首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The thermoelastic behaviour of anthophyllite has been determined for a natural crystal with crystal-chemical formula ANa0.01 B(Mg1.30Mn0.57Ca0.09Na0.04) C(Mg4.95Fe0.02Al0.03) T(Si8.00)O22 W(OH)2 using single-crystal X-ray diffraction to 973 K. The best model for fitting the thermal expansion data is that of Berman (J Petrol 29:445–522, 1988) in which the coefficient of volume thermal expansion varies linearly with T as α V,T  = a 1 + 2a 2 (T − T 0): α298 = a 1 = 3.40(6) × 10−5 K−1, a 2 = 5.1(1.0) × 10−9 K−2. The corresponding axial thermal expansion coefficients for this linear model are: α a ,298 = 1.21(2) × 10−5 K−1, a 2,a  = 5.2(4) × 10−9 K−2; α b ,298 = 9.2(1) × 10−6 K−1, a 2,b  = 7(2) × 10−10 K−2. α c ,298 = 1.26(3) × 10−5 K−1, a 2,c  = 1.3(6) × 10−9 K−2. The thermoelastic behaviour of anthophyllite differs from that of most monoclinic (C2/m) amphiboles: (a) the ε 1 − ε 2 plane of the unit-strain ellipsoid, which is normal to b in anthophyllite but usually at a high angle to c in monoclinic amphiboles; (b) the strain components are ε 1 ≫ ε 2 > ε 3 in anthophyllite, but ε 1 ~ ε 2 ≫ ε 3 in monoclinic amphiboles. The strain behaviour of anthophyllite is similar to that of synthetic C2/m ANa B(LiMg) CMg5 TSi8 O22 W(OH)2, suggesting that high contents of small cations at the B-site may be primarily responsible for the much higher thermal expansion ⊥(100). Refined values for site-scattering at M4 decrease from 31.64 epfu at 298 K to 30.81 epfu at 973 K, which couples with similar increases of those of M1 and M2 sites. These changes in site scattering are interpreted in terms of Mn ↔ Mg exchange involving M1,2 ↔ M4, which was first detected at 673 K.  相似文献   

2.
The thermoelastic behaviour of a natural gedrite having the crystal-chemical formula ANa0.47 B(Na0.03 Mg1.05 Fe0.862+ Mn0.02 Ca0.04) C(Mg3.44 Fe0.362+ Al1.15 Ti0.054+) T(Si6.31 Al1.69)O22 W(OH)2 has been studied by single-crystal X-ray diffraction to 973 K (Stage 1). After data collection at 973 K, the crystal was heated to 1,173 K to induce dehydrogenation, which was registered by significant changes in unit-cell parameters, M1–O3 and M3–O3 bond lengths and refined site-scattering values of M1 and M4 sites. These changes and the crystal-chemical formula calculated from structure refinement show that all Fe2+ originally at M4 migrates into the ribbon of octahedrally coordinated sites, where most of it oxidises to Fe3+, and there is a corresponding exchange of Mg from the ribbon into M4. The resulting composition is that of an oxo-gedrite with an inferred crystal-chemical formula ANa0.47 B(Na0.03 Mg1.93 Ca0.04) C(Mg2.56 Mn0.022+ Fe0.102+ Fe1.223+ Al1.15 Ti0.054+) T(Si6.31 Al1.69) O22 W[O1.122− (OH)0.88]. This marked redistribution of Mg and Fe is interpreted as being driven by rapid dehydrogenation at the H3A and H3B sites, such that all available Fe in the structure orders at M1 and M3 sites and is oxidised to Fe3+. Thermoelastic data are reported for gedrite and oxo-gedrite; the latter was measured during cooling from 1,173 to 298 K (Stage 2) and checked after further heating to 1,273 K (Stage 3). The thermoelastic properties of gedrite and oxo-gedrite are compared with each other and those of anthophyllite.  相似文献   

3.
Electron paramagnetic resonance (EPR) study of single crystals of chromium-doped forsterite grown by the Czochralski method in two different research laboratories has revealed, apart from the known paramagnetic centers Cr3+(M1), Cr3+(M2) and Cr4+, a new center \textCr 3+ (M 1)-V\textMg 2+ (M 2) {\text{Cr}}^{ 3+ } (M 1){-}V_{{{\text{Mg}}^{ 2+ } }} (M 2) formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values and A values of the 53Cr hyperfine splitting have been determined as follows: D = 33.95(3) GHz, E = 8.64(1) GHz, g = [1.9811(2), 1.9787(2), 1.9742(2)], A = [51(3), 52(2), 44(3)] MHz. The center has been identified by comparing EPR spectra with those of the charge-uncompensated ion Cr3+(M1) and the ion pair Cr3+(M1)–Li+(M2) observed in forsterite crystals codoped with chromium and lithium. It has been found that the concentration of the new center decreases to zero, whereas that of the Cr3+(M1) and Cr3+(M1)–Li+(M2) centers increases with an increase of the Li content from 0 up to ~0.03 wt% (at the same Cr content ~0.07 wt%) in the melt. The known low-temperature luminescence data pertinent to the centers under consideration are also discussed.  相似文献   

4.
A new version of the STRUCTON (2009) computer model is proposed for the simulation of the molecular mass distributions (MMD) characterizing the diversity of anions in silicate melts depending on their polymerization and temperature. In contrast to earlier versions, the new version of the model accounts for disproportionation reactions of Q n species and makes use of their proportions in the statistical simulations of the origin of real Si-O complexes. The new potentialities of the STRUCTON program package are illustrated by its application to studying the structural-chemical characteristics of melts in the Na2O-SiO2 system along its liquidus line, including the points of eutectics and phase transitions at 0.333 ≤ $ N_{SiO_2 } $ N_{SiO_2 } < 0.500. This problem is solved with the use of a temperature-composition dependence of polymerization constants K p Na in the Toop-Samis approximation. The variations in K p Na were proved to be as large as three orders of magnitude due to both the temperature effect at a constant composition and the composition effect at a constant temperature. The results of the MMD simulations on the liquidus show that the concentration of the SiO44− ion strongly decreases, and the proportion of chain species increases compared to those at a stochastic distribution. The concentration of the Si2O76− anion reaches its maximum (∼42%) at 40 mol % in the liquid, i.e., the composition of Na6Si2O7. At $ N_{SiO_2 } $ N_{SiO_2 } > 0.40, this ion dominates over the SiO44− monomer. More silicic melts with $ N_{SiO_2 } $ N_{SiO_2 } ≥ 0.45, are dominated by (Si n O3n )3n ring species, and the concentrations of these species are related as (Si3O9)6− > (Si4O12)8− > (Si5O15)10−. The maximum concentration of these flat rings also occurs near the composition of stoichiometric metasilicate with Si/O = 0.333. The comparison of the dependence of the average size of anions i av and the average number of their species on depolymerization indicates that a change in the proportion of Q n species in melt at decreasing temperature results in structural restyling and an increase in the average size of Si-O complexes. The average number of anion species thereby decreases compared to that in a stochastic MMD. The results presented in this publication direct the progress in the thermodynamic theory of silicate melts to a new avenue that makes use of the capabilities and advantages of the ion-polymer model, the theory of associated solutions, spectroscopic data, and the experimental study of variations in oxide activities depending on composition and temperature.  相似文献   

5.
The compressibility at room temperature and the thermal expansion at room pressure of two disordered crystals (space group C2/c) obtained by annealing a natural omphacite sample (space group P2/n) of composition close to Jd56Di44 and Jd55Di45, respectively, have been studied by single-crystal X-ray diffraction. Using a Birch–Murnaghan equation of state truncated at the third order [BM3-EoS], we have obtained the following coefficients: V 0 = 421.04(7) Å3, K T0 = 119(2) GPa, K′ = 5.7(6). A parameterized form of the BM3 EoS was used to determine the axial moduli of a, b and c. The anisotropy scheme is β c  ≤ β a  ≤ β b , with an anisotropy ratio 1.05:1.00:1.07. A fitting of the lattice variation as a function of temperature, allowing for linear dependency of the thermal expansion coefficient on the temperature, yielded αV(1bar,303K) = 2.64(2) × 10−5 K−1 and an axial thermal expansion anisotropy of α b  ≫ α a  > α c . Comparison of our results with available data on compressibility and thermal expansion shows that while a reasonable ideal behaviour can be proposed for the compressibility of clinopyroxenes in the jadeite–diopside binary join [K T0 as a function of Jd molar %: K T0 = 106(1) GPa + 0.28(2) × Jd(mol%)], the available data have not sufficient quality to extract the behaviour of thermal expansion for the same binary join in terms of composition.  相似文献   

6.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

7.
 Cation tracer diffusion coefficients, DMe *, for Me=Fe, Mn, Co and Ti, were measured using radioactive isotopes in the spinel solid solution (Ti x Fe 1−x )3−δO4 as a function of the oxygen activity. Experiments were performed at different cationic compositions (x=0, 0.1, 0.2 and 0.3) at 1100, 1200, 1300 and 1400 °C. The oxygen activity dependence of all data for DMe * at constant temperature and cationic composition can be described by equations of the type DMe *=D Me[V]. CV·a O2 2/3+DMe[I] ·a O2 −2/3·DMe[V] and DMe[I] are constants and CV is a factor of the order of unity which decreases with increasing δ. All log DMe * vs. loga O2 curves obtained for different values of x and for different temperatures go through a minimum due to a change in the type of point defects dominating the cation diffusion with oxygen activity. Cation vacancies prevail for the cation diffusion at high oxygen activities while cation interstitials become dominant at low oxygen activities. At constant values of x, DMe[V] decreases with increasing temperature while DMe[I] increases.  相似文献   

8.
Phragmites australis has been invading Spartina-alterniflora-dominated salt marshes throughout the mid-Atlantic. Although, Phragmites has high rates of primary production, it is not known whether this species supports lower trophic levels of a marsh food web in the same manner as Spartina. Using several related photochemical and biological assays, we compared patterns of organic matter flow of plant primary production through a key salt marsh metazoan, the ribbed mussel (Geukensia demissa), using a bacterial intermediate. Dissolved organic matter (DOM) was derived from plants collected from a Delaware Bay salt marsh and grown in the laboratory with 14C-CO2. Bacterial utilization of plant-derived DOM measured as carbon mineralization revealed that both species provided bioavailable DOM to native salt marsh bacteria. Total carbon mineralization after 19 days was higher for Spartina treatments (36% 14CO2 ± 3 SE) compared with Phragmites treatments (29% ±2 SE; Wilcoxon–Kruskal–Wallis rank sums test, P < 0.01). Pre-exposing DOM to natural sunlight only enhanced or decreased bioavailability of the DOM to the bacterioplankton during initial measurements (e.g., 7 days or less) but these differences were not significant over the course of the incubations. Mixtures of 14C-labeled bacterioplankton (and possibly organic flocs) from 14C-DOM treatments were cleared by G. demissa at similar rates between Spartina and Phragmites treatments. Moreover, 14C assimilation efficiencies for material ingested by mussels were high for both plant sources ranging from 74% to 90% and not significantly different between plant sources. Sunlight exposure did not affect the nutritional value of the bacterioplankton DOM assemblage for mussels. There are many possible trophic and habitat differences between Spartina- and Phragmites-dominated marshes that could affect G. demissa but the fate of vascular plant dissolved organic carbon in the DOM to bacterioplankton to mussel trophic pathway appears comparable between these marsh types.  相似文献   

9.
To test whether invasive Spartina alterniflora marshes were functionally equivalent to native Scirpus mariqueter marshes, the present study used bottomless lift nets (20 m2) during 12 high-tide events from August to October 2008 to compare nekton densities and biomass between the two marsh types in the Dongtan wetland. A total of eight species of fish, two species of shrimp, and three species of crab were collected. So-iny mullet Chelon haematocheilus, keeled mullet Liza carinata, Asian freshwater goby Acanthogobius ommaturus, and ridge-tail prawn Exopalaemon carinicauda dominated samples from the two marsh types and accounted for over 90% of the total catch. There were significantly greater densities and biomass (p < 0.05) of total nekton (all species combined) and two mullets (C. haematocheilus and L. carinata) in S. alterniflora marshes than in S. mariqueter marshes in August 2008, while no significant differences (p > 0.05) between the two marsh types were observed for densities and biomass of any species or total nekton in September and October 2008. Non-metric multidimensional scaling ordination did not show clear separation of samples between the two marsh types (r = 0.071, p = 0.159). Furthermore, there were no habitat-specific differences (p > 0.05) in the size distributions of the three numerically dominant species (C. haematocheilus, L. carinata, and A. ommaturus). We concluded that S. alterniflora marshes were utilized by nekton in a fashion similar to their utilization of native S. mariqueter marshes under similar physical conditions.  相似文献   

10.
 The magnetic behavior of the Jahn-Teller structure braunite, (Mn2+ 1−yM y )(Mn3+ 6− x Mx)SiO12, is strongly influenced by the incorporation of elements substituting manganese. Magnetic properties of well-defined synthetic samples were investigated in dependence on the composition. The final results are presented in magnetic phase diagrams. To derive the necessary data, ac susceptibility and magnetization of braunites with the substitutional elements M = Mg, Fe, (Cu+Ti) and Cu were measured. Whereas the antiferromagnetic ordering temperature, T N , of pure braunite is hardly affected by the substitution of nonmagnetic Mg, it is rapidly suppressed by the substitution of magnetic atoms at the Mn positions. Typically for a concentration (x, y) ≥ 0.7 of the substituted elements, a spin glass phase occurs in the magnetic phase diagrams. Additionally, for the braunite system with Fe3+ substitutions, we observe in the concentration range 0.2 < x< 0.7 a double transition from the paramagnetic state, first to the antiferromagnetic state, followed by a transition to a spin glass state at lower temperatures. The unusual change of the magnetic properties with magnetic substitution at the Mn positions is attributed to the peculiar antiferromagnetic structure of braunite, which has been resolved recently. Received: 19 April 2001 / Accepted: 6 September 2001  相似文献   

11.
 A synthesis technique is described which results in >99% pure NH4-phlogopite (NH4) (Mg3) [AlSi3O10] (OH)2 and its deuterium analogue ND4-phlogopite (ND4) (Mg3) [AlSi3O10] (OD)2. Both phases are characterised using both IR spectroscopy at 298 and 77 K as well as Rietveld refinement of their X-ray powder diffraction pattern. Both NH4 + and ND4 + are found to occupy the interlayer site in the phlogopite structure. Absorption bands in the IR caused by either NH4 + or ND4 + can be explained to a good approximation using Td symmetry as a basis. Rietveld refinement indicates that either phlogopite synthesis contains several mica polytypes. The principle polytype is the one-layer monoclinic polytype (1M), which possesses the space group symmetry C2/m. The next most common polytype is the two-layer polytype (2M 1 ) with space group symmetry C2/c. Minor amounts of the trigonal polytype 3T with the space group symmetry P3112 were found only in the synthesis run for the ND4-phlogopite. Electron microprobe analyses indicate that NH4-phlogopite deviates from the ideal phlogopite composition with respect to variable Si/Al and Mg/Al on both the tetrahedral and octahedral sites, respectively, due to the Tschermaks substitution VIMg2++IVSi4+VIAl3++IVAl3+ and with respect to vacancies on the interlayer site due to the exchange vector XII(NH4)++IVAl3+XII□+IVSi4+. Received: 30 August 1999 / Accepted: 2 October 2000  相似文献   

12.
The production of organic matter and calcium carbonate by a dense population of the brittle star Acrocnida brachiata (Echinodermata) was calculated using demographic structure, population density, and relations between the size (disk diameter) and the ash-free dry weight (AFDW) or the calcimass. During a 2-year survey in the Bay of Seine (Eastern English Channel, France), organic production varied from 29 to 50 gAFDW m−2 year−1 and CaCO3 production from 69 to 104 gCaCO3 m−2 year−1. Respiration was estimated between 1.7 and 2.0 molCO2 m−2 year−1. Using the molar ratio (ψ) of CO2 released: CaCO3 precipitated, this biogenic precipitation of calcium carbonate would result in an additional release between 0.5 and 0.7 molCO2 m−2 year−1 that represented 23% and 26% of total CO2 fluxes (sum of calcification and respiration). The results of the present study suggest that calcification in temperate shallow environments should be considered as a significant source of CO2 to seawater and thus a potential source of CO2 to the atmosphere, emphasizing the important role of the biomineralization (estimated here) and dissolution (endoskeletons of dead individuals) in the carbon budget of temperate coastal ecosystems.  相似文献   

13.
The oxidation of dihydroxyaromatics to benzoquinones by FeIII (hydr)oxides is important in respiratory electron shuttling by microorganisms and has been extensively studied. Prior publications have noted that the Gibbs Free Energy (ΔG) for the forward reaction is sensitive to dihydroxyaromatic structure, pH, and concentrations of reactants and products. Here, we address the back reaction, benzoquinone reduction by FeII. Rates markedly increase with increasing pH, in accord with increases in ΔG. Ring substituents that raise the potential of the p-benzoquinone/hydroquinone half reaction raise reaction rates: –OCH3 < –CH3 < –C6H5 < –H < –Cl. p-Naphthoquinone, with a reduction potential lower than the five substituted p-benzoquinones just listed, yields the lowest reaction rates. The complexity of the reaction is reflected in lag periods and less-pronounced S-shaped time course curves. Benzoquinone reduction by FeII may be an important link in networks of electron transport taking place in suboxic and anoxic environments.  相似文献   

14.
 Models for estimating the pressure and temperature of igneous rocks from co-existing clino-pyroxene and liquid compositions are calibrated from existing data and from new data obtained from experiments performed on several mafic bulk compositions (from 8–30 kbar and 1100–1475° C). The resulting geothermobarometers involve thermodynamic expressions that relate temperature and pressure to equilibrium constants. Specifically, the jadeite (Jd; NaAlSi2O6)–diopside/hedenbergite (DiHd; Ca(Mg, Fe) Si2O6) exchange equilibrium between clinopyroxene and liquid is temperature sensitive. When compositional corrections are made to the calibrated equilibrium constant the resulting geothermometer is (i) 104 T=6.73−0.26* ln [Jdpx*Caliq*FmliqDiHdpx*Naliq*Alliq] −0.86* ln [MgliqMgliq+Feliq]+0.52*ln [Caliq] an expression which estimates temperature to ±27 K. Compared to (i), the equilibrium constant for jadeite formation is more sensitive to pressure resulting in a thermobarometer (ii) P=−54.3+299*T104+36.4*T104 ln [Jdpx[Siliq]2*Naliq*Alliq] +367*[Naliq*Alliq] which estimates pressure to ± 1.4 kbar. Pressure is in kbar, T is in Kelvin. Quantities such as Naliq represent the cation fraction of the given oxide (NaO0.5) in the liquid and Fm=MgO+FeO. The mole fractions of Jd and diopside+hedenbergite (DiHd) components are calculated from a normative scheme which assigns the lesser of Na or octahedral Al to form Jd; any excess AlVI forms Calcium Tschermak’s component (CaTs; CaAlAlSiO6); Ca remaining after forming CaTs and CaTiAl2O6 is taken as DiHd. Experimental data not included in the regressions were used to test models (i) and (ii). Error on predictions of T using model (i) is ±40 K. A pressure-dependent form of (i) reduces this error to ±30 K. Using model (ii) to predict pressures, the error on mean values of 10 isobaric data sets (0–25 kbar, 118 data) is ±0.3 kbar. Calculating thermodynamic properties from regression coefficients in (ii) gives VJd f of 23.4 ±1.3 cm3/mol, close to the value anticipated from bar molar volume data (23.5 cm3/mol). Applied to clinopyroxene phenocrysts from Mauna Kea, Hawaii lavas, the expressions estimate equilibration depths as great as 40 km. This result indicates that transport was sufficiently rapid that at least some phenocrysts had insufficient time to re-equilibrate at lower pressures. Received: 16 May 1994/Accepted: 15 June 1995  相似文献   

15.
Summary. ?Ca-tourmaline has been synthesized hydrothermally in the presence of Ca(OH)2 and CaCl2-bearing solutions of different concentration at T = 300–700 °C at a constant fluid pressure of 200 MPa in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthesis of tourmaline was possible at 400 °C, but only above 500 °C considerable amounts of tourmaline formed. Electron microprobe analysis and X-ray powder data indicate that the synthetic tourmalines are essentially solid solutions between oxy-uvite, CaMg3- Al6(Si6O18)(BO3)3(OH)3O, and oxy-Mg-foitite, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O. The amount of Ca ranges from 0.36 to 0.88 Ca pfu and increases with synthesis temperature as well as with bulk Ca-concentration in the starting mixture. No hydroxy-uvite, CaMg3(MgAl5)(Si6O18)(BO3)3(OH)3(OH), could be synthesized. All tourmalines have < 3 Mg and > 6 Al pfu. The Al/(Al + Mg)-ratio decreases from 0.80 to 0.70 with increasing Ca content. Al is coupled with Mg and Ca via the substitutions Al2□Mg−2Ca−1 and AlMg−1H−1. No single phase tourmaline could be synthesized. Anorthite ( + quartz in most runs) has been found coexisting with tourmaline. Other phases are chlorite, tremolite, enstatite or cordierite. Between solid and fluid, Ca is strongly fractionated into tourmaline ( + anorthite). The concentration ratio D = Ca(fluid)/Ca(tur) increases from 0.20 at 500 °C up to 0.31 at 700 °C. For the assemblage turmaline + anorthite + quartz + chlorite or tremolite or cordierite, the relationship between Ca content in tourmaline and in fluid with temperature can be described by the equation (whereby T = temperature in °C, Ca(tur) = amount of Ca on the X-site in tourmaline, Ca( fluid) = concentration of Ca2+ in the fluid in mol/l). The investigations may serve as a first guideline to evaluate the possibility to use tourmaline as an indicator for the fluid composition.
Zusammenfassung. ?Synthese von Ca-Turmelin im System CaO-MgO-Al 2 O 3 -SiO 2 -B 2 O 3 -H 2 O-HCl Im System CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl wurde Ca-Turmalin hydrothermal aus Ca(OH)2 and CaCl2-haltigen L?sungen bei T = 300–700 °C und einem konstanten Fluiddruck von 200 MPa synthetisiert. Die Synthese von Turmalin war m?glich ab 400 °C, aber nur oberhalb von 500 °C bildeten sich deutliche Mengen an Turmalin. Elektronenstrahl-Mikrosondenanalysen und R?ntgenpulveraufnahmen zeigen, da? Mischkristalle der Reihe Oxy-Uvit, CaMg3Al6(Si6O18)(BO3)3(OH)3O, und Oxy-Mg-Foitit, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O gebildet wurden. Der Anteil an Ca variiert zwischen 0.36 und 0.88 Ca pfu und nimmt mit zunehmender Synthesetemperatur und zunehmender Ca-Konzentration im System zu. Hydroxy-Uvit, CaMg3(MgAl5) (Si6O18)(BO3)3(OH)3(OH), konnte nicht synthetisiert werden. Alle Turmaline haben < 3 Mg und > 6 Al pfu. Dabei nimmt das Al/(Al + Mg)- Verh?ltnis mit zunehmendem Ca-Gehalt von 0.80 auf 0.70 ab. Al ist gekoppelt mit Mg und Ca über die Substitutionen Al2□Mg−2Ca−1 und AlMg−1H−1. Einphasiger Turmalin konnte nicht synthetisiert werden. Anorthit (+ Quarz in den meisten F?llen) koexistiert mit Turmalin. Andere Phasen sind Chlorit, Tremolit, Enstatit oder Cordierit. Ca zeigt eine deutliche Fraktionierung in den Festk?rpern Turmalin (+ Anorthit). Das Konzentrationsverh?ltnis D = Ca(fluid)/Ca(tur) nimmt von 0.20 bei 500 °C auf 0.31 bei 700 °C zu. Für die Paragenese Turmalin + Anorthit + Quarz mit Chlorit oder Tremolit oder Cordierit gilt folgende Beziehung zwischen Ca-Gehalt in Turmalin und Fluid und der Temperatur: (wobei T = Temperatur in °C, Ca(tur) = Anteil an Ca auf der X-Position in Turmalin, Ca(fluid) = Konzentration von Ca2+ im Fluid in mol/l). Die Untersuchungen dienen zur ersten Absch?tzung, ob Turmalin als Fluidindikator petrologisch nutzbar ist.


Received July 24, 1998;/revised version accepted October 21, 1999  相似文献   

16.
The local structures and the g factors g // and g for the isoelectronic 3d9 ions Cu2+ and Ni+ in CdS are theoretically investigated from the perturbation formulas of these parameters for a 3d9 ion under trigonally distorted tetrahedral environments. In consideration of significant covalency of the [MS4] combinations (M = Cu and Ni), the ligand orbital and spin–orbit coupling contributions are taken into account using the cluster approach. Based on the studies, the substitutional impurity Cu2+ (or Ni+) on Cd2+ site is found to undergo a small inward displacement 0.026 Å (or a slight outward shift 0.017 Å) towards (or away from) the ligand triangle along C 3 axis. The theoretical g factors for both ions based on the above impurity displacements are in good agreement with the experimental data.  相似文献   

17.
Zinclipscombite, a new mineral species, has been found together with apophyllite, quartz, barite, jarosite, plumbojarosite, turquoise, and calcite at the Silver Coin mine, Edna Mountains, Valmy, Humboldt County, Nevada, United States. The new mineral forms spheroidal, fibrous segregations; the thickness of the fibers, which extend along the c axis, reaches 20 μm, and the diameter of spherulites is up to 2.5 mm. The color is dark green to brown with a light green to beige streak and a vitreous luster. The mineral is translucent. The Mohs hardness is 5. Zinclipscombite is brittle; cleavage is not observed; fracture is uneven. The density is 3.65(4) g/cm3 measured by hydrostatic weighing and 3.727 g/cm3 calculated from X-ray powder data. The frequencies of absorption bands in the infrared spectrum of zinclipscombite are (cm?1; the frequencies of the strongest bands are underlined; sh, shoulder; w, weak band) 3535, 3330sh, 3260, 1625w, 1530w, 1068, 1047, 1022, 970sh, 768w, 684w, 609, 502, and 460. The Mössbauer spectrum of zinclipscombite contains only a doublet corresponding to Fe3+ with sixfold coordination and a quadrupole splitting of 0.562 mm/s; Fe2+ is absent. The mineral is optically uniaxial and positive, ω = 1.755(5), ? = 1.795(5). Zinclipscombite is pleochroic, from bright green to blue-green on X and light greenish brown on Z (X > Z). Chemical composition (electron microprobe, average of five point analyses, wt %): CaO 0.30, ZnO 15.90, Al2O3 4.77, Fe2O3 35.14, P2O5 33.86, As2O5 4.05, H2O (determined by the Penfield method) 4.94, total 98.96. The empirical formula calculated on the basis of (PO4,AsO4)2 is (Zn0.76Ca0.02)Σ0.78(Fe 1.72 3+ Al0.36)Σ2.08[(PO4)1.86(AsO4)0.14]Σ2.00(OH)1. 80 · 0.17H2O. The simplified formula is ZnFe 2 3+ (PO4)2(OH)2. Zinclipscombite is tetragonal, space group P43212 or P41212; a = 7.242(2) Å, c = 13.125(5) Å, V = 688.4(5) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern (d, (I, %) ((hkl)) are 4.79(80)(111), 3.32(100)(113), 3.21(60)(210), 2.602(45)(213), 2.299(40)(214), 2.049(40)(106), 1.663(45)(226), 1.605(50)(421, 108). Zinclipscombite is an analogue of lipscombite, Fe2+Fe 2 3+ (PO4)2(OH)2 (tetragonal), with Zn instead of Fe2+. The mineral is named for its chemical composition, the Zn-dominant analogue of lipscombite. The type material of zinclipscombite is deposited in the Mineralogical Collection of the Technische Universität Bergakademie Freiberg, Germany.  相似文献   

18.
A natural datolite CaBSiO4(OH) (Bergen Hill, NJ, USA), before and after gamma-ray irradiation (up to ~70 kGy), has been investigated by single-crystal and powder electron paramagnetic resonance (EPR) spectroscopy from 10 to 295 K. EPR spectra of gamma-ray-irradiated datolite show the presence of a boron-associated oxygen hole center (BOHC) and an atomic hydrogen center (H0), both of which grow with increasing radiation dose. The principal g and A(11B) values of the BOHC at 10 K are: g 1 = 2.04817(3), g 2 = 2.01179(2), g 3 = 2.00310(2), A 1 = −0.401(7) mT, A 2 = −0.906(2) mT, A 3 = −0.985(2) mT, with the orientations of the g 1 and A 1 axes approximately along the B–OH bond direction. These experimental results suggest that the BOHC represents hole trapping on the hydroxyl oxygen atom after the removal of the proton (i.e. a [BO4]0 center): via a reaction O3BOH → O3BO· + H0, where · denotes the unpaired electron. Density functional theory (DFT) calculations (CRYSTAL06, B3PW, all-electron basis sets, and 1 × 2 × 2 supercell) support the proposed structural model and yield the following 11B hyperfine coupling constants: A 1 = −0.429 mT, A 2 = −0.901 mT, A 3 = −0.954 mT, in excellent agreement with the experimental results. The [BO4]0 center undergoes the onset of thermal decay at ~200°C and is completely annealed out at 375°C but can be restored readily by gamma-ray irradiation. Isothermal annealing experiments show that the [BO4]0 center exhibits a second-order thermal decay with an activation energy of 0.96 eV. The confirmation of the [BO4]0 center (and its formation from the O3BOH precursor) in datolite has implications for not only understanding of BOHCs in alkali borosilicate glasses but also their applications to nuclear waste disposal.  相似文献   

19.
Salt spray is one of many abiotic factors that can influence plant productivity and species composition in coastal ecosystems. However, little is known about how marsh plants respond physiologically to the accumulation of sea aerosols on foliar tissues. In this study, experimental microcosms maintained in controlled greenhouse conditions were used to evaluate how low- (1.7 mg dm−2 day−1, weekly averages) and high- (8.6 mg dm−2 day−1) salt-spray loads would influence plant–water relations in Spartina alterniflora (Loisel.). While no differences in plant performance (e.g., changes in biomass and leaf area) were observed between the treatments and control plants, a number of physiological modifications attributed to salt spray were observed. In general, salt-treated plants underwent significant decreases in water potential (Ψ) and osmotic potential (Ψ π) and increases in leaf conductance (g) and bulk modulus of elasticity (ε). It is likely that these physiological responses were used to generate lower Ψ while maintaining osmotic and water homeostasis. That is, by decreasing Ψ π and increasing g and ε, more efficient water flow through the soil–plant–atmosphere continuum can be achieved, thus generating lower Ψ without promoting loss of turgor.  相似文献   

20.
 Synthetic aegirine LiFeSi2O6 and NaFeSi2O6 were characterized using infrared spectroscopy in the frequency range 50–2000 cm−1, and at temperatures between 20 and 300 K. For the C2/c phase of LiFeSi2O6, 25 of the 27 predicted infrared bands and 26 of 30 predicted Raman bands are recorded at room temperature. NaFeSi2O6 (with symmetry C2/c) shows 25 infrared and 26 Raman bands. On cooling, the C2/cP21/c structural phase transition of LiFeSi2O6 is characterized by the appearance of 13 additional recorded peaks. This observation indicates the enlargement of the unit cell at the transition point. The appearance of an extra band near 688 cm−1 in the monoclinic P21/c phase, which is due to the Si–O–Si vibration in the Si2O6 chains, indicates that there are two non-equivalent Si sites with different Si–O bond lengths. Most significant spectral changes appear in the far-infrared region, where Li–O and Fe–O vibrations are mainly located. Infrared bands between 300 and 330 cm−1 show unusually dramatic changes at temperatures far below the transition. Compared with the infrared data of NaFeSi2O6 measured at low temperatures, the change in LiFeSi2O6 is interpreted as the consequence of mode crossing in the frequency region. A generalized Landau theory was used to analyze the order parameter of the C2/cP21/c phase transition, and the results suggest that the transition is close to tricritical. Received: 21 January 2002 / Accepted: 22 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号