首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper analyses the influence of grain shape and angularity on the behaviour of granular materials from a two‐dimensional analysis by means of a discrete element method (Contact Dynamics). Different shapes of grains have been studied (circular, isotropic polygonal and elongated polygonal shapes) as well as different initial states (density) and directions of loading with respect to the initial fabric. Simulations of biaxial tests clearly show that the behaviour of samples with isotropic particles can be dissociated from that of samples with anisotropic particles. Indeed, for isotropic particles, angularity just tends to strengthen the behaviour of samples and slow down either local or global phenomena. One of the main results concerns the existence of a critical state for isotropic grains characterized by an angle of friction at the critical state, a critical void ratio and also a critical anisotropy. This critical state seems meaningless for elongated grains and the behaviour of samples generated with such particles is highly dependent on the direction of loading with respect to the initial fabric. The study of local variables related to fabric and particle orientation gives more information. In particular, the coincidence of the principal axes of the fabric tensor with those of the stress tensor is sudden for isotropic particles. On the contrary, this process is gradually initiated for elongated particles. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
由于黏性土表面带有丰富的负电荷,孔隙水溶液化学状态的变化对黏性土的物理力学特性存在明显影响。随着化学-力学耦合的相关岩土工程问题日益突出,进行有效的化学-力学耦合行为的数值分析评价显得尤为重要。因此,建立一个简单有效的考虑化学-力学耦合的本构模型是非常关键的。基于传统的修正剑桥模型,提出了一个简单的化学-力学耦合模型。该模型采用渗透吸力π描述孔隙水的化学状态,建立了前期屈服应力,临界状态线斜率M和弹性刚度与渗透吸力π之间的关系式,从而实现了模型对盐溶液饱和黏性土的变形和强度特性的有效模拟。通过与试验数据的对比和分析,说明该模型能有效地模拟孔隙盐溶液饱和黏性土的等向压缩行为、 状态下压缩行为以及 状态下化学-力学循环加载行为。此外,通过对黏性土三轴压缩试验的模拟,说明该模型能反映黏性土三轴应力状态下的基本力学特征。  相似文献   

3.
为探讨南京下蜀土在三轴压缩下的宏观力学性质及微观演化机理,分别通过三轴试验仪和扫描电子显微镜(SEM)研究了下蜀土的宏观变形、强度特性及微结构变化规律。结果表明:下蜀土的结构强度与围压的比值基本上为常数,土体的结构强度与内部颗粒的排列、胶结性能,以及外部应力状态有关。三轴压缩下,随着应变增大,下蜀土中较大颗粒集聚体受剪破坏,而较小颗粒通过聚集增大,使得土体颗粒面积比例增大,但颗粒集团化程度降低,平面分布分散,颗粒排列逐渐朝无序发展,并在无序程度最高部位形成了剪切破坏带。  相似文献   

4.
In this paper we introduce the branch tensor as an internal variable able to account for the structural anisotropy of a granular sample. The distribution of averaged contact forces is assumed to depend not only on the macroscopic stress and the local orientation, but also on the value of the fabric tensor. In contrast to previous work, including the fabric tensor has the crucial advantage that accounts for all relative positions between interacting particles, through the average value of the branch tensor. Based on a classical representation result, we propose an identification procedure that uses information obtained from both isotropic and anisotropic configurations.  相似文献   

5.
Hu  Nian  Yu  Hai-Sui  Yang  Dun-Shun  Zhuang  Pei-Zhi 《Acta Geotechnica》2020,15(5):1125-1151

This paper presents a fabric tensor-based bounding surface model accounting for anisotropic behaviour (e.g. the dependency of peak strength on loading direction and non-coaxial deformation) of granular materials. This model is developed based on a well-calibrated isotropic bounding surface model. The yield surface is modified by incorporating the back stress which is proportional to a contact normal-based fabric tensor for characterising fabric anisotropy. The evolution law of the fabric tensor, which is dependent on both rates of the stress ratio and the plastic strain, rules that the material fabric tends to align with the loading direction and evolves towards a unique critical state fabric tensor under monotonic shearing. The incorporation of the evolution law leads to a rotational hardening of the yield surface. The anisotropic critical state is assumed to be independent of the initial values of void ratio and fabric tensor. The critical state fabric tensor has the same intermediate stress ratio (i.e. b value) and principal directions as the critical state stress tensor. A non-associated flow rule in the deviatoric plane is adopted, which is able to predict the non-coaxial flow naturally. The stress–strain relation and fabric evolution of model predictions show a satisfactory agreement with DEM simulation results under monotonic shearing with different loading directions. The model is also validated by comparing with laboratory test results of Leighton Buzzard sand and Toyoura sand under various loading paths. The comparison results demonstrate encouraging applicability of the model for predicting the anisotropic behaviour of granular materials.

  相似文献   

6.
For technical reasons, virtually all plastic deformation experiments on geological materials have been performed in either pure shear or simple shear. These special case loading geometries are rather restrictive for those seeking insight into how microstructure evolves under the more general loading geometries that occur during natural deformation. Moreover, they are insufficient to establish how plastic flow properties might vary with the 3rd invariant of the deviatoric stress tensor (J3) which describes the stress configuration, and so applications that use those flow properties (e.g. glaciological and geodynamical modelling) may be correspondingly compromised. We describe an inexpensive and relatively straightforward modification to the widely used Paterson rock deformation apparatus that allows torsion experiments to be performed under simultaneously applied axial loads. We illustrate the performance of this modification with the results of combined stress experiments performed on Carrara marble and Solnhofen limestone at 500°–600 °C and confining pressures of 300 MPa. The flow stresses are best described by the Drucker yield function which includes J3-dependence. However, that J3-dependence is small. Hence for these initially approximately isotropic calcite rocks, flow stresses are adequately described by the J3-independent von Mises yield criterion that is widely used in deformation modelling. Loading geometry does, however, have a profound influence on the type and rate of development of crystallographic preferred orientation, and hence of mechanical anisotropy. The apparatus modification extends the range of loading geometries that can be used to investigate microstructural evolution, as well as providing greater scope for determining the shape of the yield surface in plastically anisotropic materials.  相似文献   

7.
Undisturbed specimens of a soft clayey silt have been taken vertically, horizontally and at 45° to the vertical at the base of a trench and submitted to consolidation and undrained triaxial compression and extension tests in the laboratory. Undrained shear strengths and compressibilities are found to be strongly dependent on sample orientation, but the effective stress strength parameters are shown to be much more influenced by stress path than sample orientation. The pore-pressure response vs axial strain is shown to be unaffected by sample orientation. Most of the anisotropic effects are shown to be eliminated by successively consolidating the specimens under isotropic pressure increments and re-testing in undrained shear. Some of the evidence from the experimental programme indicates that tension resisting bonds act between the grains of the soil specimens.  相似文献   

8.
9.
In this paper, a simple bounding surface plasticity model is used to reproduce the yielding and stress–strain behavior of the structured soft clay found at Shanghai of China. A series of undrained triaxial tests and drained stress probe tests under isotropic and anisotropic consolidation modes were performed on undisturbed samples of Shanghai soft clay to study the yielding characteristics. The degradation of the clay structure is modeled with an internal variable that allows the size of the bounding surface to decay with accumulated plastic strain. An anisotropic tensor and rotational hardening law are introduced to reflect the initial anisotropy and the evolution of anisotropy. Combined with the isotropic hardening rule, the rotational hardening rule and the degradation law are incorporated into the bounding surface formulation with an associated flow rule. Validity of the model is verified by the undrained isotropic and anisotropic triaxial test and drained stress probe test results for Shanghai soft clay. The effects of stress anisotropy and loss of structure are well captured by the model.  相似文献   

10.
One of the purposes in this study is to develop a modified micromorphic continuum model for granular materials on the basis of a micromechanics approach. A symmetric curvature tensor is proposed in this model, and a symmetric couple stress tensor is derived conjugating the symmetric curvature tensor. In addition, a correct derivation is presented to obtain the symmetric stress tensor conjugated with the symmetric strain tensor. The modified model provides a complete deformation mode for granular materials by considering the decomposition for motions (displacement and rotation) of particles. Consequently, the macroscopic constitutive relationships and constitutive moduli are derived in expressions of the microstructural information. Furthermore, the balance equations and boundary conditions are obtained for the modified micromorphic model. By considering the extended Drucker-Prager yield criterion, the micromorphic elastoplastic model is developed. Another purpose of this study is to derive the finite element formulation for the developed micromorphic elastoplastic model. Based on the ABAQUS user element (UEL) interface, numerical simulations investigated the load-displacement relationship and the strain localization behavior of granular materials and investigated the influence of microscopic parameters in the micromorphic model on these macroscopic mechanical responses. Numerical results illustrate the presented model's capability of simulating the strain-softening and strain localization behaviors, and the capability of considering the influence of microstructural information on the macroscopic mechanical behaviors of granular materials.  相似文献   

11.
真空-堆载预压作用下软土蠕变特性试验研究   总被引:4,自引:1,他引:3  
采用改进的、可施加负压的三轴仪开展了真空预压、堆载预压以及真空-堆载联合预压作用下软土的固结蠕变试验,描述了加载率、应力比和时间等对软土蠕变特性的影响,分析了轴向应变(率)、体积应变(率)及偏应变(率)与应力比和时间之间的关系。结果表明:轴向应变率和体积应变率与时间的对数关系并非线性,但经过若干天以后可近似认为是线性关系;在不同应力比n下,体应变与时间的关系可用双曲线方程来表示;偏应变、偏应变率与时间的关系符合双曲线方程,通过温州软黏土样的蠕变试验结果验证了其有效性。  相似文献   

12.
This study investigates the effect of a heat‐treatment upon the thermo‐mechanical behaviour of a model cement‐based material, i.e. a normalized mortar, with a (w/c) ratio of 0.5. First, a whole set of varied experimental results is provided, in order to either identify or validate a thermo‐mechanical constitutive model, presented in the second paper part. Experimental responses of both hydraulic and mechanical behaviour are given after different heating/cooling cycling levels (105, 200, 300, 400°C). The reference state, used for comparison purposes, is taken after mass stabilization at 60°C. Typical uniaxial compression tests are provided, and original triaxial deviatoric compressive test responses are also given. Hydraulic behaviour is identified simultaneously to triaxial deviatoric compressive loading through gas permeability Kgas assessment. Kgas is well correlated with volumetric strain evolution: gas permeability increases hugely when εv testifies of a dilatant material behaviour, instead of contractile from the test start. Finally, the thermo‐mechanical model, based on a thermodynamics approach, is identified using the experimental results on uniaxial and triaxial deviatoric compression. It is also positively validated at residual state for triaxial deviatoric compression, but also by using a different stress path in lateral extension, which is at the origin of noticeable plasticity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
开展上海软黏土的宏微观三轴剪切试验,研究软黏土受荷状态下孔隙的演化特征。结果表明:局部变形在加荷初期就开始发生。随着荷载的增加,细碎团聚体增多,孔隙不断地扩展,生成大的贯通孔隙,孔隙定向排列明显,剪切带形成。微观结构参数与剪应力比呈非线性正相关关系,最大孔隙面积、孔隙比、孔隙各向异性率及分布分维数在受荷初期缓慢地增大,后期快速增大。应变为8%时,最大各向异性率达到0.68,最大孔隙比为1.96。剪切带附近的微观结构参数都大于带外值。在受荷过程中,土的微观结构发生劣化,软黏土变形过程分为损伤开始、损伤发展剪切带形成和土体破坏3阶段,微观结构的劣化与土的宏观力学特性紧密相联系。  相似文献   

14.
黏土颗粒形态不仅反映黏土的矿物组分,更是影响其物理力学性质的重要因素之一。为了研究物质组成对软黏土微宏观性质的影响,采用离散元方法对不同颗粒形态的软黏土试样进行三轴压缩模拟试验。首先,基于扫描电镜图像量化颗粒形态,对天然状态下黏土颗粒的方向角和凹凸度进行统计,引入球度和凹凸度作为颗粒形态的特征参数;然后,基于原生矿物的单粒结构和黏土矿物的片状结构特征,构造球体单粒及圆柱体、正方体、长方体的片状簇体;最后,基于三轴试验离散元模拟方法,分析软黏土颗粒形态对其宏观力学及微观特性的影响。结果表明:片状颗粒试样比球体颗粒试样的初始模量高,抗剪强度大,随加载其排列趋于水平向分布;加载初期,颗粒球度对初始弹性模量影响较明显,初始弹性模量随着球度增大而逐渐减小;加载后期,颗粒凹凸度对抗剪强度指标影响作用逐渐凸显,试样内摩擦角和黏聚力随着凹凸度增大而逐渐减小;微观结构上,颗粒形状对颗粒位移和旋转也有较大影响。  相似文献   

15.
On the capillary stress tensor in wet granular materials   总被引:3,自引:0,他引:3  
This paper presents a micromechanical study of unsaturated granular media in the pendular regime, based on numerical experiments using the discrete element method, compared with a microstructural elastoplastic model. Water effects are taken into account by adding capillary menisci at contacts and their consequences in terms of force and water volume are studied. Simulations of triaxial compression tests are used to investigate both macro and micro‐effects of a partial saturation. The results provided by the two methods appear to be in good agreement, reproducing the major trends of a partially saturated granular assembly, such as the increase in the shear strength and the hardening with suction. Moreover, a capillary stress tensor is exhibited from capillary forces by using homogenization techniques. Both macroscopic and microscopic considerations emphasize an induced anisotropy of the capillary stress tensor in relation with the pore fluid distribution inside the material. Insofar as the tensorial nature of this fluid fabric implies shear effects on the solid phase associated with suction, a comparison has been made with the standard equivalent pore pressure assumption. It is shown that water effects induce microstructural phenomena that cannot be considered at the macro level, particularly when dealing with material history. Thus, the study points out that unsaturated soil stress definitions should include, besides the macroscopic stresses such as the total stress, the microscopic interparticle stresses such as the ones resulting from capillary forces, in order to interpret more precisely the implications of the pore fluid on the mechanical behaviour of granular materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A review of the literature indicates that the elastic behaviour of granular materials is isotropic and that Poissony's ratio is constant, whereas Young's Modulus, the bulk modulus and the shear modulus vary with the mean normal stress and the deviatoric stress. A nonlinear, isotropic model for the elastic behaviour is developed on the basis of theoretical considerations involving the principle of conservation of energy. Energy is therefore neither generated not dissipated in closed-loop stress paths or in closed-loop strain paths. The framework for the model consists of Hooke's law, in which Poission's ratio is constant and Young's modulus is expressed as a power function invlving the first invariat of the stress tensor and the second invariant of the deviatoric stress tensor. The characteristics of the model are described, and the accuracy is evaluated by comparison with experimental results from triaxial tests and three-dimensional cubical triaxial tests with a variety of stress paths. Parameter determination from unloading–reloading cycles in conventional triaxial compression tests is demonstrated, typical parameter values are given for granular materials and extension of the model to soils with effective cohesion is described.  相似文献   

17.
不同应力路径下某高速公路路基黏性土湿化变形试验研究   总被引:2,自引:0,他引:2  
张秀成  王义重  傅旭东 《岩土力学》2010,31(6):1791-1796
针对某高速公路黏性填土路基浸水湿化的情况,进行了大量室内试验研究。为了研究土在实际应力路径下的湿化变形规律,分别在常规三轴应力路径、常规三轴K0固结应力路径、K0固结+常规三轴压缩应力路径以及使用真三轴仪的平面应变下K0固结 + 平面应变剪切应力路径和平面应变等应力比路径下进行了黏性土的湿化试验。通过对试验数据的分析,得到了湿化附加轴向应变与湿化时应力水平的幂函数关系。通过总结研究不同应力路径下应力-应变曲线的规律,提出了不同应力路径下的应力-应变关系的公式。  相似文献   

18.
The stress–strain behavior of a granular material is dominated by its internal structure, which is related to the spatial connectivity of particles, and the force chain network. In this study, a series of discrete element simulations were carried out to investigate the evolution of internal structure and force chain networks in initially isotropic granular materials along various imposed stress paths. The fabric tensor of the strong sub-network, which is the bearing network toward loading, can be related to the applied stresses uniquely. The principal directions of fabric tensor of the strong sub-network coincide with those of stress tensor during the loading process in the Lode coordinate system. The fabric of the whole contact network in the pre- and post-peak deformation stages can be related to the applied stresses as \(q_{\phi } = B\left( {q/p} \right)^{z}\) (B and z are constants depending on loading condition, such as the stress paths and mean stress level) and \(\phi_{1} :\phi_{2} :\phi_{3} \approx \left( {\sigma_{1} } \right)^{0.4} :\left( {\sigma_{2} } \right)^{0.4} :\left( {\sigma_{3} } \right)^{0.4}\), respectively. At the critical stress state, the deviator of fabric tensor of the strong sub-network is much larger than that of the whole contact network. When plotted on the π-plane, the fabric state of the strong sub-network can be expressed as a Lade’s surface, while the fabric state of the whole network corresponds to an inverted Lade’s surface.  相似文献   

19.
The microscopic and macroscopic behaviors of assemblages of monodisperse ellipsoids with different particle shapes were studied using the discrete element method. Four samples were created with 1170 identical prolate ellipsoids. The samples were compressed isotropically to 100 kPa. Then triaxial compression tests were carried out to very large strains until the ultimate state was reached. This paper presents typical macroscopic result including stress–strain relationship and volumetric behavior. In addition, the fabric of the samples was examined at the initial state, at the peak shear strength state, and at the ultimate state. We studied the evolution of three vector‐typed micromechanical arguments with strain including the particle orientation, branch vector, and normal contact force. The normal contact force (micromechanical argument) was found to have a direct relationship with the principal stress ratio (macroscopic parameter). The angles between these vectors were also investigated. The maximum angle between vectors is related to particle shape. The results indicate that the distributions and the maximum values of these angles do not change with loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The liquefaction susceptibility of various graded fine to medium saturated sands are evaluated by stress controlled cyclic triaxial laboratory tests. Cyclic triaxial tests are performed on reconstituted specimens having global relative density of 60%. In all cyclic triaxial tests; loading pattern is selected as a sinusoidal wave form with 1.0 Hz frequency, and effective consolidation pressure is chosen to be 100 kPa. Liquefaction resistance is defined as the required cyclic stress ratio which caused initial liquefaction in 10 cycles during the cyclic triaxial test. The results are used to draw relationship between grading characteristics (e.g. coefficient of uniformity and coefficient of curvature) and the liquefaction resistance of various graded sands. It is found that a relationship between cyclic resistance and any of the size (i.e. D10, D30 or D60) would be more realistic than to build a relation between grading characteristics and the cyclic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号