two-phase flow in porous media. We employ a multiphysics concept that adapts the numerical complexity locally according to the underlying processes to increase efficiency. The framework is supplemented by a local refinement of the simulation grid. To calculate the fluxes on such grids, we employ a combination of the standard two-point flux approximation and a multipoint flux approximation where the grid is refined. This is then used to simulate a large-scale example related to underground CO2 storage.  相似文献   

17.
Many surface and underground structures are constructed in heterogeneous rock formations. These formations have a combination of weak and strong rock layers. Due to the alternation of the weak and strong layers, selecting the equivalent and appropriate geomechanical parameters for these formations is challenging. One of these problems is choosing the equivalent strength (i.e., uniaxial compressive strength) of intact rock for a group of rocks. Based on the volume of weak and strong parts and their strength, the equivalent strength of heterogeneous rocks changes. Marinos and Hoek (Bull Eng Geol Environ 60(2):85–92, 2001) presented the “weighted average method” for defining the uniaxial compressive strength (UCS) of heterogeneous rock masses based on the volume of weak and strong parts. Laubscher (1977) used the volume ratio of the strength of a weak part to a strong part (UCS weak/UCS strong) to determine the equivalent strength. In this study, the two methods are compared and their validity is evaluated by experimental data and numerical analyses. The geomechanical parameters of two heterogeneous formations (Aghajari and Lahbari) in the west of Iran were estimated using these methods. The results of the present study obtained through numerical analyses using particle flow code are compared with those of previous studies and discussed. Laboratory and numerical results show UCS decrease and approach to weak strength with an increasing in volume of weak part. When strength ratio of strong to weak rock increase, equivalent strength decrease more severely. The findings show that Laubscher’s method gives more appropriate results than the weighted average method.  相似文献   

18.
One of the challenges for reservoir simulation is numerical dispersion. For waterflooding applications the effect is controlled due to the self-sharpening nature of a Buckley–Leverett shock. However, for multi-component flow simulations, incorrect wavespeeds can develop leading to the excessive smearing of fronts because of the coupling of compositional dispersion with the fractional flow. Rather than implementing a higher-order discretization method, we propose a simple scheme based on segregation-in-flow within a gridblock to control numerical dispersion. We extend the method originally proposed for polymer flooding to augmented waterflooding simulations in general as well as simulations of miscible or near miscible gas injection. For compositional simulations of gas injection, this is done through a coupled limited-flash/upstream-exclusion assumption. To test the scheme, an in-house streamline simulator has been modified and validated for modeling low-salinity floods as well as ternary two-phase displacements. Simulation results presented with and without segregation demonstrate the potential of the approach as a heuristic method to control numerical dispersion in multi-component flow simulations.  相似文献   

19.
Numerical simulation of gas migration driven by compressible two-phase partially miscible flow in porous media is of major importance for safety assessment of deep geological repositories for long-lived high-level nuclear waste. We present modeling of compositional liquid and gas flow for numerical simulations of hydrogen migration in deep geological radioactive waste repository based on persistent primary variables. Two-phase flow is considered, with incompressible liquid and compressible gas, which includes capillary effects, gas dissolution, and diffusivity. After discussing briefly the existing approaches to deal with phase appearance and disappearance problem, including a persistent set of variables already considered in a previous paper (Bourgeat et al., Comput Geosci 13(1):29–42, 2009), we focus on a new variant of the primary variables: dissolved hydrogen mass concentration and liquid pressure. This choice leads to a unique and consistent formulation in liquid saturated and unsaturated regions, which is well adapted to heterogeneous media. We use this new set of variable for numerical simulations and show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different but typical situations for gas migration in an underground radioactive waste repository.  相似文献   

20.
Fully implicit time-space discretizations applied to the two-phase Darcy flow problem leads to the systems of nonlinear equations, which are traditionally solved by some variant of Newton’s method. The efficiency of the resulting algorithms heavily depends on the choice of the primary unknowns since Newton’s method is not invariant with respect to a nonlinear change of variable. In this regard, the role of capillary pressure/saturation relation is paramount because the choice of primary unknowns is restricted by its shape. We propose an elegant mathematical framework for two-phase flow in heterogeneous porous media resulting in a family of formulations, which apply to general monotone capillary pressure/saturation relations and handle the saturation jumps at rocktype interfaces. The presented approach is applied to the hybrid dimensional model of two-phase water-gas Darcy flow in fractured porous media for which the fractures are modelled as interfaces of co-dimension one. The problem is discretized using an extension of vertex approximate gradient scheme. As for the phase pressure formulation, the discrete model requires only two unknowns by degree of freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号