首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This contribution discusses the development of the Palaeoproterozoic Buganda-Toro belt in the Rwenzori Mountains and its influence on the western part of the East African Rift System in Uganda. The Buganda-Toro belt is composed of several thick-skinned nappes consisting of Archaean Gneisses and Palaeoproterozoic cover units that are thrusted northwards. The high Rwenzori Mountains are located in the frontal unit of this belt with retrograde greenschist facies gneisses towards the north, which are unconformably overlain by metasediments and amphibolites. Towards the south, the metasediments are overthrust by the next migmatitic gneiss unit that belongs to a crustal-scale nappe. The southwards dipping metasedimentary and volcanic sequence in the high Rwenzori Mountains shows an inverse metamorphic grade with greenschist facies conditions in the north and amphibolite facies conditions in the south. Early D1 deformation structures are overgrown by cordierite, which in turn grows into D2 deformation, representing the major northwards directed thrusting event. We argue that the inverse metamorphic gradient develops because higher grade rocks are exhumed in the footwall of a crustal-scale nappe, whereas the exhumation decreases towards the north away from the nappe leading to a decrease in metamorphic grade. The D2 deformation event is followed by a D3 E-W compression, a D4 with the development of steep shear zones with a NNE-SSW and SSE-NNW trend including the large Nyamwamba shear followed by a local D5 retrograde event and D6 brittle reverse faulting. The Palaeoproterozoic Buganda-Toro belt is relatively stiff and crosses the NNE-SSW running rift system exactly at the node where the highest peaks of the Rwenzori Mountains are situated and where the Lake George rift terminates towards the north. Orientation of brittle and ductile fabrics show some similarities indicating that the cross-cutting Buganda-Toro belt influenced rift propagation and brittle fault development within the Rwenzori Mountains and that this stiff belt may form part of the reason why the Rwenzori Mountains are relatively high within the rift.  相似文献   

2.
The Rwenzori mountains in western Uganda, with a maximum elevation of more than 5,000 m, are located within the Albertine rift valley. We have deployed a temporary seismic network on the Ugandan side of the mountain range to study the seismic velocity structure of the crust and upper mantle beneath this section of the rift. We present results from a receiver-function study revealing a simple crustal structure along the eastern rift flank with a more or less uniform crustal thickness of about 30 km. The complexity of inner-crustal structures increases drastically within the Rwenzori block. We apply different inversion techniques to obtain reliable results for the thickness of the crust. The observations expose a significantly thinner crust beneath the Rwenzori range with thickness values ranging from about 20–28 km beneath northern and central parts of the mountains. Our study therefore indicates the absence of a crustal root beneath the Rwenzori block. Beneath the Lake Edward and Lake George basins we detect the top of a layer of significantly reduced S-wave velocity at 15 km depth. This low-velocity layer may be attributed to the presence of partial melt beneath a region of recent volcanic activity.  相似文献   

3.
Broad-band and long period magnetotelluric measurements made at 63 locations along ~500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton(DC)and Eastern Ghat Mobile Belt(EGMB)in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick(~200 km)cratonic(highly resistive)lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the Cretaceous—Tertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin(~120 km)lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.  相似文献   

4.
The 642 Ma-old Brauna Kimberlite Field is located on the northeastern sector of the São Francisco Craton (Serrinha block) and is one of the rare Neoproterozoic kimberlitic events in South America. Zircon xenocrysts from the volumetric most important kimberlite pipes Brauna 03, Brauna 07 and Brauna 04 were used as a tool to identify different components of the lithosphere beneath the northeast region of the São Francisco craton. A composite kimberlite sample of eight representative and different drill holes and three samples of the host rocks (Nordestina granodiorite) were sampled for SHRIMP geochronology. The results were compared with precise U–Pb age data for the regional rocks, i.e. the Archaean basement and the Palaeoproterozoic Rio Itapicuru greenstone belt. Samples from the Nordestina granodiorite gave three different ages: 2155 Ma in the western part of the batholith, 2139 Ma in its central part, and 2132 Ma in its eastern part. Zircon 207Pb/206Pb ages of the Brauna kimberlite zircon grains spread over the timespan 2107–2223 Ma and indicate four age groups at 2105 ± 3 Ma, 2138 ± 7 Ma, 2166 ± 5 Ma, and 2198 ± 4 Ma. Source rocks for the three former age groups can be found in the Rio Itapicuru greenstone belt, including zircon xenocrysts from the Nordestina granodiorite, whereas the latter age group has not yet been reported in the Serrinha block. The new zircon ages show that only rocks of the Palaeoproterozoic Rio Itapicuru greenstone belt and of a hidden 2.17–2.20 Ga crust were sampled by the kimberlite magma during its ascent through the lithosphere. It is proposed that there is none or a few Archaean crust beneath the kimberlite emplacement area, hence implying a thick Palaeoproterozoic lithosphere for this portion of the São Francisco craton.  相似文献   

5.
New structural and seismologic evidence from the Rwenzori Mountains, Uganda, indicate that continental rifts can capture and rotate fragments of the lithosphere while rift segments interact, in a manner analogous to the interaction of small-scale fractures. The Rwenzori Mountains are a basement block within the western branch of the East African Rift System that is located at the intersection of two rift segments and is apparently rotating clockwise. Structural data and new seismological data from earthquake epicentres indicate a large-scale, 20-km-long transsection fault is currently detaching the Rwenzori micro-plate on its northern margin from the larger Victoria plate (Tanzania craton), whereas it is already fully detached in the south. We propose that this fault develops due to the rotation of the Rwenzori block. In a numerical model we show how rift segment interaction, block rotation and the development of transsection faults (faults that cut through the Rwenzori Mountains) evolve through time. The model suggests that uplift of the Rwenzori block can only take place after the rift has opened significantly, and rotation leads to the development of transsection faults that connect two rift segments, so that the block is captured within the rifts. Our numerical model suggests that the majority of the uplift has taken place within the last 8 Ma.  相似文献   

6.
Margins of old continental lithosphere are likely prone to ongoing modification processes. Therefore, constraining detailed structures beneath the margin can be essential in understanding the evolution of the continental lithosphere. The eastern margin of the Eurasian plate is a natural laboratory that allows us to study the strong effects from multiple episodes of continental collision and subduction of different oceanic plates since their formation. To reveal the detailed evolution of cratons at their margins, we describe, for the first time, the upper mantle structures beneath the southern Korean Peninsula (SKP) based strictly on teleseismic relative arrival time data from densely deployed local seismic arrays, which allows us to constrain the details of the lithospheric structures beneath the Archean-Proterozoic basement. We imaged a thick (~150 km) high-velocity anomaly mainly beneath the Proterozoic Yeongnam Massif with large velocity contrasts (dlnVp ≈ 4.0% and dlnVs ≈ 6.0%) at its boundaries, suggesting the presence of a long-lasting cratonic root in the southwestern SKP. On the other hand, low-velocity anomalies were found beneath the Proterozoic Gyeonggi Massif, Gyeongsang arc-back-arc basin, and along the eastern margin of the SKP, indicating significantly modified regions. The possible existence of a remnant cratonic root beneath the SKP and contrasting lithospheric structures across the different Precambrian massifs suggests the highly heterogeneous modification of cratonic lithosphere at the eastern Eurasian plate margin. Strong velocity reductions, which indicate a thermally elevated upper mantle potentially with partial melts, correspond to areas of Cenozoic basalts, high surface heat flow, and high topography along the eastern KP margin. We interpret this coincidence as a result of recent reactivation of a craton margin, which is controlled by intense interaction between the convective upper mantle and heterogeneous continental lithosphere.  相似文献   

7.
Hf‐isotope data of >1100 detrital zircon grains from the Palaeozoic, south‐central Andean Gondwana margin record the complete crustal evolution of South America, which was the predominant source. The oldest grains, with crustal residence ages of 3.8–4.0 Ga, are consistent with complete recycling of existing continental crust around 4 Ga. We confirm three major Archaean, Palaeoproterozoic (Transamazonian) and late Mesoproterozoic to early Neoproterozoic crust‐addition phases as well as six igneous phases during Proterozoic to Palaeozoic time involving mixing of juvenile and crustally reworked material. A late Mesoproterozoic to early Neoproterozoic, Grenville‐age igneous belt can be postulated along the palaeo‐margin of South America. This belt was the basement for later magmatic arcs and accreted allochthonous microcontinents as recorded by similar crustal residence ages. Crustal reworking likely dominated over juvenile addition during the Palaeozoic era, and Proterozoic and Archaean zircon was mainly crustally reworked from the eroding, thickened Ordovician Famatinian arc.  相似文献   

8.
With heights of 4–5 km, the topography of Rwenzori Mountains, a large horst of old crustal rocks located inside a young passive rift system, poses the question “Why are the Rwenzori Mountains so high?”. The Cenozoic Western Rift branch of the East African Rift System is situated within the Late Proterozoic mobile belts between the Archean Tanzania Craton and Congo Craton. The special geological setting of the massif at a rift node encircled by the ends of the northern Western Rift segments of Lake Albert and Lake Edward suggests that the mechanism responsible for the high elevation of the Rwenzoris is related to the rifting process. Our hypothesis is based on the propagation of the rift tips, surrounding the stiff old lithosphere at Rwenzori region, thereby triggering the delamination of the cold and dense mantle lithosphere (ML) root by reducing viscosity and strength of the undermost lower crust. As a result, this unloading induces fast isostatic pop-up of the less dense crustal Rwenzori block. We term this RID—“rift induced delamination of Mantle Lithosphere”. The physical consistency of the RID hypothesis is tested numerically. Viscous flow of 2D models is approximated by a Finite Difference Method with markers in an Eulerian formulation. The equations of conservation of mass, momentum and energy are solved for a multi-component system. Based on laboratory data of appropriate rock samples, a temperature-, pressure- and stress-dependent rheology is assumed. Assuming a simple starting model with a locally heated ML, the ML block between the weakened zones becomes unstable and sinks into the asthenosphere, while the overlying continental crust rises up. Thus, RID seems to be a viable mechanism to explain geodynamically the extreme uplift. Important conditions are a thermal anomaly within the ML, a ductile lower crust with visco-plastic rheology allowing significant strength reduction and lateral density variations. The special situation of a two-sided rifting or offset rift segments to decouple the ML laterally from the surrounding continental lithosphere seems to be most decisive. Further support for the RID mechanism may come from additional crustal thickness and an extensive stress field. Some parameters, such as the excess temperature and yield stress, are very sensitive, small changes determine whether delamination takes place or not.  相似文献   

9.
The passive continental margins of India have evolved as India broke and drifted away from East Antarctica, Madagascar and Seychelles at various geological times. In this study, we have attempted to collate and re-examine gravity and topographic/bathymetry data over India and the adjoining oceans to understand the structure and tectonic evolution of these margins, including processes such as crustal/lithosphere extension, subsidence due to sedimentation, magmatic underplating and so on. The Eastern Continental Margin of India (ECMI) seems to have evolved in a complex rift and shear tectonic settings in its northern and southern segments, respectively, and bears similarities with its conjugate in East Antarctica. Crustal extension rates are uniform along the stretch of the ECMI in spite of the presence or absence of crustal underplated material, variability in lithospheric strength and tectonic style of evolution ranging from rifting to shearing. The Krishna-Godavari basin is underlain by a strong ( 30 km) elastic lithosphere, while the Cauvery basin is underlain by a thin elastic lithosphere ( 3 km). The coupling between the ocean and continent lithosphere along the rifted segment of the ECMI is across a stretched continental crust, while it is direct beneath the Cauvery basin. The Western Continental Margin of India (WCMI) seems to have developed in an oblique rift setting with a strike-slip component. Unlike the ECMI, the WCMI is in striking contrast with its conjugate in the eastern margin of Madagascar in respect of sedimentation processes and alignment of magnetic lineations and fracture zones. The break up between eastern India and East Antarctica seems to have been accommodated along a Proterozoic mobile belt, while that between western India and Madagascar is along a combination of both mobile belt and cratonic blocks.  相似文献   

10.
The Reguibat Shield comprises a western “Archaean terrane” and eastern “Eburnean terrane” juxtaposed during the early Palaeoproterozoic Eburnean Orogeny. Metasedimentary rocks of probable Palaeoproterozoic age are preserved as flat-lying klippen (Kediat Ijil and Guelb Zednes) and steep imbricate zones (El Mahaoudat range and Sfariat Belt). These are interpreted to record a phase of thrust tectonics that emplaced a continental margin succession onto a composite Archaean foreland prior to ca. 2.06 Ga sinistral transcurrent deformation. Together, these events reflect partitioned Eburnean transpression.  相似文献   

11.
This study aims at showing how far pre-existing crustal weaknesses left behind by Proterozoic mobile belts, that pass around cratonic Archean shields (Tanzania Craton to the southeast and Congo Craton to the northwest), control the geometry of the Albertine Rift. Focus is laid on the development of the Lake Albert and Lake Edward/George sub-segments and between them the greatly uplifted Rwenzori Mountains, a horst block located within the rift and whose highest peak rises to >5000 m above mean sea level. In particular we study how the southward propagating Lake Albert sub-segment to the north interacts with the northward propagating Lake Edward/George sub-segment south of it, and how this interaction produces the structures and geometry observed in this section of the western branch of the East African Rift, especially within and around the Rwenzori horst. We simulate behaviour of the upper crust by conducting sandbox analogue experiments in which pre-cut rubber strips of varying overstep/overlap connected to a basal sheet and oriented oblique and/or orthogonal to the extension vector, are placed below the sand-pack. The points of connection present velocity discontinuities to localise deformation, while the rubber strips represent ductile domain affected by older mobile belts. From fault geometry of developing rift segments in plan view and section cuts, we study kinematics resulting from a given set of boundary conditions, and results are compared with the natural scenario. Three different basal model-configurations are used to simulate two parallel rifts that propagate towards each other and interact. Wider overstep (model SbR3) produces an oblique transfer zone with deep grabens (max. 7.0 km) in the adjoining segments. Smaller overlap (model SbR4) ends in offset rift segments without oblique transfer faults to join the two, and produces moderately deep grabens (max. 4.6 km). When overlap doubles the overstep (model SbR5), rifts propagate sub-orthogonal to the extension direction and form shallow valleys (max. 2.9 km). Relative ratios of overlap/overstep between rift segments dictate the kind of transition zone that develops and whether or not a block (like the Rwenzoris) is captured and rotates; hence determining the end-member geometry. Rotation direction is controlled by pre-existing fabrics. Fault orientation, fault kinematics, and block rotation (once in play) reinforce each other; and depending on the local kinematics, different parts of a captured block may rotate with variable velocities but in the same general direction. Mechanical strength anisotropy of pre-structured crust only initially centres fault nucleation and propagation parallel to the grain of weakness of the basement, but at later stages of a protracted period of crustal extension, such boundaries are locally defied.  相似文献   

12.
《地学前缘(英文版)》2020,11(5):1743-1754
Broad-band and long-period magnetotelluric(MT) data were acquired along an east-west trending traverse of nearly 200 km across the Kachchh,Cambay rift basins,and Aravalli-Delhi fold belt(ADFB),western India.The regional strike analysis of MT data indicated an approximate N59°E geoelectric strike direction under the traverse and it is in fair agreement with the predominant geological strike in the study area.The decomposed transverse electric(TE)-and transverse magnetic(TM)-data modes were inverted using a nonlinear conjugate gradient algorithm to image the electrical lithospheric structure across the Cambay rift basin and its surrounding regions.These studies show a thick(~1-5 km) layer of conductive Tertiary-Mesozoic sediments beneath the Kachchh and Cambay rift basins.The resistive blocks indicate presence of basic/ultrabasic volcanic intrusives,depleted mantle lithosphere,and different Precambrian structural units.The crustal conductor delineated within the ADFB indicates the presence of fluids within the fault zones,sulfide mineralization within polyphase metamorphic rocks,and/or Aravalli-Delhi sediments/metasediments.The observed conductive anomalies beneath the Cambay rift basin indicate the presence of basaltic underplating,volatile(CO_2,H_2 O) enriched melts and channelization of melt fractions/fluids into crustal depths that occurred due to plume-lithosphere interactions.The variations in electrical resistivity observed across the profile indicate that the impact of Reunion plume on lithospheric structures of the Cambay rift basin is more dominant at western continental margin of India(WCMI) and thus support the hypothesis proposed by Campbell Griffiths about the plume-lithosphere interactions.  相似文献   

13.
The ∼500,000 km2 Saharan Metacraton in northern Africa (metacraton refers to a craton that has been mobilized during an orogenic event but that is still recognisable through its rheological, geochronological and isotopic characteristics) is an Archean–Paleoproterozoic cratonic lithosphere that has been destabilized during the Neoproterozoic. It extends from the Arabian–Nubian Shield in the east to the Trans-Saharan Belt in the west, and from the Oubanguides Orogenic Belt in the south to the Phanerozoic cover of North Africa. Here, we show that there are high S-wave velocity anomalies in the upper 100 km of the mantle beneath the metacraton typical of cratonic lithosphere, but that the S-wave velocity anomalies in the 175–250 km depth are much lower than those typical of other cratons. Cratons have possitive S-wave velocity anomalies throughout the uppermost 250 km reflecting the presence of well-developed cratonic root. The anomalous upper mantle structure of the Saharan Metacraton might be due to partial loss of its cratonic root. Possible causes of such modification include mantle delamination or convective removal of the cratonic root during the Neoproterozoic due to collision-related deformation. Partial loss of the cratonic root resulted in regional destabilization, most notably in the form of emplacement of high-K calc-alkaline granitoids. We hope that this work will stimulate future multi-national research to better understand this part of the African Precambrian. Specifically, we call for efforts to conduct systematic geochronological, geochemical, and isotopic sampling, deploy a reasonably-dense seismic broadband seismic network, and conduct systematic mantle xenoliths studies.  相似文献   

14.
Flexural modeling of bending of the southern and southeastern borders of the Amazon lithospheric plate under the western border of the Goiás Massif and western Parnaı́ba basin was constrained by 1070 gravity stations between 5°–14°S and 46°–52.5°W. Topography and aeromagnetic data were also used to estimate the loads of the Araguaia thrust belt. A sequence of Bouguer gravity anomaly lows (−80 to −40 mGal) is located over the Araguaia thrust belt and Cenozoic sediments of the Ilha do Bananal basin. Bouguer anomalies over the Amazon craton, to the west of the thrust belt, are higher than −20 mGal. Towards the east, over the Goiás Massif, the São Francisco craton and the Paleozoic to Mesozoic Parnaı́ba basin, anomalies range from −70 to −20 mGal. Comparison between topography and gravity along profiles perpendicular to the cratonic borders and across the Araguaia thrust belt shows that the long-wavelength gravity anomalies are best explained by bending of the Amazon plate caused by loads such as the observed topography, the thrust-sheets of the Araguaia belt and the remnants of ancient island-arc system in the Goiás massif. The thickness of the Araguaia thrust belt together with the Cenozoic sediments was estimated using aeromagnetic data and it ranges from 6 to 8 km. This load was used to calculate the minimum effective elastic thickness Te for the Amazon plate. Te=80 km was estimated by comparing the observed Bouguer anomalies with the gravity anomalies caused by bending of the crust-mantle interface of a broken elastic plate model. These results support the proposition that the Araguaia belt formed during the collision and suture of the Amazon and the São Francisco lithospheric plates, in late Proterozoic times.  相似文献   

15.
Kimberlites, carbonatites and ultramafic, mafic and potassic lamprophyres have been produced in West Greenland in recurrent events since the Archaean. Five distinct age groups are recognised: Archaean (>2500 Ma). Early Proterozoic (1700–1900 Ma), Middle Proterozoic (Gardar, c. 1100–1300 Ma), Late Proterozoic (600 Ma) and Mesozoic-Tertiary (200-30 Ma) The rocks comprise two large and four small carbonatite occurrences, four kimberlite dyke swarms, one lamproite dyke swarm and one lamproite pipe, one dyke swarm of potassic lamprophyre (shonkinite) and some ten dyke swarms of ultramafic lamprophyre and monchiquite. Geochemical data for the various rock groups are presented. Some of the carbonatites may represent relatively unmodified mantle-derived melts. The kimberlites range from primitive to differentiated compositions, and there are regional differences between kimberlites within Archaean and Proterozoic basement. The ultrapotassic lamproites and shonkinites have strong negative Nb spikes in their trace element spectra. The ultramafic and monchiquitic lamprophyres encompass a large compositional variation; however, several of the dyke swarms have individual chemical characters.

The rocks are very unevenly distributed in West Greenland, indicating a lithospheric control, probably by old weakness zones providing access to the surface. The kimberlites are considered to be mainly of asthenospheric derivation. The regional differences are interpreted in terms of melting with phlogopite as a residual phase, with smaller degrees of melting at deeper levels beneath the Archaean lithosphere than beneath the Proterozoic. The ultrapotassic lamproites and shonkinites occur almost exclusively within a continental collision zone with possible two-way subduction and they are interpreted as mainly of lithospheric derivation, with a contribution from a subducted slab. Data for the other rock types are equivocal.

Except for the Archaean rocks, the age groups can be related to major geotectonic events. The Early Proterozoic group is related to continental collision at 1850 Ma and subsequent rifting; the Middle Proterozoic group is related to continental rifting (Gardar) and the Mesozoic group is likewise related to continental rifting prior to continental break-up in the Tertiary. The 600 Ma kimberlites and carbonatite are envisaged as cratonic, extra-rift activity in relation to continental break-up and formation of the Iapetus ocean further south, perhaps with a common cause in a broad, impinging mantle plume.  相似文献   


16.
朱清波  程万强  周全 《现代地质》2022,36(3):755-769
襄樊—广济断裂带是分隔大别造山带和扬子板块北缘前陆褶皱逆冲带的边界断裂,其几何学、运动学及构造演化特征记录了南北两大不同性质的大地构造单元发生碰撞、拼贴及相互作用的地质过程。在野外调查、构造解析和年代学研究基础上,结合区域地质和地球物理资料分析,认为襄樊—广济断裂带东段以深部向南逆冲、浅表向北逆冲的“鳄鱼嘴式”对冲构造为特征,与西段的构造变形样式和次序存在显著差异。中扬子地区东部受控于江南—雪峰造山带和大别造山带南北两大构造体系,深部扬子板块北缘向大别造山带之下俯冲导致造山带自北向南挤出,推覆构造可影响至瑞昌一带,由南向北的浅层逆冲推覆可影响至梅川附近,二者在襄樊—广济断裂带东段的蕲春—武穴—浠水一带对接。襄樊—广济断裂带经历了印支早期同碰撞由北向南的逆冲推覆和深层次的韧性剪切变形(T2末)、燕山早—中期双向对冲构造变形(J1-3)、燕山晚期伸展正断层变形(K1-2)、喜山早期由北向南小规模逆冲变形(E1)阶段。  相似文献   

17.
Biotite separates from Archaean granitoid lithologies on the Kaapvaal Craton north of the roterozoic Namaqua-Natal Belt in south eastern South Africa exhibit RbSr model dates of 967 ± 24 Ma for samples from within 25 km of the present northern limit of the Proterozoic thrust front. Samples from further north (>50 km to 170 km) have model RbSr dates of 2614 ± 74 Ma. The younger dates are interpreted as dating cooling after northwards emplacement of Proterozoic crust onto the Kaapvaal Craton, whereas the older dates are presumed to relate to an Archaæan metamorphic episode, possibly associated with intrusion of the post-Pongola granites.  相似文献   

18.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

19.
Distant earthquake data recorded by seven sub-arrays of the ongoing WOMBAT rolling seismic array deployment in southeast Australia are combined for the first time to constrain 3-D variations in upper mantle P-wavespeed via teleseismic tomography. The seven arrays comprise a total of 276 short period recorders spaced at intervals of approximately 50 km, thus allowing unprecedented resolution of the upper mantle over a large region. In the mantle lithosphere immediately below the crust (~ 50 km depth), dominant variations in velocity tend to strike east–west, and share little resemblance to Palaeozoic boundaries in the shallow crust inferred from surface geology and potential field data. A broad region of elevated wavespeed beneath northern Victoria may represent the signature of underplated igneous rocks associated with detachment faulting during the break-up of Australia and Antarctica. A distinct low velocity anomaly in southern Victoria appears to correlate well with the Quaternary Newer Volcanic Provinces. Towards the base of the mantle lithosphere, the dominant structural trend becomes north–south, and five distinct velocity zones become apparent. Of particular note is a transition from higher wavespeed in the west to lower wavespeed in the east beneath the Stawell Zone, implying that the Proterozoic lithosphere of the Delamerian Orogen protrudes eastward beneath the Western subprovince of the Lachlan Orogen. This transition zone extends northwards from southern Victoria into central New South Wales (the northward limit of the arrays), and is one of the dominant features of the model. Further east, there is a transition from lower to higher wavespeeds in the vicinity of the boundary between the Western and Central subprovinces of the Lachlan Orogen, which has several plausible explanations, including the existence of a Proterozoic continental fragment beneath the Wagga–Omeo Zone. The presence of elevated wavespeeds beneath the Melbourne Zone in Victoria, although not well constrained due to limited data coverage, provides some support to the Selwyn Block model, which proposes a northward extension beneath Bass Strait of the Proterozoic core of Tasmania.  相似文献   

20.
The Siwalik Group which forms the southern zone of the Himalayan orogen, constitutes the deformed part of the Neogene foreland basin situated above the downflexed Indian lithosphere. It forms the outer part of the thin-skinned thrust belt of the Himalaya, a belt where the faults branch off a major décollement (MD) that is the external part of the basal detachment of Himalayan thrust belt. This décollement is located beneath 13 Ma sediments in far-western Nepal, and beneath 14.6 Ma sediments in mid-western Nepal, i.e., above the base of the Siwalik Group. Unconformities have been observed in the upper Siwalik member of western Nepal both on satellite images and in the field, and suggest that tectonics has affected the frontal part of the outer belt since more than 1.8 Ma. Several north dipping thrusts delineate tectonic boundaries in the Siwalik Group of western Nepal. The Main Dun Thrust (MDT) is formed by a succession of 4 laterally relayed thrusts, and the Main Frontal Thrust (MFT) is formed by three segments that die out laterally in propagating folds or branch and relay faults along lateral transfer zones. One of the major transfer zones is the West Dang Transfer Zone (WDTZ), which has a north-northeast strike and is formed by strike-slip faults, sigmoid folds and sigmoid reverse faults. The width of the outer belt of the Himalaya varies from 25 km west of the WDTZ to 40 km east of the WDTZ. The WDTZ is probably related to an underlying fault that induces: (a) a change of the stratigraphic thickness of the Siwalik members involved in the thin-skinned thrust belt, and particularly of the middle Siwalik member; (b) an increase, from west to east, of the depth of the décollement level; and (c) a lateral ramp that transfers displacement from one thrust to another. Large wedge-top basins (Duns) of western Nepal have developed east of the WDTZ. The superposition of two décollement levels in the lower Siwalik member is clear in a large portion of the Siwalik group of western Nepal where it induces duplexes development. The duplexes are formed either by far-travelled horses that crop out at the hangingwall of the Internal Décollement Thrust (ID) to the south of the Main Boundary Thrust, or by horses that remain hidden below the middle Siwaliks or Lesser Himalayan rocks. Most of the thrusts sheets of the outer belt of western Nepal have moved toward the S–SW and balanced cross-sections show at least 40 km shortening through the outer belt. This value probably under-estimates the shortening because erosion has removed the hangingwall cut-off of the Siwalik series. The mean shortening rate has been 17 mm/yr in the outer belt for the last 2.3 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号