首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study assessed arsenic health risk to the local residents through oral and dermal exposure pathways of drinking water and to investigate source apportionment of groundwater pollutants using multivariate statistical techniques in the Chapai-Nawabganj district, Bangladesh. Groundwater samples collected from shallow tube well and dug well at the depth ranges (15-60 m) were analyzed for physio-chemical parameters and trace elements. Most of the studied physio-chemical parameters were found within their respective permissible limits. However, total As, Fe and Mn concentrations exceeded Bangladesh and WHO guideline values. The assessment of arsenic health risk reveals that children as compared to adults are found at a higher risk as the values of hazard quotients (HQ) >1 in the most of the groundwater samples. This level of arsenic contamination should have medium to high chronic risk and medium carcinogenic risk when compared with US EPA guidelines which can cause serious health hazard. The results of principal component analysis (PCA) and factor analysis (CA) indicate that geogenic (interaction of water and basement rock) and anthropogenic (agrochemicals, agricultural fertilizer and domestic sewage) sources are responsible for variation in arsenic and other physio-chemical parameters in the groundwater aquifer of the study area. Furthermore,the inter-correlation of arsenic with metals and ions were also calculated by correlation matrix and linear regression analysis. The outcomes of this study will help to meet the challenge of sustainable groundwater quality management in Bangladesh and enhancing better vision of potential health risk of local inhabitants in the study area.  相似文献   

2.
The concentration of trace metals was measured in groundwater samples collected from Malwa region of Punjab, India. The samples were analyzed by using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The results were compared with permissible limits prescribed by various health and environmental protection agencies. The concentrations of trace metals such as Mn, Se, Mo, Cd, Sb and Pb were higher than their respective permissible limits at some sampling sites. The total hazard index (HItotal) (summing the hazard index through ingestion and dermal routes) at all the sampling sites exceeded or nearing unity, indicating the presence of non-carcinogenic health effects from ingestion of groundwater and dermal contact with groundwater. The results reveal that the total excess lifetime cancer risk (ELCRtotal) of metals exposure was in accordance with the acceptable lifetime risks for carcinogens in drinking water.  相似文献   

3.
滹沱河平原地下水有机污染健康风险评价   总被引:4,自引:2,他引:2  
本文根据有机物的挥发性对计算结果的影响大小,对U.S.EPA的健康风险评价模型进行适当改进,在模型中添加了污染物煮沸后的残留率TF项,评价分析了滹沱河冲积平原的健康风险。结果表明:(1)研究区典型的检出有机污染物为:三氯甲烷、四氯化碳、三氯乙烯和四氯乙烯,各采样点风险的主要贡献污染物为三氯甲烷和四氯化碳,主要的污染源应以工业和工业产品的使用污染为主;(2)对于非致癌风险和致癌风险,3种暴露途径的健康风险顺序均为:呼吸途径〉饮水途径〉皮肤接触途径;(3)非致癌风险中3个点均超过规定限值1.0,致癌风险中有4个点超过规定限值10~6;(4)使用和饮用开水并保持厂内工作车间和办公环境内空气畅通,可以在一定程度上降低健康风险。  相似文献   

4.
黄玉  蔡保新  王宇  李昊熹 《地质通报》2014,33(8):1260-1266
饮水水源水质的人体健康安全是水源是否安全的首要问题。在调查锡矿矿坑水作为个旧市A镇及B矿段锡矿生活区饮用水源情况的基础上,应用国际辐射防护委员会和美国环保署推荐的风险评估模型,开展饮用水的人体健康风险评价。结果表明,水源中重金属致癌物质所引起的健康危害较高,风险值超过了国际辐射防护委员会推荐的最大可接受风险水平,其中以Cr6+和As的致癌风险最大,应优先控制;非致癌物质所引起的健康风险较小,风险值在10-8以下,远低于推荐的最大可接受风险水平。虽然水中重金属含量符合相关标准要求,但是长期饮用对人体存在健康风险。  相似文献   

5.
饮水水源水质的人体健康安全是水源是否安全的首要问题。在调查锡矿矿坑水作为个旧市A镇及B矿段锡矿生活区饮用水源情况的基础上,应用国际辐射防护委员会和美国环保署推荐的风险评估模型,开展饮用水的人体健康风险评价。结果表明,水源中重金属致癌物质所引起的健康危害较高,风险值超过了国际辐射防护委员会推荐的最大可接受风险水平,其中以Cr6+和As的致癌风险最大,应优先控制;非致癌物质所引起的健康风险较小,风险值在10-8以下,远低于推荐的最大可接受风险水平。虽然水中重金属含量符合相关标准要求,但是长期饮用对人体存在健康风险。  相似文献   

6.
为了研究陕西省泾惠渠灌区地下水污染特征及人体健康风险状况,采集地下水样品进行分析测定,首先运用单因子指数法进行污染评价,再利用GIS获取主要污染物As、Cr (Ⅵ)和NO3--N的空间分布特征,最后借鉴美国环境保护署的人体健康风险评价模型对灌区地下水污染物的人体健康风险做出评价。结果表明:研究区地下水中As、Cr (Ⅵ)、NO3--N的质量浓度均超标,As对成人的致癌风险最高达3.50×10-4,明显超出限值1.00×10-4,长期暴露对当地居民带来罹患癌症的健康风险较高;As、Cr (Ⅵ)、NO3--N的非致癌风险从大到小排序为Cr (Ⅵ)、NO3--N、As,其中Cr (Ⅵ)对儿童的非致癌风险最高,达8.693 7,远超限值1.000 0,危害性最大。空间分布特征方面,As的致癌风险区域面积比例最高,为42.82%,As、Cr (Ⅵ)、NO3--N的非致癌风险区域面积比例分别高达69.19%、69.06%和66.55%,水安全问题突出。  相似文献   

7.
Groundwater is a vital source for domestic and irrigation purposes in the loess area of Northwest China where climate is arid. However, the quality of groundwater in this area is deteriorating due to intensive industrial and agricultural activities, and this has a great adverse impact on human health. In order to better understand the pollution status of groundwater and the health risks to local residents, comprehensive water quality index was applied to assess the quality of drinking water in Yulin City, Northwest China, and sodium adsorption ratio, sodium percentage, residual sodium carbonate and permeability index were used to evaluate the quality of irrigation water. Moreover, the health risks caused by ingestion of groundwater were evaluated using the model proposed by the Ministry of Environmental Protection of the PR China. The results show that all groundwater samples for irrigation will not induce soil salinization, but more than half of them are not suitable for drinking, and Fe, Mn, TH, Mg2+ and NO3–N are the common contaminants which are mainly from natural processes, industrial and agricultural activities. The health risk assessment indicates that children face greater non-carcinogenic risk than adults. The order of contribution of contaminants to non-carcinogenic risk is NO3 ? > As > F? > Fe > Mn > Ba2+ > Cr6+ > Zn > NO2 ?. The average carcinogenic risk of carcinogens (Cr6+ and As) is 1.17 × 10?4 and 1.37 × 10?4 for adults and children, respectively, which surpasses the permissible level (1 × 10?6) stipulated by the Ministry of Environmental Protection of the PR China. Hence, effective measures are highly demanded to manage groundwater pollution and reduce the risks to human health.  相似文献   

8.
This study was carried out to assess the distribution of uranium in groundwater by using LED fluorimeter LF-2a and chemical and radiological risks associated with its consumption in Sirsa district, Haryana, India. Uranium concentration ranged between 0.93 and 290μg l-1 with an average value of 49 μg l-1. About 44% of the groundwater samples had uranium concentration above the maximum contamination level of 30 μg l-1 prescribed by the World Health Organization and United States Environmental Protection Agency and 22% of the samples exceeded the permissible limit of 60 μgl-1 prescribed by the Atomic Energy Regulatory Board, India. The average cancer morbidity and mortality risks are determined to be 1.10 × 10-4 and 7.17 × 10-5 respectively, indicating the negligible carcinogenic risk. Hazard quotient for 44% samples is greater than unity which indicates health risk due to chemical toxicity of uranium in groundwater. The associated age-dependent annual effective dose is estimated by taking the prescribed water intake values of different age groups.  相似文献   

9.
The assessment of the suitability of groundwater for drinking and irrigation uses was carried out in the alluvial plain of Low-Isser in the north of Algeria. The plain covers an area of 533 km2 and lies in a Mediterranean sub-humid climate. Groundwater is the main source for domestic uses and agricultural activities in this area. Groundwater samples were collected from 15 wells during dry and wet seasons in 2015, and they were analyzed for major cations and anions and compared with drinking and irrigation specification standards. The comparison of chemical concentration with WHO drinking water standards of 2006 shows that more than 30% of groundwater samples are unsuitable for drinking, and the majority of groundwater samples fell on the hard and very hard categories. Suitability of groundwater for drinking was also evaluated based on the water quality index (WQI). It shows more than 80% of samples have good or permissible water quality for dry and wet seasons. In terms of the irrigation usage, generally, groundwater in the study area is suitable for different uses in both seasons according to SAR, %Na, RSBC, and PI. However, water rock exchange processes and groundwater flow have been responsible for the dominated water type Ca–Mg–Cl.  相似文献   

10.
Presence of polycyclic aromatic hydrocarbons (PAHs) in the soil and water is of serious environmental concern as they are carcinogenic in nature. The present study was carried out with an aim to identify the presence of PAHs in groundwater of Chennai, Tamil Nadu, India. This is an industrialised area where petrochemical storage tanks are located. Groundwater sampling was carried out in the years 2001, 2011 and 2012 to understand the variation in PAHs content in this area. Concentration of major ions, pH and EC were measured during the year 2001. Of the 24 groundwater samples collected in the year 2001, most of them were alkaline and 62.5 % were not permissible for drinking based on pH and EC, respectively. Influence of seawater was the major reason for the Na–Cl dominant nature of groundwater. TPH and PAHs analysis of groundwater carried out in 2001 and 2011, and physical examination of groundwater in 2012 indicate the increased level of contamination in the eastern part of the study area. The contamination in the eastern part persists because of the fact that groundwater is flowing towards the east and also due to the presence of petrochemical storage tanks near the coast. Thus this area is affected by PAHs pollution which has endured over the past 50 years. An underground storage tank that was functioning in this area was closed about 50 years ago and leakage of PAHs from this tank was reported in the year 1993. However, the present study indicates the decrease in the area of zone of pollution, possibly due to natural flushing of groundwater zone.  相似文献   

11.
岩溶地下水为全球约25%的人口提供饮用水源,地下河作为主要岩溶地下水类型,是中国西南岩溶区重要供水水源,掌握其水质污染状况及人体健康风险,对岩溶区水资源保护与安全用水具有重要意义。本文以广西桂林会仙狮子岩地下河系统为例,采集地下河水样品22组(无机和有机样品各11组),采用电感耦合等离子体质谱、离子色谱、气相色谱-质谱等方法测定11项无机离子、10项金属元素及41项有机指标的质量浓度,运用单指标污染标准指数法、健康风险评价模型揭示了研究区无机与有机指标分布、污染及健康风险。结果表明:(1)狮子岩地下河水中无机超标指标有NH~+4(1.33倍)、Fe(1.2倍)、Al(1.5倍)和Mn(1.01倍),超标点多位于地下河排泄区;检出18项有机物,其中挥发性有机物(VOCs)、半挥发性有机物(SVOCs)和有机氯农药(OCPs)检出率分别为18.75%、30.77%和91.67%,研究区存在普遍的农药残留(49.14~109.83ng/L)。(2)与地下水对照值相比,研究区受到10项无机指标的轻度~中度污染、14项有机指标的轻度污染,个别采样点受到NO~-3<...  相似文献   

12.
Arsenic is a natural component of the earth’s crust, and it is transported into surface water and groundwater through the dissolution of rocks, minerals and ores. In addition, arsenic leaching processes contaminate water sources and this geogenic arsenic contamination causes significant water quality problems in many parts of the world. In this study, water quality, arsenic contamination and human health risks of drinking water resources in the Tav?anl? District were determined and the origins were discussed. For this purpose, geological and hydrogeological properties were investigated. In situ measurements and chemical analyses were carried out on water samples taken from drinking water sources such as wells, springs and surface waters for hydrogeochemical studies. According to the obtained results, water resources are Ca–Mg–HCO3, Mg–HCO3 and Na–HCO3 type. Total As (AsT) concentration of the water samples sometimes exceeds the permissible limit given by the TSI-266 (Standards for drinking waters, Turkish Standards Institution, Ankara, 2005) and WHO (Guidelines for drinking-water quality, World Health Organization, Geneva, 2008) for drinking water. H3AsO 3 0 and HAsO4 2? are dominant arsenic species in groundwater and surface water, respectively. Typically high total arsenic concentrations can be found in regions characterized by magmatic rocks. In addition, As concentrations in surface waters were found to be higher than in groundwater in the region, due to the anthropogenic influence of mining activities in the region.  相似文献   

13.
Exposure to arsenic and fluoride through contaminated drinking water can cause serious health effects. In this study, the sources and occurrence of arsenic and fluoride contaminants in groundwater are analyzed in Dawukou area, northwest China, where inhabitants rely on groundwater as the source of drinking water. The triangular fuzzy numbers approach is adopted to assess health risk. The fuzzy risk assessment model incorporates the uncertainties that are caused by data gaps and variability in the degree of exposure to contaminants. The results showed that arsenic and fluoride in groundwater were mainly controlled by the dissolution–precipitation of Ca-arsenate and fluorite under weakly alkaline conditions. The arsenic and fluoride concentrations were higher in the shallow groundwater. The most probable risk values for arsenic and fluoride were 4.57 × 10?4 and 0.4 in the shallow groundwater, and 1.58 × 10?4 and 0.3 in the deep groundwater. Although the risks of fluoride were almost within the acceptable limit (<1.0), the risk values of arsenic were all beyond the acceptable levels of 10?6 for drinking water. Further, the local administration should pay more attention to the potential health risk through dietary intake and to the safety of deep water by ensuring it is not contaminated under prolonged pumping conditions. The fuzzy risk model treats the uncertainties associated with a quantitative approach and provides valuable information for decision makers when uncertainties are explicitly acknowledged, particularly for the variability in contaminants. This study can provide a new insight for solving data uncertainties in risk management.  相似文献   

14.
Radon is a naturally occurring colourless and odourless radioactive gas that is soluble in water and is the main source of radioactivity of groundwater. Use of radon contaminated groundwater increased the radon levels in the air, especially in poorly ventilated houses, which is hazardous to health. Ingestion of such water for quite long period may lead to stomach cancer. The drinking water standards proposed by the Bureau of Indian Standards (BIS) exclude the permissible concentration of radon in drinking water. The US Environmental Protection Agency (USEPA) in 1991 proposed a Maximum Concentration Level (MCL) of 11.1 Bq/l for public water supply. The water samples from the bore wells in Tumkur district of Karnataka show radon concentrations in the range of 5 to 250 Bq/l. Ninety percentages of the samples show radon levels above the permissible limit as per USEPA. The spatial variation and geological control over radon concentration in groundwater in the area and sampling sensitivity are discussed here. The study was conducted during March 2012.  相似文献   

15.
某储油库地下水有机污染健康风险评价   总被引:10,自引:2,他引:8  
本文以USEPA推荐使用的污染场地健康风险评价方法为基础, 结合污染场地实际情况, 分析、评价了某储油库地下水有机污染对场址内暴露人群造成的健康风险。评价结果表明: 该储油库地下水有机污染物为1,2-二氯乙烷、苯、三氯甲烷和甲苯。污染场址内的工人和居民受到的非致癌风险均小于1, 在可接受范围; 而污染对场址内的工人和居民产生的致癌风险较大, 分别为1.7×10?4、9.0×10?3, 是不可接受的。产生致癌风险的主要污染物为1, 2-二氯乙烷, 占总致癌风险的99.80%, 可致人产生多种形态的肿瘤, 并具有潜在的遗传毒性。主要暴露途径是吸入吸收, 占总致癌风险比例大于70%, 其次为口入吸收。皮肤接触暴露途径产生的致癌风险较小, 占总致癌风险比例小于1%。  相似文献   

16.
Groundwater pollution is a major global environmental issue especially in the large cities and trace metals are considered as most important aquatic pollutants. The present study is based on the measurement and characterization of various physicochemical parameters (pH, EC, TDS, DO, alkalinity, hardness, and chloride), major cations (Ca, Mg, Na and K) and selected trace metals (Sr, Li, Fe, Zn, Cu, Co, Mn, Ag, Cd, Cr, Ni, and Pb) in the groundwater of Lahore, Pakistan during summer and winter (2017–18) seasons. Groundwater is the main source of drinking water in urban areas of Lahore. Seasonal comparison of the data indicated that majority of the metals showed relatively higher concentrations during winter than summer. Most of the metals exhibited significant spatial variability during both seasons; relatively higher metal levels were found in the old settlements and thickly populated areas of the city. Average concentrations of Pb, Ni, Cd and Co in the groundwater were found to be higher than the national and international guideline values. Factor analysis and cluster analysis revealed major anthropogenic contributions of Ni, Co, Cd, Cu, Cr and Pb in the groundwater while rest of the metals showed mixed and/or natural contributions. Evaluation of human health risks for the metal contents in groundwater revealed that Pb, Co, Ni and Cd were associated with significantly higher non-carcinogenic risks (HQing > 1); the calculated risk for children was considerably higher than the adults. Moreover, the carcinogenic risk associated with Ni, Cr, Cd and Pb exceeded the safe limits. The present study revealed significantly higher anthropic pollutants in the groundwater which imposed considerable risks to human; therefore, it is recommended to implement immediate remedial measures to ensure safe drinking water.  相似文献   

17.
To study arsenic(As) content and distribution patterns as well as the genesis of different kinds of water, especially the different sources of drinking water in Guanzhong Basin, Shaanxi province, China, 139 water samples were collected at 62 sampling points from wells of different depths, from hot springs, and rivers. The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method(HG-AFS). The As concentrations in the drinking water in Guanzhong Basin vary greatly(0.00–68.08 μg/L), and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin. Even within the same location in southern Guanzhong Basin, the As concentrations at different depths vary greatly. As concentration of groundwater from the shallow wells(50 m deep, 0.56–3.87 μg/L) is much lower than from deep wells(110–360 m deep, 19.34–62.91 μg/L), whereas As concentration in water of any depth in northern Guanzhong Basin is 10 μg/L. Southern Guanzhong Basin is a newly discovered high-As groundwater area in China. The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers, which store water in the Lishi and Wucheng Loess(Lower and Middle Pleistocene) in the southern Guanzhong Basin. As concentration of hot spring water is 6.47–11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68–68.08 μg/L. The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine(F) value, which is generally 0.10 mg/L. Otherwise, the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values(8.07–14.96 mg/L). The results indicate that highAs groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area. As concentration of all reservoirs and rivers(both contaminated and uncontaminated) in the Guanzhong Basin is 10 μg/L. This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin. The partition boundaries of the high- and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin. This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework. In southern Guanzhong Basin, the main sources of drinking water for villages and small towns today are wells between 110–360 m deep. All of their As contents exceed the limit of the Chinese National Standard and the International Standard(10 μg/L) and so local residents should use other sources of clean water that are 50 m deep, instead of deep groundwater(110 to 360 m) for their drinking water supply.  相似文献   

18.
Twenty-two bottled mineral and spring waters from Norway, Sweden, Finland and Iceland have been analysed for 71 inorganic chemical parameters with low detection limits as a subset of a large European survey of bottled groundwater chemistry (N = 884). The Nordic bottled groundwaters comprise mainly Ca–Na–HCO3–Cl water types, but more distinct Ca–HCO3, Na HCO3 and Na–Cl water types are also offered. The distributions for most elements fall between groundwater from Fennoscandian Quaternary unconsolidated aquifers and groundwater from Norwegian crystalline bedrock boreholes. Treated tap waters have slightly lower median values for many parameters, but elements associated with plumbing have significantly higher concentrations in tap waters than in bottled waters. The small dataset is able to show that excessive fluoride and uranium contents are potential drinking water problems in Fennoscandia. Nitrate and arsenic displayed low to moderate concentrations, but the number of samples from Finland and Northern Sweden was too low to detect that elevated concentrations of arsenic occur in bedrock boreholes in some regions. The data shows clearly that water sold in plastic bottles is contaminated with antimony. Antimony is toxic and suspected to be carcinogenic, but the levels are well below the EU drinking water limit. The study does not provide any health-based arguments for buying bottled mineral and spring waters for those who are served with drinking water from public waterworks. Drinking water from crystalline bedrock aquifers should be analysed. In case of elevated concentrations of fluoride, uranium or arsenic, most bottled waters, but not all, will be better alternatives when treatment of the well water is not practicable.  相似文献   

19.
Fluoride in drinking water has both beneficial and detrimental effects on public health, and a narrow range between .6 and 1.5 mg/L is optimal for consumption. However, natural groundwater sources exceed these guidelines affecting the entire population. This study aims to assess the distribution and controlling factors of fluoride concentration in the Tamiraparani River basin, South India. A total of 124 groundwater samples were analyzed for their fluoride content and other hydrogeochemical parameters. The fluoride concentration in the study area varied from .01 to 1.67 mg/L, and the highest concentrations were measured in the northern and central parts of the study area, which is underlain by charnockites and hornblende biotite gneiss. The sampling indicated (as per the Bureau of Indian Standards) that 53.9% of the area has fluoride concentrations below levels that are protective of teeth from dental caries (<.6 mg/L). .1% of the area is considered to be at risk of dental fluorosis, and the remaining 46% of the area is considered to have fluoride levels at desirable to permissible limit in groundwater. The groundwater in the study area belongs to Ca–Mg–Cl–SO4 and Ca–Mg–HCO3 types. A positive correlation between fluoride and TDS, Na+, K+ and HCO3 ? indicates its geogenic origin, and positive loading between pH and fluoride shows that alkaline environment enhances the dissolution of fluoride-bearing minerals into the groundwater. An empirical Bayesian kriging model was applied to interpolate the fluoride concentration in the study area. This geostatistical model is found to be better than other kriging methods, and it yielded an average standard error of .332 and root-mean-square standardized value of .986.  相似文献   

20.
地下水有机污染人体健康风险评价初探   总被引:47,自引:0,他引:47  
健康风险评价是定量描述污染对人体健康产生危害的重要方法,目前国内主要应用于地表水或污水回用的评价。文中针对地下水中有机污染物,考虑中国人饮水习惯及有机污染物的自然衰减作用,对U·S·EPA推荐模型进行了改进,并以北方某市一典型有机污染区的地下水为例,对地下水中污染物通过食入和皮肤接触两种途径进入人体产生的危害进行了风险计算和评价,分析了其主要风险来源。结果表明,典型区各点的非致癌风险均未超标,但有4个点的致癌风险超过U·S·EPA推荐的可接受风险值(1·0×10-4),其中B408点致癌风险高达1·37×10-3,不宜作为饮用水水源;各个点风险的主要贡献因子均是饮水途径摄入的三氯乙烯和四氯乙烯。但饮用煮沸的水在很大程度上能降低风险,建议不饮用生水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号