首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a non‐linear soil–structure interaction (SSI) macro‐element for shallow foundation on cohesive soil. The element describes the behaviour in the near field of the foundation under cyclic loading, reproducing the material non‐linearities of the soil under the foundation (yielding) as well as the geometrical non‐linearities (uplift) at the soil–structure interface. The overall behaviour in the soil and at the interface is reduced to its action on the foundation. The macro‐element consists of a non‐linear joint element, expressed in generalised variables, i.e. in forces applied to the foundation and in the corresponding displacements. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. Mechanisms of yielding and uplift are modelled through a global, coupled plasticity–uplift model. The cyclic model is dedicated to modelling the dynamic response of structures subjected to seismic action. Thus, it is especially suited to combined loading developed during this kind of motion. Comparisons of cyclic results obtained from the macro‐element and from a FE modelization are shown in order to demonstrate the relevance of the proposed model and its predictive ability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
This study employs two statistical learning algorithms (Support Vector Machine (SVM) and Relevance Vector Machine (RVM)) for the determination of ultimate bearing capacity (qu) of shallow foundation on cohesionless soil. SVM is firmly based on the theory of statistical learning, uses regression technique by introducing varepsilon‐insensitive loss function. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. It also gives variance of predicted data. The inputs of models are width of footing (B), depth of footing (D), footing geometry (L/B), unit weight of sand (γ) and angle of shearing resistance (?). Equations have been developed for the determination of qu of shallow foundation on cohesionless soil based on the SVM and RVM models. Sensitivity analysis has also been carried out to determine the effect of each input parameter. This study shows that the developed SVM and RVM are robust models for the prediction of qu of shallow foundation on cohesionless soil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, the behaviour of shallow foundations subjected to eccentric inclined loads is presented using nonlinear elastic finite element analysis. The material non-linearity of the soil has been taken into consideration by employing the hyperbolic stress-strain model. The formulation of an isoparametric interface/joint element which is used between footing base and soil media has been presented. Tests have been conducted to determine the characteristics of soil-footing interface. Forty cases of strip footing resting on sand and subjected to eccentric-inclined load which were studied by Agrawal (1986) through model tests, have been analysed. The predicted pressure-settlement, pressure-horizontal displacement and pressure-tilt characteristics have been compared with experimental results of Agrawal (1986) and a reasonable agreement between the two has been observed.  相似文献   

4.
This paper presents a non‐linear interface element to compute soil–structure interaction (SSI) based on the macro‐element concept. The particularity of this approach lies in the fact that the foundation is supposed to be infinitely rigid and its movement is entirely described by a system of global variables (forces and displacements) defined in the foundation's centre. The non‐linear behaviour of the soil is reproduced using the classical theory of plasticity. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. The macro‐element is appropriate for modelling the cyclic or dynamic response of structures subjected to seismic action. More specifically, the element is able to simulate the behaviour of a circular rigid shallow foundation considering the plasticity of the soil under monotonic static or cyclic loading applied in three directions. It is implemented into FedeasLab, a finite element Matlab toolbox. Comparisons with experimental monotonic static and cyclic results show the good performance of the approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
非均质地基承载力及破坏模式的FLAC数值分析   总被引:3,自引:0,他引:3  
利用基于Lagrangian显式差分的FLAC算法,通过数值计算,对黏结力随深度线性增长的非均质地基上条形基础和圆形基础的极限承载力及地基破坏模式进行了对比计算与系统分析。研究表明:(1)随着地基黏结力沿深度非均匀变化系数的增大,地基的破坏范围逐渐集中在地基表层和基础两侧:(2)即使地基的非均质程度较小,当将非均质地基近似地按均质地基考虑时,由此所估算的承载力可能过于保守;(3)地基承载力系数随黏结力沿深度非均匀变化系数的增大而非线性地增大。与数值解相比,skempton与Peck等近似公式均可能高估了非均质地基承载力。  相似文献   

6.
A finite element approach based on an advanced multi‐surface kinematic constitutive model is used to evaluate the bearing capacity of footings resting on granular soils. Unlike simple elastic‐perfectly plastic models, often applied to granular foundation problems, the present model realistically accounts for stress dependency of the friction angle, strain softening–hardening and non‐associativity. After the model and its implementation into a finite element code are briefly discussed, the numerical difficulty due to the singularity at the footing edge is addressed. The bearing capacity factor Nγ is then calculated for different granular materials. The effect of footing size, shape, relative density and roughness on the ultimate bearing capacity are studied and the computed results compare very favourably with the general experimental trends. In addition, it is shown that the finite element solution can clearly represent counteracting mechanisms of progressive failure which have an important effect on the bearing capacity of granular foundations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
风积沙地基装配式偏心基础抗拔试验研究   总被引:1,自引:0,他引:1  
乾增珍  鲁先龙  丁士君 《岩土力学》2013,34(4):1097-1102
在毛乌素沙漠中开展装配式偏心基础在上拔、上拔+水平力组合荷载作用下的现场试验研究。根据试验加载过程中监测的基础顶部位移、地表竖向位移及基础底板土压力数据,分析基础顶部的荷载-位移特性,研究装配式偏心基础的抗拔承载机制。结果表明,(1)在上拔、上拔和水平力组合作用下,基础顶部上拔和水平位移曲线均呈二阶段的承载特性;(2)当仅受上拔荷载作用时,基础偏心引起的附加弯矩,使得基础底板产生偏转,基础及底板上覆部分沙土自重抵抗上拔荷载,而在上拔和水平力组合荷载工况下,基础偏心引起的附加弯矩小,与上拔荷载工况相比,基础极限抗拔承载力提高8.7%,即在组合荷载工况下装配式偏心基础能够发挥更多的沙土来抵抗上拔荷载;(3)根据装配式偏心基础的抗拔承载机制,引入外荷载合力作用线与支架作用线之间的夹角δ来反映水平荷载对装配式基础抗拔破坏因子的影响,其影响规律为装配式基础的抗拔破坏因子随δ增加而降低。  相似文献   

8.
If utilized, the energy dissipative capability of seismically loaded shallow foundations due to inelastic behavior can result in more economic design, provided the consequences, such as excessive deformations are accounted for. In this article, a Beam‐on‐Nonlinear‐Winkler‐Foundation (BNWF) model is used to assess the performance of shearwall‐foundation systems with different attributes, when subjected to ground motions of varied hazard levels. The numerical study indicates that the force and drift demands to the shearwall reduce significantly, when nonlinear foundation behavior is realized, while permanent settlement is well below the permissible limit. These results support the concept of shallow foundation capacity mobilization in future design. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.

There exist many structures founded on unsaturated soil deposits. Shear strength augmentation due to the evolution of the matric suction within the unsaturated porous media enhances the bearing capacity of the overlying foundation. This paper presents the evaluation of the pseudo-static seismic bearing capacity of the shallow foundations resting on unsaturated soil deposits using limit equilibrium method. Adopting the Coulomb failure mechanism and Bishop effective stress concept, the bearing capacity equations are solved. The distribution of the matric suction beneath the footing is assumed to be linear. The results of the bearing capacity evaluation are validated against some experimental data found in literature for the static condition. For the seismic loading consideration, the pseudo-static method is utilized. The dual effect of the earthquake acceleration vertical component is thoroughly discussed and a suction transition point is introduced in which the minimum bearing capacity is observed to bear the same value for both upward and downward directions. The increase in the matric suction throughout the soil deposit leads to the increase in the soil shear strength, thus posing more resisting forces as well as higher ultimate bearing capacity. The offered solution is deemed a consistent and useful tool for the accurate prediction of the seismic bearing capacity of shallow footings resting on unsaturated soil deposits.

  相似文献   

10.
Soil–shallow foundation interaction has been theoretically analysed within the framework of thermomechanics. The design of a global interaction model has been achieved with an original treatment of the Clausius–Duhem inequality. The role of the gravity volume forces is emphasized. The paper is focused on a strip footing based on dense sand and subjected to time‐independent plastic processes. The theoretical approach has confirmed that an associated global flow rule cannot be expected to hold true. The analysis of the sources of dissipation has led to the development of a soil–footing interface model and a complete interaction model accounting for the interface constraints and the intrinsic frictional properties of the soil. Finally, the abilities of the complete model are checked by comparisons with experimental results found in the literature. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Considering there is hardly any concerted effort to analyze the pile‐raft foundations under complex loads (combined with vertical loads, horizontal loads and moments), an analysis method is proposed in this paper to estimate the responses of pile‐raft foundations which are subjected to vertical loads, horizontal loads and moments in layered soils based on solutions for stresses and displacements in layered elastic half space. Pile to pile, pile to soil surface, soil surface to pile and soil surface to soil surface interactions are key ingredients for calculating the responses of pile‐raft foundations accurately. Those interactions are fully taken into account to estimate the responses of pile‐raft foundations subject to vertical loads, horizontal loads and moments in layered soils. The constraints of the raft on vertical movements, horizontal movements and rotations of the piles as well as the constraints of the raft on vertical movements and horizontal movements of the soils are considered to reflect the coupled effect on the raft. The method is verified through comparisons with the published methods and FEM. Then, the method is adopted to investigate the influence of soil stratigraphy on pile responses. The study shows that it is necessary to consider the soil non‐homogeneity when estimating the responses of pile‐raft foundations in layered soils, especially when estimating the horizontal responses of pile‐raft foundations. The horizontal loads and the moments have a significant impact on vertical responses of piles in pile‐raft foundations, while vertical loads have little influence on horizontal responses of piles in pile‐raft foundations in the cases of small deformations. The proposed method can provide a simple and useful tool for engineering design. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper examines the drained bearing response of circular footings resting on structured soil deposits. Numerical simulations have been carried out using a finite element formulation of the Structured Cam Clay model. A parametric study was conducted by varying the parameters that govern the behaviour of structured soils and guidelines are given for designers to identify when effects of the soil structure are important. Under fully drained conditions, deformation within the structured soil supporting the footing usually occurs as a local or punching shear failure due to high compressibility of the structured soil and the mobilised bearing pressure increases with the footing movement, without reaching an ultimate value. A novel approximate method is presented to obtain the load–displacement response of a rigid circular footing resting on the surface of a structured soil deposit. This requires the properties of the soil in the reconstituted state and two additional parameters, which govern the natural structure of the soil. The proposed method has been applied to a published case study, where plate load test results are given for rigid circular steel plates resting on structured soil deposits. Fair agreement is observed between the computed and experimental results, suggesting the approximate method may be useful in design studies of foundations on structured soil deposits.  相似文献   

13.
Current studies of bearing capacity for shallow foundations tend to rely on the hypothesis of an isolated footing. In practice a footing is never isolated; it is mostly in interaction with other footings. This paper focuses on a numerical study using the finite-difference code Fast Lagrangian Analysis of Continua (FLAC), to evaluate the bearing capacity for two interfering strip footings, subjected to centered vertical loads with smooth and rough interfaces. The soil is modeled by an elasto-plastic model with a Mohr–Coulomb yield criterion and associative flow rule. The interference effect is estimated by efficiency factors, defined as the ratio of the bearing capacity for a single footing in the presence of the other footing to that of the single isolated footing. The efficiency factors have been computed individually to estimate the effects of cohesion, surcharge, and soil weight using Terzaghi’s equation, both in a frictional soil with surcharge pressures and in a cohesive-frictional soil with surcharge pressures. The results have been compared with those available in the literature.  相似文献   

14.
This paper focuses on the effective utilization of pond ash, as foundation medium. A series of laboratory model tests have been carried out using square, rectangular and strip footings on pond ash. The effects of dry density, degree of saturation of pond ash, size and shape of footing on ultimate bearing capacity of shallow foundations are presented in this paper. Local shear failure of a square footing on pond ash at 37% moisture content (optimum moisture content) is observed up to the values of dry density 11.20 kN/m3 and general shear failure takes place at the values of dry density 11.48 kN/m3 and 11.70 kN/m3. Effects of degree of saturation on ultimate bearing capacity were studied. Experimental results show that degree of saturation significantly affects the ultimate bearing capacity of strip footing. The effect of footing length to width ratio (L/B), on increase in ultimate bearing capacity of pond ash, is insignificant for L/B ≥ 10 in case of rectangular footings. The effects of size of footing on ultimate bearing capacity for all shapes of footings viz., square, rectangular and strip footings are highlighted.  相似文献   

15.
The influence of a non-coaxial model for granular soils on shallow foundation analyses is investigated. The non-coaxial plasticity theory proposed by Rudnicki and Rice (J. Mech. Phys. Solids 1975, 23, 371–394) is integrated into a Drucker–Prager model with both perfect plasticity and strain hardening. This non-coaxial model is numerically implemented into the finite-element program ABAQUS using a substepping scheme with automatic error control. The influence of the non-coaxial model on footing settlement and bearing capacity is investigated under various loading and boundary conditions. Compared with the predictions using conventional coaxial models, the non-coaxial prediction results indicate that the settlement of a footing increases significantly when the non-coaxial component of plastic strain rate is taken into consideration, although ultimate footing bearing capacities are not affected significantly. The non-coaxial model has a different effect on footing settlements under different loading and boundary conditions. In general, the discrepancies between coaxial and non-coaxial predictions increase with increasing rotation of principal stresses of the soil mass beneath a footing. It can be concluded that if the non-coaxial component of plastic strain rate is neglected in shallow foundation problems using the finite-element method, the results tend to be non-conservative when designs are dominated by settlement of footings.  相似文献   

16.
Foundation settlements and soil–structure interaction are important problems to structural and geotechnical engineers. This study introduces a novel elastoplastic three‐degree‐of‐freedom medium which models foundations settlements under combined loadings. A soil–structure interaction problem can then be solved by replacing the soil mass with this three‐degree‐of‐freedom elastoplastic medium, thus reducing significantly the size of the problem. The model was developed by extending the classical plasticity concepts to the force‐deformation level. Its ability to predict foundation deformations was evaluated using finite element solutions of a typical shallow foundation problem and was found reasonably accurate while producing significant time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A complete formulation and implementation for assessment of the response to dynamic loads of cylindrical rigid structures embedded in transversely isotropic elastic half‐spaces is presented. The analysis is performed in the frequency domain and the steady‐state structure response is obtained. The method is based on a non‐singular version of the indirect boundary element method which uses influence functions, instead of Green's functions, as fundamental solutions. These influence functions are the response of an elastic half‐space to distributed, internally applied loads. The proposed method imposes full bonding contact between the foundation and the surrounding soil. Numerical results for displacement (vertical and horizontal) and rotation (twisting and rocking) impedances, showing the influence of the soil anisotropy, are presented. Results for the soil–structure interface tractions and for the displacement field throughout the half‐space are also shown. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a non‐linear coupled finite element–boundary element approach for the prediction of free field vibrations due to vibratory and impact pile driving. Both the non‐linear constitutive behavior of the soil in the vicinity of the pile and the dynamic interaction between the pile and the soil are accounted for. A subdomain approach is used, defining a generalized structure consisting of the pile and a bounded region of soil around the pile, and an unbounded exterior linear soil domain. The soil around the pile may exhibit non‐linear constitutive behavior and is modelled with a time‐domain finite element method. The dynamic stiffness matrix of the exterior unbounded soil domain is calculated using a boundary element formulation in the frequency domain based on a limited number of modes defined on the interface between the generalized structure and the unbounded soil. The soil–structure interaction forces are evaluated as a convolution of the displacement history and the soil flexibility matrices, which are obtained by an inverse Fourier transformation from the frequency to the time domain. This results in a hybrid frequency–time domain formulation of the non‐linear dynamic soil–structure interaction problem, which is solved in the time domain using Newmark's time integration method; the interaction force time history is evaluated using the θ‐scheme in order to obtain stable solutions. The proposed hybrid formulation is validated for linear problems of vibratory and impact pile driving, showing very good agreement with the results obtained with a frequency‐domain solution. Linear predictions, however, overestimate the free field peak particle velocities as observed in reported field experiments during vibratory and impact pile driving at comparable levels of the transferred energy. This is mainly due to energy dissipation related to plastic deformations in the soil around the pile. Ground vibrations due to vibratory and impact pile driving are, therefore, also computed with a non‐linear model where the soil is modelled as an isotropic elastic, perfectly plastic solid, which yields according to the Drucker–Prager failure criterion. This results in lower predicted free field vibrations with respect to linear predictions, which are also in much better agreement with experimental results recorded during vibratory and impact pile driving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
侯娟  张孟喜  张陶陶  戴治恒 《岩土力学》2015,36(Z2):702-708
建立了横-竖立体加筋(H-V筋)地基的有限元模型,通过分析地基中的竖向应力分布、水平向位移分布以及筋-土界面相互作用,发现横-竖立体加筋地基中的竖向应力在筋材下方出现扩散和重分布,并逐渐向土体下部传递,使得土体中整体的应力分布更加均匀;同时,横-竖筋材中的竖筋类似于一个侧壁,其提供的垂直侧向力约束了介于竖筋间的土体,限制了土体的侧向水平位移,使得地基中筋材上部土体的侧向水平位移变小。基于有限元模拟对横-竖立体加筋地基加固机制的认识,将横-竖立体筋视为作用在地基上的一维弹性地基梁,通过弹性地基梁理论,根据弗拉曼解推导求解了横-竖立体加筋地基中任意一点竖向附加应力的计算表达式。将模型计算结果与有限元模拟所得结果进行对比发现两者吻合良好。  相似文献   

20.
基于传统的极限平衡条分法,利用临界滑动场法计算了条形基础的加筋地基极限承载力。假定土体处于极限平衡状态时,土体与筋材间存在均匀的摩擦力,通过建立土体条块极限平衡方程,推导了地基承载力的递推关系式。首先,设定计算土体范围,并划分条块和离散状态点;其次,根据递推公式计算各个状态点的参数,并搜索临界滑面;最后,根据搜索出的滑面计算地基承载力。通过实例比较进一步验证了计算结果的可靠性,并分析了首层筋带埋深、铺设层数和长度对地基承载力和滑面位置的影响。研究结果表明:地基承载力随着筋带埋深的增加先增大后减小;随着层数和长度的增加先逐渐增大,最后趋于稳定;滑面位置的变化规律主要是垂直影响深度和水平影响范围增大或减小。该方法原理简单、易于编程,为条形基础加筋地基承载力的计算提供了一种新思路,是临界滑动场法在地基承载力计算中的推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号