首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
针对粘性土抗拉强度测试问题,本文设计改装了土样拉伸试验仪,可完成单轴拉伸、巴西劈裂和轴向压裂三种抗拉强度试验。通过不同方法测定土体的抗拉强度,研究了试样高度对各方法强度测量值的影响及其规律。试验结果表明,试样高度对轴向压裂试验测试结果的影响最大,对巴西劈裂试验测试结果影响很小,几乎不影响单轴拉伸试验测试结果。轴向压裂试验中,抗拉强度测试值随试样高度h增大而减小,随衬垫直径增大而增大。巴西劈裂试验中,试样抗拉强度测试值随试样高度增大略有增大。  相似文献   

2.
胀缩性土抗拉强度试验研究   总被引:3,自引:0,他引:3  
抗拉强度是黏性土重要的力学指标之一。自行研制了简易土工拉伸仪,并通过试验确定了合适的制样方法。在此基础上,对具有胀缩性的武鸣红黏土和百色膨胀土分别进行试验,探讨了其抗拉强度与干密度、含水率、干湿循环次数等影响因素的关系,研究结果表明:两种土的抗拉强度-含水率曲线在饱和度接近66%时出现峰值,该峰值对应含水率接近最优含水率,峰值两侧呈指数关系变化,抗拉强度随含水率的变化规律受土中水的形态影响。抗拉强度随干密度的增加而线性递增,增加幅度显著。抗拉强度随干、湿循环次数增加而衰减,1~2次循环时,强度衰减幅度最大,但3次循环后,趋向于一稳定值,稳定值为初始值的20%左右,土体干、湿循环后抗拉强度降低是微结构劣化的结果。  相似文献   

3.
吉恩跃  陈生水  傅中志 《岩土力学》2019,40(12):4777-4782
研究掺砾心墙料的拉裂特性对深入研究高土石坝水力劈裂、坝顶裂缝以及坝肩横缝等问题至关重要,但目前已有的研究尚不够深入。基于自主研制的单向拉伸试验装置,对不同掺砾量下的心墙料进行了系列的单向拉伸试验,依据试验结果分析了掺砾心墙料拉裂破坏的机制。在此基础上得到以下结论:在试样各自最大干密度及最优含水率下,随着掺砾量的增加,心墙料的抗拉强度和拉应变呈线性递减关系;所有试样的拉应力?应变曲线呈分段指数关系,极限拉应力前后试验曲线可分别采用正负指数关系来描述;进行了系列三轴排水剪试验,分析各试样抗拉强度与强度指标的关系发现,对于所研究的掺砾心墙料,抗拉强度与其黏聚力呈较好的线性关系,在不具备试验条件的情况下,此关系可用来大致估算心墙料的抗拉强度。相关试验结果可为实际土心墙坝抗裂设计提供参照。  相似文献   

4.
重塑黏土抗拉特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用应变控制式拉伸试验仪研究重塑黏性土的单轴抗拉特性,探究了含水率、干密度、高径比对试样应力应变曲线、抗拉强度、峰值应变以及拉伸能量的影响,并分析了其内在机理,讨论了土体抗拉强度的来源。试验结果表明:(1)含水率和干密度对抗拉强度影响很大,呈线性相关,具体表现为:含水率升高,抗拉强度先增大后减小;干密度越大,抗拉强度越大。在高径比相同的情况下,高度和直径的变化对抗拉强度影响不大;(2)峰值应变由应力应变曲线形态决定,因而主要受土样的抗拉强度、可塑性以及破坏方式影响;(3)应力应变曲线大致可分为四类,曲线形态各不相同;(4)拉伸能量由应力应变曲线形态决定。含水率影响试样的抗拉强度和塑性,干密度影响试样的抗拉强度和内部结构,因而两者对拉伸能量的影响很大。高径比不变时,试样高度和直径的变化对拉伸能量影响不大。  相似文献   

5.
不同加载速率条件下岩石的力学特性,对于其动载下破裂内在机制的研究具有积极的意义。基于颗粒流理论,通过黏结颗粒模型(bonded particle model,简称BPM)虚拟实现不同加载速率0.001~0.500 m/s下花岗岩单轴压缩和巴西劈裂试验,定量分析加载速率对应力-应变、破裂形态、应变能率及声发射的影响。结果表明:单轴抗压强度和抗拉强度及其对应峰值应变随加载速率增加而非线性增长;单轴压缩作用下,随加载速率增加,试样由单一斜截面破坏向多斜截面破坏转变,且主控裂隙带宽度急剧增大,由裂纹数量及水平向高应变率区域变化规律可明显看出,试样破坏程度随着加载速率增加而逐渐加剧;巴西劈裂作用下试样从一条主控裂隙向多条主控裂隙转变,且裂纹向圆盘试样两侧边缘部分延伸,破坏程度加剧;单轴压缩和巴西劈裂作用下,声发射事件及应变能率均随加载速率增加而呈现出非线性增长趋势。  相似文献   

6.
理论上土体的抗拉强度与抗压和抗剪强度一样是描述土体力学性质的重要指标之一,也是研究土体张拉破坏特性的基础。由于土体抗拉强度在数值上相对较小,且难以准确测量,在岩土工程领域常常被忽视。随着工程中的张拉破坏问题越来越突出,土体抗拉强度特性引起许多学者的关注,相关研究成果也越来越多。文中对土体抗拉强度试验研究方法进行了系统的归纳和总结,对比分析了各种方法的优缺点,认识到,(1)土体抗拉强度试验方法总体上可分为直接法和间接法两大类,直接法是在试样两端直接施加拉力直到试样发生张拉破坏,根据破坏时的最大拉力及对应的破裂面面积计算出土体的抗拉强度。间接法主要通过一些理论假设,把压应力转换成相应的拉应力并基于一些理论公式计算土体抗拉强度;(2)按试样受力条件,直接法可分为单轴拉伸和三轴拉伸,一般都需要开发专门的拉伸试验设备,以实现拉力荷载的施加及其在试样内的有效传递。常用的方式有粘结、锚固、模具夹持及摩擦力传递等,都各有优缺点,但模具夹持法相对而言更具操作性。间接法中比较有代表性的有巴西劈裂试验、土梁弯曲试验和轴向压裂试验等,一般较适应于刚度较大的土体如化学固化土。最后,笔者提出了今后该课题的研究重点,包括制定土体抗拉强度试验方法规范及标准,研发简单易操作的土体拉伸试验设备,拉伸试验过程中土吸力的测量及控制方法,土体拉伸过程中应变场的准确获取方法及土体张拉特性的数值模拟研究等。  相似文献   

7.
李明田  茹忠亮  李术才 《岩土力学》2006,27(Z1):555-558
提出了一种模拟岩石破坏过程的细胞自动机模型,以力、位移作为基本状态变量,基于基本的力学规律构造了细胞自动机模型的矢量局部更新规则,克服了以往规则确定随意性以及标量化的缺点。利用该模型模拟了岩石的单轴破坏过程,研究了非均质性对单轴直接拉伸破坏过程的影响,并研究了几何形状(长宽比)对单轴拉伸强度的影响,研究结果加深了对岩石单轴抗拉强度的了解,对试验有一定的指导作用,应进一步加强岩石的直接拉伸试验研究。  相似文献   

8.
黄星  李东庆  明锋  邴慧  彭万巍 《冰川冻土》2016,38(5):1346-1352
在寒区工程建筑物设计中,冻土的抗压、抗拉强度是两个重要的力学指标.在负温条件下,对粉质黏土、黄土和砂土进行单轴抗压和劈裂抗拉试验,研究冻土破坏时的破坏形态、破坏机理、应力-应变曲线和拉应力与径向位移关系曲线的形式,分析单轴抗压强度和劈裂抗拉强度的差异以及这两种强度随土质特性和温度的变化规律.试验结果表明:单轴载荷作用下试样破坏后呈鼓状,且表现为应变软化型塑性破坏特征;劈裂作用下产生沿直径向试样两侧延伸的裂缝,不同土质破坏后裂缝扩展的宽度和深度不同;冻土的抗压强度与抗拉强度均与负温存在很好的线性相关性,随温度的降低而增大;在相同温度条件下,冻土的抗压强度大于其抗拉强度;对于同一种冻土,其抗压强度的温度效应比抗拉强度的温度效应显著.本试验分析结果可为寒区工程的实际应用提供参考.  相似文献   

9.
《岩土力学》2017,(Z1):43-52
为揭示围压及应变速率对页岩力学特性的影响规律,对志留统龙马溪组页岩试样开展了不同围压及不同应变率下的三轴压缩力学试验研究。结果表明,围压和应变率对页岩的弹性模量、峰值强度及破裂形态等均具有显著影响,弹性模量和峰值强度均随围压的升高而增加,峰值强度增加的幅度明显大于弹性模量,峰值强度呈线性增加趋势,低围压时应变率从低到高,弹性模量和峰值强度都呈逐渐升高的趋势,两者与应变率对数的关系可用二次多项式描述;随着围压增大,页岩的应变率效应逐渐减弱,在较高高围压(50 MPa)下峰值强度和弹性模量随应变速率增加而增加现象均变得极不显著。对试验后岩样的破坏模式进行分析可知,页岩在低围压高应变率状态下主要是劈裂–剪切破坏,随着围压的增加和应变率的减小,试样的破坏由脆性劈裂–剪切破坏向单一剪切破坏转变,再逐渐向延性破坏过渡。研究结果对于合理确立页岩力学参数及设计压裂方案具有较好的参考。  相似文献   

10.
研究黏土的抗拉性能对于认识离子固化剂改性黏土的黏聚力等力学性能有着重要的意义。针对现有拉伸测试装置的不足,设计研发了一套基于变形数字图像处理的土体材料拉伸试验装置,该装置包含应变控制模块、加载夹具模块、数据采集模块和数字图像处理模块。改进了现有加载夹具的不足,将土样形状设计为“8”型并运用FLAC3D有限元数值计算软件验证其合理性,巧妙地解决了夹具与土样之间的连接问题,并且将加载夹具功能与制样盒功能合并,避免了试样转移过程中可能受到的扰动。新增了图像采集装置,记录土样变形破坏过程,基于Geo-PIV数字图像处理软件分析土样试验过程中的变形规律。应用该装置开展了素蒙脱土及不同配比离子固化剂减小蒙脱土黏聚力对比试验研究,研究结果表明:拉伸仪能精确控制、采集土体的抗拉强度。粒子图像测速(particle image velocimetry,简称PIV)分析结果客观、真实地表明,试验过程中土样处于受拉状态,并且土样受加载夹具夹持的部位并未出现明显的应力集中现象;离子固化剂改性蒙脱土抗拉强度以及拉伸变形模量较未改性土低,降低程度随离子固结剂溶液浓度增大而增大;数据采集装置对应力、应变信息变化敏感。试验结果和数字图像结果表明,所设计的拉伸试验装置具合理性、可靠性以及敏感性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号