首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
地表水与地下水相互作用是水循环研究的重要组成部分,是研究区域水资源量的基础。通过实地水文地质调查和采样,在对水体氢氧稳定同位素和水化学组成测定的基础上,分析了盆地内枯水期河水和地下水的水化学和氢氧同位素组成特征及空间变化规律,旨在揭示河水与地下水的相互转化关系。研究表明:盆地内地下水主要为HCO3-Ca和HCO3-Ca·Mg类型低矿化度水,各区域地下水具有统一联系性,经历了相同或相似的水化学形成作用;河水水化学类型与地下水相同,且水化学成分来源一致。地下水和河水氢氧同位素组成相接近,最终来源主要为大气降水补给。其中河水在径流过程中受蒸发浓缩作用影响,重同位素略富集。受地形地貌、地质及水文地质条件影响,盆地内地下水与河水之间的补给—排泄相互作用关系具有明显的分段性,相互转化频繁。大石河上游区域和东宫河流域总体上表现为河水受两侧地下水补给;大石河下游区域,表现为河水补给两侧地下水。  相似文献   

2.
格尔木河流域平原区地下水同位素及水化学特征   总被引:2,自引:0,他引:2  
李健  王辉  魏丽琼 《西北地质》2007,40(4):94-100
通过对格尔木河流域天然水中H、O同位素的系统分析,根据地球水化学组分循环演化规律所对应流域不同类型水体的同位素组成的研究,结果表明流域地下水化学组分随流程增加溶滤作用增强,地下水中HCO3-逐渐减少,Cl-则增加。运用δD、δ18O和3H值建立了流域大气降水线方程,确定了山区河水非当年降水补给,河水以地下水补给为主、其次是冰雪融水和大气降水补给。山区降水δD、δ18O均值低于平原区,表明平原区降水受蒸发作用影响水中富重同位素。平原区地下水中的δD、δ18O值与河水基本一致,说明平原区地下水主要受河水出山后入渗补给。承压自流水δD和δ18O值与潜水基本一致,根据地下水的3H值确定早于潜水年龄,且随埋深增加δD、δ18O值减少的趋势,其年龄亦由新变老。  相似文献   

3.
河水和地下水转化关系的定量评价是流域水资源量管理和合理利用的基础。在西北内陆马莲河流域下游开展氡同位素示踪,利用河水222Rn通量模型评价了地下水沿河排泄强度。结果表明:地下水222Rn活度高于河水1个数量级,潜流带水222Rn活度受河水、地下水混合作用及沉积物氡释放影响。马莲河下游均为白垩系环河组地下水排泄补给河水,累计排泄量4.5 m3/s,占河流流量的73.2%。排泄强度存在空间变异,上段及下段为地下水强排泄区,中段作用强度较低。模型不确定性主要受地下水端元、潜流带输入及气体逸散系数三个因素控制,222Rn示踪方法在地下水补给河水型地区较为适用。  相似文献   

4.
河流与地下水相互作用研究是水文学研究的难点和热点。安阳河与地下水相互作用研究,对于安阳市水资源科学开发与管理具有重要意义。安阳河冲洪积扇地表水与地下水转化率为17%~27%。潜水位标高为80 m,向下游逐渐变成多层含水层(水位40 m)。当地降水环境同位素监测数据表明,当地大气降水线与全球大气降水线接近平行,表明该线代表本地区大气降水的氢氧同位素特征。地表水同位素值较集中,2016年8月δ18O值变化范围为-9‰~-8.7‰,δD值变化范围为-65‰~-63‰,2017年1月δ18O值变化范围为-8.5‰~-8.2‰,δD值变化范围为-63‰~-61‰,河水水化学类型为HCO3·SO4—Ca型,表明流域内地表水的同位素值受距离的影响较小。地下水稳定同位素值变化较大,2016年8月δ18O值范围为-10.4‰~-5.5‰,δD值范围为-75‰~-46‰,2017年1月δ18O值范围为-10.2‰~-5.4‰,δD值范围为-75‰~-45‰,即从接近降水值到最大值形成一条“蒸发”线。河流出山口一带地下水同位素值呈现最大蒸发值,表明地表水补给地下水,地下水化学类型为HCO3·SO4·Cl—Ca,存在明显人为污染成分。下游为大气降水补给浅层地下水,中深层地下水主要来源于中游侧向径流,水化学类型主要为HCO3—Ca·Mg型,综合分析表明,安阳河中下游(冲洪积扇)地带“三水”转换积极,并影响其水质、水量。  相似文献   

5.
锡林河流域地表水和浅层地下水的稳定同位素研究   总被引:6,自引:3,他引:3  
2006年4—9月,在从锡林河源头沿河流进行地表水和地下水同位素样品采集和分析的基础上,利用全球降水同位素监测网(GNIP)包头站的大气降水稳定同位素资料,结合锡林河流域的气象和水文资料,对锡林河流域大气降水、地表水和地下水稳定同位素进行了研究.结果表明:地下水中δ18O和δD值分别集中在-11.7‰~-14.9‰和-80‰~-89.5‰范围内,δ18O沿地下水流向有增加的趋势,大部分地下水中δ18O的季节波动性不大;河流干流δ18O和δD的年算术平均值从源区的-12.8‰和-94.5‰到入锡林河水库处的-10.0‰和-79.3‰,差值分别约为3‰和15‰.河水中的δ18O值沿流程增加而增大的现象可归结为受含有较高δ18O值的地下水补给作用和河水的蒸发作用的共同影响,其中对δ18O蒸发富集的研究显示,蒸发引起δ18O富集值为1‰.通过地下水线(GWL)和地表水线(SWL)及区域大气降水线(LMWL)的对比分析发现,在径流季节,降水对地表水的贡献小,地下水是地表水主要的补给源,地表径流基本是地下水的排泄.  相似文献   

6.
济南泉域浅层地下水水化学同位素研究   总被引:1,自引:1,他引:0  
文章系统地分析了济南泉域浅层地下水(第四系孔隙水)和地表水的水化学成分和氢氧稳定同位素,并结合当地地形和水文条件,研究了不同地段浅层地下水和地表水的不同补给来源,揭示了浅层地下水与岩溶水的水力联系,得出浅层地下水在市区和东郊以降水入渗补给为主;在西郊和平安店则以岩溶水顶托补给和地表水(河水和水库水)入渗补给为主、当地降水入渗为辅的结论。为保护泉水、优化泉域内地下水开采方案提供了重要依据。  相似文献   

7.
三江平原地表水与地下水氢氧同位素和水化学特征   总被引:2,自引:0,他引:2       下载免费PDF全文
地表水与地下水的相互作用是水循环研究中的重要组成部分,是水资源管理、规划和优化配置的基础。通过野外考察取样和室内测试分析,应用同位素和水化学方法分析了三江平原地表水与地下水的相互作用关系。结果表明:兴凯湖水氢氧同位素最富集,乌苏镇井水同位素最贫化。松花江、黑龙江和乌苏里江沿河流流向,δD都呈现贫化的趋势;δ18O在松花江和黑龙江沿河流流向有富集的趋势,而沿乌苏里江则呈现贫化趋势。在松花江和黑龙江汇合处,黑龙江江水同位素贫化,电导率低。深井的氢氧同位素比浅井贫化,电导率较小。三江平原当地大气降水线(LMWL)为δD=7.4δ18O-3.1。三江平原水化学主要是Ca·Mg-HCO3型,在人类活动较大的地方,水化学类型发生了改变。利用氢氧同位素和水化学分析表明降水是地表水和地下水的补给源,地表水与地下水水力联系较强。地表水与地下水应作为统一体进行水资源管理。  相似文献   

8.
岩溶水文特征是岩溶区生态环境可持续发展的关键驱动力。文章利用环境同位素示踪剂反馈的水动力过程,解译毛村地下河流域的水流特征。其流域内水体δD和δ18O范围均位于大气降水δD和δ18O的范围内,大气降水是流域主要的补给来源;基于δ13CDIC利用质量守恒定律计算岩溶水体中DIC来源于碳酸盐岩溶解的平均值为52.13‰,可揭示相关的水—碳酸盐岩相互作用历程;流域内岩溶水点222Rn和EC值对大气降水的响应特征表明降水的蓄积作用可驱动深层岩溶裂隙水运移,且具有较强的稀释作用;基于222Rn的衰变特征,计算6月份地下河管道有效水流速度为2 427.49 m·d?1;西南岩溶地下河水流与地表水流相似,且对降水响应敏感。综合毛村地下河流域的水文地质条件及其水文点SI、222Rn、δ13CDIC和δ18O间的相关关系,环境同位素可更好地示踪岩溶裂隙水流特征,揭示岩溶含水系统的空间结构特征及水流路径。水化学环境天然示踪剂可提供有关岩溶含水系统的重要信息,对水动力学方法具有重要的补充作用。   相似文献   

9.
本文在对都思兔河流域水文地质条件进行介绍的基础上,根据实测结果对河流量及δ18O和δD沿流程的变化进行了讨论,分析了其变化机理。结果表明都思兔河流量沿流程的变化与地下水等水位线及河水与地下水的补排关系吻合很好。把河水的氢氧稳定同位素成分与流域内其他水体的成分进行比较发现,河水明显受蒸发作用的影响。河水同位素成分的变化主要由地下水的补给及河水的蒸发两种作用共同引起,地下水的补给使河水的1δ8O和δD减小,河水的蒸发则使其同位素成分增大。文章使用Rayleigh平衡分馏方程对河水的蒸发比例进行了计算,结果表明,河水的累计蒸发比例可达20%~48%。  相似文献   

10.
湖北宜昌香溪河流域环境同位素特征及其水循环意义   总被引:2,自引:0,他引:2  
为研究鄂西南岩溶山区的水循环过程,以湖北宜昌香溪河流域为研究对象,通过现场调查并结合环境同位素,对香溪河流域地表水和地下水进行了取样,通过测定其氢氧同位素组成,分析了同位素变化特征以及流域地下水和地表水的转换关系及其水循环特征。流域水中δD、δ18 O值组成分析表明:流域内各种水体主要分布在当地大气降水线的附近,构成斜率明显小于雨水线的蒸发线,3个子流域δD、δ18 O值的富集程度为:南阳河流域<古夫河流域<高岚河流域。南阳河流域上游受神农架山区地方性大气降水控制。响水洞和响龙洞(暗河出口)水中氘过量参数(d)值分别反映出不同的地下径流途径与滞留时间、水岩反应强度。子流域同位素沿程变化的特征反映出:在上游段,水来源不同以及地表水和地下水转换频繁是δD、δ18 O值变化的主要影响因素;在中下游段,流域内地下水流入河流,河水流量逐渐增大,不同的水源混合均匀,经过一定的蒸发作用,δD、δ18 O值的变幅趋于稳定。  相似文献   

11.
玛曲高原区地下水是黄河的重要补给水源,然而其水化学特征及形成机理认识还十分有限。通过采集玛曲潜水、河水和黄河河道沉积物,系统研究了玛曲高原区地下水水化学、同位素特征以及水文地球化学过程。结果表明:河水和潜水的溶解性总固体含量低,分别为72~195 mg/L和207~459 mg/L,水化学成分以Ca2+和HCO3-为主,水样中砷浓度为0.46~17.7μg/L。氢氧同位素结果表明,地下水和河水补给来源为当地大气降水,河水相对潜水富集δ18O和δD。河水水化学组成主要受蒸发浓缩作用的影响,而潜水主要受碳酸盐岩溶解作用的影响。潜水水样SI白云石小于0的占68%,表明潜水中白云石处于不饱和状态。某些潜水砷含量超标的原因可能是沉积物铁锰氧化物矿物的还原性溶解,而砷的来源可能是玛曲河道和浅层松散沉积物中吸附态砷。研究成果有助于揭示黄河上游玛曲段地下水的来源及地下水化学成分的形成机理。  相似文献   

12.
汾河中游干流河水与大气降水和浅层地下水的转化关系   总被引:1,自引:0,他引:1  
文章通过分析太原盆地汾河中游干流河水和浅层地下水的水化学和同位素资料,研究汾河干流河水与浅层地下水和大气降水之间的转化关系。结果表明:总体而言,汾河中游干流河水的补给来源以浅层地下水为主,其次为大气降水;河水在向下游径流过程中,大气降水的补给比例逐渐增大,在河流流出太原盆地附近河水主要由大气降水补给。  相似文献   

13.
利用小昌马河流域上游大雪山老虎沟冰雪融水及下游昌马洪积扇区地下水的稳定同位素和水化学资料, 对流域稳定同位素和水化学的组分特征和季节变化进行了分析. 结果表明: 小昌马河流域内从上游冰雪融水区到下游昌马洪积扇地下水排泄区矿化度不断增高, 水化学类型由HCO3-Mg-Ca过渡到HCO3-SO4-Ca-Mg; 上游冰雪融水与下游地下水δ18O的季节变化基本一致, 洪积扇区地下水来源于冰雪融水的补给. 水文地球化学模型模拟显示地下水形成过程中水岩作用以析出方解石, 吸收二氧化碳, 溶解石膏、 岩盐和绿泥石等为主要特征, 溶蚀的含盐矿物使地下水中氯化物、 硫酸根和钠离子含量升高, 地下水水质恶化. 同位素和水化学证据均揭示了小昌马河流域地表水-地下水的化学环境转化关系.  相似文献   

14.
塔里木盆地河水氢氧同位素与水化学特征分析   总被引:5,自引:1,他引:5  
塔里木盆地是内陆地区重要的能源战略基地,研究其地表水的氢氧同位素和水化学特征对于区域水资源研究有重要意义.分析了塔里木盆地主要河流的河水样品δD-δ18O之间的关系以及主要离子与C1-之间的变化关系,得出如下认识:天山南麓和盆地西南部河水样品的δD、δ180值之间的差异主要是由同位素的高程效应引起的,昆仑山北坡河水样品的δD、δ180值之间的差异是同位素的高程效应和大陆效应共同作用的结果;渭干河、阿克苏河、喀什噶尔河、和田河中Na+主要来源于河水对蒸发盐石盐的溶解,K+主要来自于矿物的风化过程,喀什噶尔河流域中Ca2和SO42-主要来自于石膏的溶解,渭干河、阿克苏河、和田河流域中的Ca2和SO42-不来源于高溶解度的矿物.  相似文献   

15.
娘子关泉域岩溶水氢氧同位素特征及影响因素浅析   总被引:4,自引:0,他引:4  
为了研究娘子关泉域岩溶水状况及补给运移规律,系统采集了泉域内岩溶水、地表水样品,分析测试了样品的δD、δ~(18)O值,利用氢氧同位素方法,通过分析氢氧同位素特征及其影响因素研究岩溶水的补给来源及各含水层的相互联系。研究结果表明,大气降水和河流渗漏补给是泉域内岩溶水的主要补给来源。由于大气降水的高程效应和温度效应,导致泉域内δD、δ~(18)O值存在一定的差异。由于受到强烈蒸发后的大气降水及河流渗漏水的补给,河流沿岸岩溶水的δD、δ~(18)O值相对较高。同时对娘子关泉群城西泉、五龙泉和集泉站的D和~(18)O同位素分析结果表明,城西泉水来源于近源低海拔的补给源;而五龙泉和集泉站泉水来源于深循环、远距离、较高补给高程与地表水交换弱的补给源。通过以上研究,进一步明确了娘子关泉域岩溶水的补给运移规律,为当地政府合理开发及可持续利用娘子关泉域岩溶水资源提供了理论支撑。  相似文献   

16.
《地下水》2021,(3)
河南省永城市日月湖生态景区治理工程在给永城市人民带来一个优美生态环境的同时,治理区地形、微地貌、水文及水文地质等条件也发生了变化,尤其是开挖后浅层地下水直接出露地表形成湖水,其水质相比之前埋藏于地下会发生改变。论文在阐述永城市日月湖景区水文地质条件的基础上,重点分析了治理区湖水、河水和浅层地下水的水化学和氘氧同位素特征。分析结果表明,湖水的水化学类型为HCO_3-SO_4-Na(Mg)型;河水水化学类型以SO_4-HCO_3-Na型为主;浅层地下水的水化学类型为HCO_3-Na-Mg型或HCO_3-Mg-Na型,个别水样中Cl-含量较高,水化学类型为HCO_3-Cl-Na(Mg,Ca)。湖水和地下水的水化学类型更接近,说明浅层地下水是湖水的重要补给来源。河水的TDS最高,浅层地下水TDS其次,湖水的TDS相对最低。研究区不同水体的氘氧同位素的分析结果说明,湖水受蒸发作用影响同位素富集;河水氘氧同位素与降水和地下水比较接近,其补给来源为大气降水和地下水;地下水除接受大气降水补给及雨季受河水补给外,还接受区域较高处的侧向径流补给,既有近源补给,也有远源补给。  相似文献   

17.
用氢氧稳定同位素评价闽江河口区地下水输入   总被引:4,自引:0,他引:4       下载免费PDF全文
通过分析闽江河口区降水、地表水和地下水的氢氧稳定同位素特征,揭示降水的环境同位素效应和地下水的形成演化规律,定量评价河口区多种水体的混合过程及地下水输入量。夏季的降水氢氧同位素组成相对贫化,呈现出降雨量效应。在δ18O与δD关系图上,闽江北岸基岩裂隙水、平原及丘陵区浅层地下水均落在福州降水线上,而南岸平原及丘陵区浅层地下水大部分落在福州降水线右下方,其拟合线与降水线交点与5~9月农灌期降水氢氧同位素加权值接近,表明北岸地下水主要来自降水补给,而南岸地下水同时接受灌溉水和降水补给,并在入渗过程中经历了不同程度的蒸发作用。闽江河口段除接受两岸地下水补给外,局部河段还接受断裂带裂隙水补给。将线性端元混合模型、数字高程模型和地下水文分析法结合起来定量评价地下水的输入和各水体的混合过程,结果显示,在河口段淡水区,地下水混合比率上限为8.8%,其中包括0.4%的断裂带裂隙水;在河口段淡咸水混合区,淡水(河水、地下水)和海水的混合比为53:47,其中地下水的保守混合比率为1.7%;枯水期闽江河口段地下水保守输入量为87.0 m3/s,是闽江径流量的12.8%。  相似文献   

18.
为了探究平朔矿区所在流域不同水体同位素的时空变化规律, 揭示采煤活动下区域水循环规律, 于2020年8月和12月对流域内地表水、地下水和矿井水进行采样, 测试样品的D和18O同位素组成, 并利用贝叶斯混合模型MixSIAR计算了矿井水不同来源的贡献率。结果表明: ①地表水和矿井水δD和δ18O夏季较冬季高; 地下水δD和δ18O季节差异不明显。地表水氢氧同位素值沿程呈增加趋势, 但局部受到矿井水的补给, 出现贫化; 地下水氢氧同位素值沿径流方向呈逐渐增加趋势。②采煤区氢氧同位素值较非采煤区明显增加。受季节效应影响, 在空间分布上8月浅层地下水氢氧同位素高值区域较12月明显增多。③ δ18O与δD关系图表明, 地表水在接受大气降水的补给之后受到了蒸发分馏作用的影响; 浅层地下水的补给源较复杂, 深层地下水由于采煤形成的导水裂隙带受到了浅层地下水和地表水的补给; 矿井水受地表水、浅层地下水和深层地下水的补给。④ MixSIAR模型揭示出深层地下水是矿井水的主要补给来源, 占61.60%~67.20%, 且补给比例冬季大于夏季; 浅层地下水对矿井水的补给存在明显季节差异。  相似文献   

19.
由于多年冻土区流域土壤冻融过程对水循环影响的复杂性,水循环物理过程观测存在困难和不足,而利用稳定同位素方法可以有效地解决该问题。因此,基于2009年长江源风火山流域夏季定点降水和河水δD和δ18O,对研究区降水河水稳定同位素特征进行分析。结果表明,研究区夏季降水δD和δ18O受到降水量和温度的双重影响,即受海洋性和大陆局地气团的交替影响。河水氢氧同位素的季节变化和空间差异与壤中流、地下水补给河流的季节差异和植被覆盖的空间差异有关。随着地温升高和土壤冻融锋面的迁移,河水补给来源和同位素特征发生改变,表明土壤冻融变化对多年冻土流域径流过程起到重要作用。此外,蒸发分馏作用是研究区河水同位素的重要影响因素。  相似文献   

20.
伊犁河支流大西沟河水与地下水转化关系研究   总被引:1,自引:1,他引:0  
开展河流和地下水转换关系研究对于区域水资源合理开发利用具有重要意义。文章以大西沟河水与地下水转换关系为目标,在分析地下水动力场的基础上,通过水化学类型、溶解性总固体(TDS)、氯离子(Cl-)等水化学以及环境同位素18O、D、T等指标作为示踪剂,分析大西沟河和地下水的转换关系和转化强度。结果表明:研究区河流和地下水化学类型主要为HCO3—Ca,水化学类型空间分布特征相似;TDS和Cl-浓度表现为先增加后下降,但地下水的变化幅度大于河水。通过对大西沟河水和地下水中的水化学和环境同位素指标对比分析,发现研究区河流与地下水之间补给排泄关系具有明显的分段性;从河流出山口到下游地区,河水和地下水之间发生了三次转化关系:在山前倾斜砾质平原区以河水入渗补给地下水为主,补给量占该段潜水径流量的56%;到了细土平原区出现地下水补给河水地段,补给源为承压水越流补给潜水后的混合水体,潜水和承压水补给比例占该段河水径流量的20.4%与58.4%;风成沙漠区河水沿途渗漏补给地下水直至河流断流。本次研究结果为建立研究区水循环演化模式和水资源合理开发利用提供了理论和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号