首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
高效液相色谱法测定地下水中苯并(a)芘的不确定度评定   总被引:1,自引:1,他引:0  
通过对高效液相色谱法测定地下水中苯并(a)芘含量的全过程分析,确定了测定结果不确定度的来源。采用不确定度连续传递模型,对引入的不确定度分量进行评定,并采用最小二乘法对标准曲线进行拟合,确定了地下水中苯并(a)芘含量标准不确定度由样品取样量、样品定容体积及测定体积、样品重复性测定、标准溶液浓度和标准曲线拟合误差6部分不确定度合成。通过对2个不同含量样品测定结果不确定度评定,证明苯并(a)芘含量越低,测定结果的相对标准不确定度越大;且样品重复性测定和标准曲线拟合误差是测定结果不确定度的重要来源。  相似文献   

2.
刘建坤  张飞 《华东地质》2011,(3):230-234
本文对积分安培离子色谱法测定地下水中碘化物含量的不确定度进行了评定,标准曲线采用双误差拟合法,建立了不确定度评定模型,得出几种影响测定结果的因素。  相似文献   

3.
电感耦合等离子体质谱法测定地下水中锑的不确定度评定   总被引:6,自引:5,他引:1  
采用不确定度连续传递模型对电感耦合等离子体质谱法测定地下水中锑元素含量进行不确定度评定,并采用x、y的相对差,对标准曲线进行双误差回归。结果表明,水样中锑含量越低,其相对不确定度越大,且标准曲线的拟合过程引入的不确定度对其总不确定度有较大的贡献率,这与实验室中的实际测试情况相吻合。  相似文献   

4.
为建立非分散红外吸收法测定岩溶区流域水体中溶解性无机碳(DIC)分析结果不确定度的评定方法,采用不确定度连续传递模式,对两个岩溶地下水样的DIC测定结果的不确定度进行了评定。其主要做法是:先采用双误差回归方式对校准曲线进行拟合,对评定过程中各个不确定度分量进行量化,然后合成得到DIC测定结果的不确定度评定模型。通过实验结果计算表明:(1)测定结果的不确定度主要来源于标准溶液引入的不确定度、曲线拟合产生的不确定度和测定过程产生的不确定度。(2)样品的DIC含量越低,其相对不确定度越大,且校准曲线在拟合过程中所引入的不确定度对其测定结果的总不确定度具有较大的贡献率。   相似文献   

5.
采用不确定度连续传递模型,对电感耦合等离子体质谱法测定的地下水中Ag元素的不确定度进行评定。采用双误差回归的方式对标准曲线进行拟合,通过计算出各分量的不确定度,合成得到测量结果的总不确定度。当实际样品中Ag的含量较低时,其曲线拟合产生的不确定度影响较大,甚至成为主导因素。  相似文献   

6.
采用不确定度连续传递模型,对电感耦合等离子体质谱法测定的地下水中Tl元素的不确定度进行评定。采用双误差回归的方式对标准曲线进行拟合,通过计算出各分量的不确定度,合成得到测量结果的总不确定度,但是并没有考虑前处理过程中产生的不确定度。结果表明,当实际样品中Tl的含量较低时,其曲线拟合产生的不确定度贡献影响较大,甚至成为主导因素,而当Tl的含量较高时曲线拟合产生的不确定度贡献率变得很小。  相似文献   

7.
采用不确定度连续传递模型对4-氨基安替吡啉三氯甲烷萃取分光光度法测定的地下水中挥发酚含量的不确定度进行评定。通过对实际水样测量的标准不确定度进行分析和计算,得出测量扩展不确定度,从而定量地说明其测量结果的可信度。研究结果表明,在实际水样的测定过程中,标准曲线拟合和样品前处理过程产生的不确定度对总不确定度有较大的贡献率。  相似文献   

8.
气相色谱法测定地下水中六六六结果的不确定度评定   总被引:7,自引:4,他引:3  
李松  饶竹 《岩矿测试》2008,27(4):295-298
依照《测量不确定度评定与表示》,对气相色谱法测定地下水中六六六(HCH)四种单体结果进行了不确定度评定。分析了测量过程中引入的不确定度来源,包括提取液体积的量取、样品提取溶液的定容体积、分析仪器的进样量、标准系列溶液的测量以及仪器重复测定等分量引入不确定度及其各参数的采集和计算方法,最后合成标准不确定度,通过乘以95%概率下的扩展因子2,获得测量结果的扩展不确定度。  相似文献   

9.
用实例对石墨炉原子吸收光谱法测定土壤样品中镉元素的不确定度进行评定,采用《测量不确定度评定与表示指南》对测量结果进行评估。分析了不确定度的主要来源,包括测量浓度的不确定度、体积的不确定度、称量不确定度及测量重复性引起的不确定度。评估了镉含量的合成标准不确定度和扩展不确定度。对于镉含量为0.42×10-6的土壤样品,其扩展不确定度为0.04×10-6。  相似文献   

10.
电感耦合等离子体质谱法测定地下水中镉的不确定度评定   总被引:2,自引:1,他引:1  
采用不确定度连续传递模型,对电感耦合等离子体质谱法测定地下水中镉元素的不确定度进行评定。其不确定度主要来源于标准溶液引入的不确定度、曲线拟合产生的不确定度和测量过程中引入的不确定度三部分。采用双误差回归的方式对标准曲线进行拟合,通过计算出各分量的不确定度,合成得到测量结果的总不确定度。  相似文献   

11.
采用不确定度连续传递模型,对异烟酸-吡唑啉酮分光光度法测定地下水中氰化物的不确定度进行评定。分析了不确定度的重要来源,包括样品制备、标准溶液配制、标准曲线拟合和仪器测量过程等引入的不确定度分量。采用x、y双误差回归方式对标准曲线进行拟合,通过分析得知,样品中氰化物浓度越低,其相对不确定度越大。  相似文献   

12.
黄聪  董传江  王力  肖峰  李莉  郑洪龙 《铀矿地质》2020,(1):52-58,72
介绍了激光荧光法测定土壤中总铀含量的不确定度评定方法。建立了不确定度的测量模型,对不确定度来源进行了分析,并对不确定度分量进行量化,计算出环境级土壤样品总铀含量测量的扩展不确定度。结果表明,某0.1 g环境土壤干样总铀含量测量的扩展不确定度为13.04%(k=2),占主导作用的不确定度来源为样品荧光计数测量不确定度。  相似文献   

13.
测量不确定度作为当今矿石主要的评定方式,其评定是表征并赋予测量结果的分散性,为最终的测量结果附带参数,以此来客观衡量测量量的分散性。根据数值的特点分为两个度量,符合统计规律的数值,称为A类不确定度;不符合统计规律的数值称为B类不确定度。将不确定度的评定方法运用到铜精粉中铜含量的测定中,最终得出样品铜精粉中19.94%~20.34%的铜含量,同时对铜精粉中铜的测量实验及实验结果不确定度的评定进行了系统的研究,并将整个实验及结果不确定度的计算过程简述,这样不仅达到了测量的目的,还能对不确定度进一步认识,也给冶炼工业的发展提供了可参考的研究方法。  相似文献   

14.
为了解火焰原子吸收发射光谱法测定矿泉水中锶含量结果的置信区间,根据测量结果不确定度评估原则[1],对测定结果的不确定度来源进行了分析,对测定过程的主要不确定度分量进行了合理评定,对锶含量的合成标准不确定度和扩展不确定度进行了评估。结果表明:对于锶含量为0.225?滋g/mL的矿泉水样品,其扩展不确定度为0.028?滋g/mL。  相似文献   

15.
按照测量不确定度评定方法,对氢化物发生-原子荧光光谱法测定地球化学样品中铋结果进行不确定度评定。研究发现原子荧光光谱法测定地球化学样品中铋含量的不确定度主要来源于样品制备过程、标准溶液配制过程、校准曲线拟合过程、重复性测量以及分析仪器的不确定度等。通过对各分量的不确定度进行量化,得出合成标准不确定度和扩展不确定度。结果表明最大的不确定度来源于样品制备过程。当样品中铋含量为24.76μg/g时,其扩展不确定度(k=2)为1.40μg/g。  相似文献   

16.
容量法测定锰矿石中锰不确定度评定   总被引:1,自引:0,他引:1  
以硝酸铵-硫酸亚铁铵容量法测定锰矿中锰为例进行系统的不确定度评定。不确定度的来源主要包括分析过程中所用的仪器设备、标准工作溶液、试液定容体积及测量重复性等引入的不确定度分量。计算出各分量的不确定度,通过合成得到测量结果的标准不确定度、扩展不确定度及测试结果的报告形式。  相似文献   

17.
文章通过对滑石矿中三氧化二铁含量重复测定,建立数学模式,分析了测量过程的不确定主要来源于样品制备的不确定度、标准物质引入的不确定度、曲线拟合中产生的不确定度,以及重复试验的不确定度。当三氧化二铁平均含量为1.26%时,评定其扩展不确定度为0.015%。  相似文献   

18.
蔡玉曼  曹磊 《岩矿测试》2007,26(3):225-229232
通过对榴辉岩中金红石物相二氧化钛含量重复测定,建立数学模型,分析了测量过程的不确定度主要来源于样品制备的不确定度、标准物质引入的不确定度、曲线拟合中产生的不确定度.以及重复试验的不确定度。当二氧化钛平均含量为3.75%时,评定其扩展不确定度为0.16%。  相似文献   

19.
蔡玉曼 《岩矿测试》2008,27(2):123-126
对硅钼蓝分光光度法测定钛铁矿中SiO2含量的不确定度进行评估,建立了数学模型,认为测量过程中不确定度主要来源于标准物质、样品制备、曲线拟合,以及重复实验产生的不确定度。当SiO2平均含量为0.67%时,评定其扩展不确定度为0.05%(k=2)。  相似文献   

20.
张建梅  王洪波  李风 《岩矿测试》2008,27(3):215-218
对以P256强碱性阴离子树脂分离富集,5-Br-PADAP分光光度法测定铀矿石中微量铀含量的测定结果进行了不确定度评定。分析了不确定度的主要来源,提供了引入不确定度的各参数和计算方法,对各不确定度分量进行分析计算,最终合成标准不确定度和扩展不确定度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号