首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We report on a suite of diamonds from the Cretaceous Collier 4 kimberlite pipe, Juina, Brazil, that are predominantly nitrogen-free type II crystals showing complex internal growth structures. Syngenetic mineral inclusions comprise calcium- and titanium-rich phases with perovskite stoichiometry, Ca-rich majoritic-garnet, clinopyroxene, olivine, TAPP phase, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca–Mg-carbonate. We divide the diamonds into three groups on the basis of the carbon isotope compositions (δ13C) of diamond core zones. Group 1 diamonds have heavy, mantle-like δ13C (−5 to −10‰) with mineral inclusions indicating a transition zone origin from mafic protoliths. Group 2 diamonds have intermediate δ13C (−12 to −15‰), with inclusion compositions indicating crystallization from near-primary and differentiated carbonated melts derived from oceanic crust in the deep upper mantle or transition zone. A 206Pb/238U age of 101 ± 7 Ma on a CaTiSi-perovskite inclusion (Group 2) is close to the kimberlite emplacement time (93.1 ± 1.5 Ma). Group 3 diamonds have extremely light δ13C (−25‰), and host inclusions have compositions akin to high-pressure–temperature phases expected to be stable in pelagic sediments subducted to transition zone depths. Collectively, the Collier 4 diamonds and their inclusions indicate multi-stage, polybaric growth histories in dynamically changing chemical environments. The young inclusion age, the ubiquitous chemical and isotopic characteristics indicative of subducted materials, and the regional tectonic history, suggest a model in which generation of sublithospheric diamonds and their inclusions, and the proto-kimberlite magmas, are related genetically, temporally and geographically to the interaction of subducted lithosphere and a Cretaceous plume.  相似文献   

2.
This paper discusses mineralogy of Ca-rich inclusions in ultra-deep (sublithospheric) diamonds. It was shown that most of the Ca-rich majoritic garnets are of metabasic (eclogitic) affinity. The observed variation in major and trace element composition is consistent with variations in the composition of the protolith and the degree of enrichment or depletion during interaction with melts. Major and trace element compositions of the inclusions of Ca minerals in ultra-deep diamonds indicate that they crystallized from Ca-carbonatite melts that were derived from partial melting of eclogite bodies in deeply subducted oceanic crust in the transition zone or even the lower mantle. The occurrence of merwinite or CAS inclusions in ultra-deep diamonds can serve as mineralogical indicators of the interaction of metaperidotitic and metabasic mantle lithologies with alkaline carbonatite melts. The discovery of the inclusions of carbonates in association with ultra-deep Ca minerals can not only provide additional support for their role in the diamond formation process but also help to define additional mantle reservoirs involved in global carbon cycle.  相似文献   

3.
Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions ('13C: peridotitic -5.4 to -2.2‰; eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side ('13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (̿,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards isotopic heavier compositions suggests a common carbon source, which may have inherited an isotopic heavy composition from a component consisting of subducted carbonates.  相似文献   

4.
The diamond population from the Jagersfontein kimberlite is characterized by a high abundance of eclogitic, besides peridotitic and a small group of websteritic diamonds. The majority of inclusions indicate that the diamonds are formed in the subcratonic lithospheric mantle. Inclusions of the eclogitic paragenesis, which generally have a wide compositional range, include two groups of eclogitic garnets (high and low Ca) which are also distinct in their rare earth element composition. Within the eclogitic and websteritic suite, diamonds with inclusions of majoritic garnets were found, which provide evidence for their formation within the asthenosphere and transition zone. Unlike the lithospheric garnets all majoritic garnet inclusions show negative Eu-anomalies. A narrow range of isotopically light carbon compositions (δ13C −17 to −24 ‰) of the host diamonds suggests that diamond formation in the sublithospheric mantle is principally different to that in the lithosphere. Direct conversion from graphite in a subducting slab appears to be the main mechanism responsible for diamond formation in this part of the Earth’s mantle beneath the Kaapvaal Craton. The peridotitic inclusion suite at Jagersfontein is similar to other diamond deposits on the Kaapvaal Craton and characterized by harzburgitic to low-Ca harzburgitic compositions.  相似文献   

5.
A suite of 80 macrodiamonds recovered from volcaniclastic breccia of Wawa (southern Ontario) was characterized on the basis of morphology, nitrogen content and aggregation, cathodoluminescence (CL), and mineral inclusions. The host calc-alkaline lamprophyric breccias were emplaced at 2.68–2.74 Ga, contemporaneously with voluminous bimodal volcanism of the Michipicoten greenstone belt. The studied suite of diamonds differs from the vast majority of diamond suites found worldwide. First, the suite is hosted by calc-alkaline lamprophyric volcanics rather than by kimberlite or lamproite. Second, the host volcanic rock is amongst the oldest known diamondiferous rocks on Earth, and has experienced regional metamorphism and deformation. Finally, most diamonds show yellow-orange-red CL and contain mineral inclusions not in equilibrium with each other or their host diamond. The majority of the diamonds in the Wawa suite are colorless, weakly resorbed, octahedral single crystals and aggregates. The diamonds contain 0–740 ppm N and show two modes of N aggregation at 0–30 and 60–95% B-centers suggesting mantle storage at 1,100–1,170°C. Cathodoluminescence and FTIR spectroscopy shows that emission peaks present in orange CL stones do not likely result from irradiation or single substitutional N, in contrast to other diamonds with red CL. The diamonds contain primary inclusions of olivine (Fo92 and Fo89), omphacite, orthopyroxene (En93), pentlandite, albite, and An-rich plagioclase. These peridotitic and eclogitic minerals are commonly found within single diamonds in a mixed paragenesis which also combines shallow and deep phases. This apparent disequilibrium can be explained by effective small-scale mixing of subducted oceanic crust and mantle rocks in fast “cold” plumes ascending from the top of the slabs in convergent margins. Alternatively, the diamonds could have formed in the pre-2.7–2.9 Ga cratonic mantle and experienced subsequent alteration of syngenetic inclusions related to host magmatism and ensuing metamorphism. Neither orogenic nor cratonic model of the diamond origin fully explains all of the observed characteristics of the diamonds and their host rocks. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
Superdeep diamonds from the Juina area, Mato Grosso State, Brazil   总被引:4,自引:1,他引:3  
Alluvial diamonds from the Juina area in Mato Grosso, Brazil, have been characterized in terms of their morphology, syngenetic mineral inclusions, carbon isotopes and nitrogen contents. Morphologically, they are similar to other Brazilian diamonds, showing a strong predominance of rounded dodecahedral crystals. However, other characteristics of the Juina diamonds make them unique. The inclusion parageneses of Juina diamonds are dominated by ultra-high-pressure ("superdeep") phases that differ both from "traditional" syngenetic minerals associated with diamonds and, in detail, from most other superdeep assemblages. Ferropericlase is the dominant inclusion in the Juina diamonds. It coexists with ilmenite, Cr-Ti spinel, a phase with the major-element composition of olivine, and SiO2. CaSi-perovskite inclusions coexist with titanite (sphene), "olivine" and native Ni. MgSi-perovskite coexists with TAPP (tetragonal almandine-pyrope phase). Majoritic garnet occurs in one diamond, associated with CaTi-perovskite, Mn-ilmenite and an unidentified Si-Mg phase. Neither Cr-pyrope nor Mg-chromite was found as inclusions. The spinel inclusions are low in Cr and Mg, and high in Ti (Cr2O3<36.5 wt%, and TiO2>10 wt%). Most ilmenite inclusions have low MgO contents, and some have very high (up to 11.5 wt%) MnO contents. The rare "olivine" inclusions coexisting with ferropericlase have low Mg# (87-89), and higher Ca, Cr and Zn contents than typical diamond-inclusion olivines. They are interpreted as inverted from spinel-structured (Mg, Fe)2Si2O4. This suite of inclusions is consistent with derivation of most of the diamonds from depths near 670 km, and adds ilmenite and relatively low-Cr, high-Ti spinel to the known phases of the superdeep paragenesis. Diamonds from the Juina area are characterized by a narrow range of carbon isotopic composition ('13C=-7.8 to -2.5‰), except for the one majorite-bearing diamond ('13C=-11.4‰). There are high proportions of nitrogen-free and low-nitrogen diamonds, and the aggregated B center is predominant in nitrogen-containing diamonds. These observations have practical consequences for diamond exploration: Low-Mg olivine, low-Mg and high-Mn ilmenite, and low-Cr spinel should be included in the list of diamond indicator minerals, and the role of high-Cr, low-Ti spinel as the only spinel associated with diamond, and hence as a criterion of diamond grade in kimberlites, should be reconsidered.  相似文献   

7.
Thirty-four silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 19 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line Kimberlite district. Eighteen olivines, seven Cr-pyropes, four Mg-chromites, and one orthopyroxene in 15 stones belong to the peridotite (P) suite and three garnets and one omphacite in three stones belong to the eclogite (E) suite. The fact that this suite is dominated by the peridotite population is in stark contrast to the other diamond suites studied in the State Line district (Sloan, George Creek), which are overwhelmingly eclogitic. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of harzburgitic P-suite stones worldwide, but unlike the more Fe-rich (lherzolitic) Sloan olivine suite. Mg-chromites (wt% MgO = 12.8-13.8; wt% Cr2O3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Seven harzburgitic Cr-pyropes in five stones have moderately low calcium contents (wt% CaO = 3.3-4.3) but are very Cr-rich (wt% Cr2O3 = 9.7-16.7). A few stones have been analyzed by SIMS for carbon isotope composition and nitrogen abundance. One peridotitic stone is apparently homogeneous in carbon isotope composition (δ13CPDB = −6.2‰) but with variable nitrogen abundance (1296-2550 ppm). Carbon isotopes in eclogitic stones range from “normal” for the upper mantle (δ13CPDB = −5.5‰) to somewhat low (δ13CPDB = −10.2‰), with little internal variation in individual stones (maximum difference is 3.6‰). Nitrogen contents (2-779 ppm) are lower than in the peridotitic stone, and are lower in cores than in rims. As, worldwide, harzburgite-suite diamonds have been shown to have formed in Archean time, we suggest that the Kelsey Lake diamond population was derived from a block of Archean lithosphere that, at the time of kimberlite eruption, existed beneath the Proterozoic Yavapai province. The mixed diamond inclusion populations from the State Line kimberlites appear to support models in which volumes of Wyoming Craton Archean mantle survive buried beneath Proterozoic continental crust. Such material may be mixed with eclogitic/lherzolitic regimes emplaced beneath or intermingled with the Archean rocks by Proterozoic subduction.  相似文献   

8.
We performed an experimental study, designed to reproduce the formation of an unusual merwinite?+?olivine-bearing mantle assemblage recently described as a part of a Ca-rich suite of inclusions in sublithospheric diamonds, through the interaction of peridotite with an alkali-rich Ca-carbonatite melt, derived from deeply subducted oceanic crust. In the first set of experiments, we studied the reaction between powdered Mg-silicates, olivine and orthopyroxene, and a model Ca-carbonate melt (molar Na:K:Ca?=?1:1:2), in a homogeneous mixture, at 3.1 and 6.5 GPa. In these equilibration experiments, we observed the formation of a merwinite?+?olivine-bearing assemblage at 3.1 GPa and 1200 °C and at 6.5 GPa and 1300–1400 °C. The melts coexisting with this assemblage have a low Si and high Ca content (Ca#?=?molar 100?×?Ca/(Ca?+?Mg)?>?0.57). In the second set of experiments, we investigated reaction rims produced by interaction of the same Ca-carbonate melt (molar Na:K:Ca?=?1:1:2) with Mg-silicate, olivine and orthopyroxene, single crystals at 3.1 GPa and 1300 °C and at 6.5 GPa and 1400 °C. The interaction of the Ca-carbonate melt with olivine leads to merwinite formation through the expected reaction: 2Mg2SiO4 (olivine)?+?6CaCO3 (liquid)?=?Ca3MgSi2O8 (merwinite)?+?3CaMg(CO3)2 (liquid). Thus, our experiments confirm the idea that merwinite in the upper mantle may originate via interaction of peridotite with Ca-rich carbonatite melt, and that diamonds hosting merwinite may have a metasomatic origin. It is remarkable that the interaction of the Ca-carbonate melt with orthopyroxene crystals does not produce merwinite both at 3.1 and 6.5 GPa. This indicates that olivine grain boundaries are preferable for merwinite formation in the upper mantle.  相似文献   

9.
A suite of exceptional mineral inclusions in diamonds from the São Luiz river, Juina province, Brazil, shows a wide range of garnet/majorite mineral compositions co-existing with clinopyroxene; the overall bulk compositions are eclogitic. The inclusions have a wide variety of textural arrangements, but crystallographic data obtained by EBSD shows that each inclusion consists of a single garnet with constant crystallographic orientation whilst clinopyroxene grains have preferred orientation with relation to garnet {110} and <111>. This suggests that the inclusions were originally single phase majoritic garnets, and that they preserve various states of progressive unmixing (exsolution) into lower pressure garnet and clinopyroxene compositions during transport of the host diamonds towards the Earth’s surface. On the basis of high pressure–temperature experimental data some of the original majoritic garnets must have come from depths of 450 km or more, and therefore resided in the transition zone and asthenospheric upper mantle. Particularly extensive re-equilibration of many inclusions took place at depths of ca 180–200 km (probably close to the base of the continental lithosphere). The partially unmixed state of the inclusions provides a unique opportunity for using mineral diffusion data to roughly estimate the rate of transport through the asthenospheric upper mantle, and within error this rate is found to be broadly compatible with expected transport rates by upper mantle convection or plume flow.  相似文献   

10.
《Lithos》2007,93(1-2):199-213
Kimberlite pipes K11, K91 and K252 in the Buffalo Head Hills, northern Alberta show an unusually large abundance (20%) of Type II (no detectable nitrogen) diamonds. Type I diamonds range in nitrogen content from 6 ppm to 3300 ppm and in aggregation states from low (IaA) to complete (IaB). The Type IaB diamonds extend to the lowest nitrogen concentrations yet observed at such high aggregation states, implying that mantle residence occurred at temperatures well above normal lithospheric conditions. Syngenetic mineral inclusions indicate lherzolitic, harzburgitic, wehrlitic and eclogitic sources. Pyropic garnet and forsteritic olivine characterize the peridotitic paragenesis from these pipes. One lherzolitic garnet inclusion has a moderately majoritic composition indicating a formation depth of ∼ 400 km. A wehrlitic paragenesis is documented by a Ca-rich, high-chromium garnet and very CaO-rich (0.11–0.14 wt.%) olivine. Omphacitic pyroxene and almandine-rich garnet are characteristic of the eclogitic paragenesis. A bimodal δ13C distribution with peaks at − 5‰ and − 17‰ is observed for diamonds from all three kimberlite pipes. A large proportion (∼ 40%) of isotopically light diamonds (δ13C < −10‰) indicates a predominantly eclogitic paragenesis.The Buffalo Head Terrane is of Lower Proterozoic metamorphic age (2.3–2.0 Ga) and hence an unconventional setting for diamond exploration. Buffalo Hills diamonds formed during multiple events in an atypical mantle setting. The presence of majorite and abundance of Type II and Type IaB diamonds suggests formation under sublithospheric conditions, possibly in a subducting slab and resulting megalith. Type IaA to IaAB diamonds indicate formation and storage under lower temperature in normal lithospheric conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号