首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
迄今为止,非撞击型超高压变质作用均发生在陆- 陆碰撞造山带,这在东半球许多地点已被证实。超高压变质岩石以含柯石英和金刚石包体的榴辉岩和榴辉岩相变质岩石为代表,形成的温压环境为650~800℃,2.6~3.5Pa。研究证明大多数超高压岩石原岩是陆壳火山——沉积岩系,因此推断大陆深俯冲作用曾经发生。而超高压岩石现今又出露地表或浅表,意味着它们又从深部折返至地表。陆壳岩石深俯冲和折返机制已成为大陆动力学研究的热点,但认识莫衷一是。争论的焦点是陆壳俯冲的深度到底多大可以形成超高压岩石?是什么机制使其发生深俯冲而又折返到浅表?本文通过世界上出露规模最大的超高压变质带——大别山碰撞过程的动力学分析,探讨非规  相似文献   

2.
超高压变质岩的塑性流变学   总被引:1,自引:1,他引:0  
钟增球  索书田 《现代地质》2007,21(2):203-212
岩石流变作用是大陆造山作用的基本特征,超高压岩石的形成和折返过程也是大陆深俯冲带内物质的复杂流变过程。要深入理解大陆造山带的造山作用和大陆壳岩石的深俯冲和折返动力学过程,必须对大陆地壳及地幔岩石的流变学进行深入研究。岩石圈流变学的主要研究内容主要包括流变学分层性、变形分解和应变局部化及大陆壳岩石部分熔融作用的流变学效应等。应用岩石圈流变学的基本原理和方法,分析了大别-苏鲁超高压变质带中超高压变质岩的塑性流变特点,探讨了超高压变质岩形成和折返过程的塑性流变学。  相似文献   

3.
陆—陆点碰撞与超高压变质作用   总被引:13,自引:1,他引:13       下载免费PDF全文
迄今为止,非撞击型超高压变质作用均发生在陆陆碰-撞造山带,这在东半球许多地点已被证实,超高压变质岩石以含柯石英和金刚石包体的榴辉岩和榴辉岩相变质岩石为代表,形成的温压环境为650-800℃,2.6-3.5GPa,研究证明大多数超高压岩石原是陆壳火山-沉积岩系,因此推断大陆深俯冲作用曾经发生,而超高压岩石现今又出露地表或浅表,意味着它们又从深部折返至地表,陆壳岩石深储冲和折返机制已成为大陆动力学研究的热点,但认识莫衷一是,争论的焦点是陆壳俯冲的深度到底多大可以形成超高压岩石?是什么机制使其发生深俯冲而又折返到浅表?本文通过世界上出露规模最大的超高压变质带-大别山碰撞过程的动力学分析,探讨非规则边界的碰撞引起的构造附加压力对超高压石形成的影响作用。模拟计算表明,大陆板块的早期碰撞,会引起碰撞附近的局部应力集中现象(平均压力较周围增大了5-9倍),构造压力在超高压中所占的比例约为20%-35%,由此推测,大别山高压-超高压岩石形成深度可能为65-80km。为此本文提出超高压岩石新成因模式-大陆点碰撞模式。这种模式符合力学基本原理,也符合地质记录和地质过程,可以解释为什么超高压岩石并非沿碰撞造山带全线存在,而是出现某些特定部位。本文提出喜马拉雅山撞带的东西犄角是典型的点碰撞区域,陆壳岩石的超高压变质作用均发生在这两个特定的部位。  相似文献   

4.
张泽明  董昕  贺振宇  向华 《岩石学报》2013,29(5):1713-1726
喜马拉雅造山带是印度与亚洲大陆碰撞作用的产物,正在进行造山作用,是研究板块构造的天然实验室.高压和超高压变质岩分布在喜马拉雅造山带的核部.这些变质岩具有不同的形成条件、形成时间和形成过程,为印度与亚洲碰撞带的几何学、运动学和动力学提供了重要的限定.含柯石英的超高压变质岩产出在喜马拉雅造山带的西段,它们形成在古新世与始新世之间(53~46Ma),为印度大陆西北边缘高角度超深俯冲作用的产物,并经历了快速俯冲与快速折返过程.在约5 Myr内,超高压变质岩从>100km的地幔深度折返到了中地壳深度,且仅仅叠加角闪岩相退变质作用.高压榴辉岩产出在喜马拉雅造山带中段,形成时间约为45Ma,为印度大陆低角度深俯冲作用的产物,经历了至少20Myr的长期折返过程,叠加麻粒岩相退变质作用和部分熔融.高压麻粒岩产出在喜马拉雅造山带的东端,是印度大陆东北缘近平俯冲作用的产物,峰期变质作用时间约为35Ma,经历了约20Myr的长期折返过程,叠加了麻粒岩相和角闪岩相退变质作用,并伴随有多期部分熔融.因此,喜马拉雅造山带的变质作用具有明显的时间与空间变化,显示出大陆深俯冲与折返过程的差异性,以及大陆碰撞造山带形成机制的多样性.  相似文献   

5.
大别山超高压变质岩形成深度的同位素限制   总被引:8,自引:0,他引:8  
大别山超高压变质岩形成深度是各国地质学家十分关心的问题。它不仅影响对碰撞造山带形成机制和演化过程的认识,而且影响对地球深部状况及地球动力学的研究。该文对大别山超高压变质岩已有同位素资料进行了分析与讨论。大别山榴辉岩的εNd为-6.2~-17,εSr为18~42,且显示明显的Nd同位素的不平衡现象。大别山榴辉岩的氧同位素组成研究表明,这些榴辉岩的原岩在超高压变质前,不同程度地与贫18O的大气降水(或海水)发生过氧同位素交换,且在超高压变质过程中依然保留了这些痕迹。除一个样品外,大别-苏鲁地区的榴辉岩的3He/4He比值都落在0.79×10-7~9.35×10-7范围内,显示陆壳岩石来源He的重要贡献。所有Sr-Nd、O和He同位素研究均表明:超高压变质岩保存着表壳岩石原岩的同位素特征,而未显示变质时受到地幔物质的明显影响。对于超高压变质岩的上述同位素特征,有人认为是由于大别山造山带俯冲和折返的速度太快造成的。由于造山带俯冲和折返的速度太快,表壳岩石原岩变质时来不及与地幔物质发生交换,故没有留下地幔物质参与的痕迹。该研究认为这种解释有些勉强,因为大别造山带俯冲和折返时间至少需要15Ma.在如此长的时间内,在100多公里地幔深处高于700℃的高温下发生超高压变质作用,表壳岩石原岩不可能不与地幔物质发生同位素交换。相反,如果认为大别山超高压变质岩就在地壳内形成,则大别山超高压变质岩同位素的所有特征就很好解释了。   相似文献   

6.
南阿尔金俯冲碰撞杂岩带早古生代存在517、501~496、462~451和426~385 Ma 4个期次的花岗质岩浆岩。第一期岩浆岩早于区内蛇绿岩型镁铁质岩石的形成时间,第一期岩浆岩侵位于区内蛇绿岩型镁铁质岩石之中(≥500 Ma),后三期分别对应于该构造带高压—超高压岩石~500 Ma的峰期变质、及其~450 Ma和~420 Ma的两期退变质时间。结合区域地质背景、镁铁—超美铁质岩和高压—超高压变质作用研究成果综合分析,这四期花岗质岩浆作用的发生分别是南阿尔金早古生代板块俯冲碰撞过程中,先期俯冲洋壳在517 Ma部分熔融、之后陆壳深俯冲导致地壳加厚引发下地壳在~500 Ma部分熔融,以及深俯冲板片断离导致中上地壳在~450 Ma部分熔融和造山后伸展减薄阶段在~420 Ma的部分熔融作用的产物。其中,洋壳型埃达克岩的形成时代(517 Ma)为南阿尔金洋壳俯冲作用时限提供了直接约束,陆壳深俯冲引发的高压-超高压峰期变质时代(~500 Ma)作用滞后这一事件约10 myr,表明南阿尔金早古生代时期由洋壳俯冲转换为陆壳俯冲可能是一个连续的构造演化过程。这四期花岗质岩石与区内蛇绿岩型镁铁—超镁铁质岩石以及高压—超高压变质岩石的形成,共同记录了南阿尔金早古生代时期从大洋俯冲、之后的大陆深俯冲碰撞再到后来深俯冲陆壳折返抬升的完整构造演化过程。  相似文献   

7.
大陆俯冲化学地球动力学   总被引:37,自引:4,他引:33  
李曙光 《地学前缘》1998,5(4):211-234
碰撞造山带陆壳岩石中柯石英和金刚石的发现证明在碰撞造山过程中,一侧陆壳可俯冲到地幔深度。在这一俯冲过程中,随着温度、压力的升高,俯冲陆壳岩石必然会发生一系列地球化学变化,并会与周围的地幔物质发生不同形式和程度的相互作用。认识这些地球化学变化及相互作用,并以此制约大陆壳俯冲的动力学过程是陆壳俯冲化学地球动力学的主要研究内容和目标。文中以大别山陆壳俯冲为例,总结了陆壳俯冲化学地球动力学研究的主要进展。已有的研究表明在大别山造山带,扬子陆块是在二叠纪末—三叠纪初开始向华北陆块下俯冲,并在230~218Ma达到峰期超高压变质作用。该俯冲板块可能在200~190Ma断离,从而使陆壳俯冲终止。伴有超高压变质作用的陆壳深俯冲作用可能仅在两个较大陆块碰撞时才发生。超高压岩石的折返至少经历了两次快速抬升。最初一次是在陆壳俯冲时期(228~210Ma),超高压岩石由逆冲构造推至中地壳并构造就位于角闪岩相围岩中;第二次是在俯冲板块断离之后(200~190Ma)由浮力推动超高压岩石与其围岩一起快速抬升。在俯冲过程中,俯冲陆壳可以析出流体交代改造上覆楔形地幔。该富集地幔在俯冲陆壳断离之后可发生部分熔融,产生具有Nb,Zr,Ti亏损及?  相似文献   

8.
大别山超高压变质岩的冷却史及折返机制   总被引:17,自引:7,他引:17  
大别山超高压变质岩及其围岩 T-t 冷却曲线显示了超高压变质岩的冷却史从800℃到300℃经历了三个阶段:两次快速冷却(226±3Ma 到219±7Ma 期间从800℃到500℃的第一次快速冷却,180~170Ma 期间从450℃到300℃的第二次快速冷却)和介于二者之间的等温过程。这一具有两次快速冷却的 T-t 曲线已被近年来获得的高精度金红石 U-Pb 年龄(218±1.2Ma)(Li et al.,2003),高压变质和退变质独居石 Th-Pb 年龄(Ayers et al.,2002),和强面理化榴辉岩二次多硅白云母的Rh-Sr 年龄(182.7±3.6Ma)(Li et al.,2001)所证实。超高压变质岩的二次快速冷却事件反映了二次快速抬升过程。在东秦岭及苏鲁地体东端发育的同碰撞花岗岩 U-Ph 年龄为225~205Ma,与超高压变质岩第一次快速冷却时代吻合。考虑到同碰撞花岗岩与俯冲板片断离的成因联系,这种时代耦合关系表明俯冲板片断离可能是超高压变质岩第一次快速抬升和冷却的重要机制之一。大别山 Pb 同位素填图揭示出南大别带超高压变质岩具有高放射成因 Pb 特征,因而源于俯冲的上地壳;而北大别带超高压变质岩具有低放射成因 Pb 特征,源于俯冲长英质下地壳。这表明在陆壳俯冲过程中上、下地壳之间可发生挤离(detachment)或脱耦(decoupling)。已有实验证明脱耦的上地壳在俯冲过程中可沿挤离面逆冲抬升(Chemenda et al.,1995)。同理,由于俯冲镁铁质下地壳在大别山没有出露,可以推测俯冲长英质下地壳和镁铁质下地壳之间也最终发生了挤离或脱耦。大陆岩石圈在不同深度存在若干低粘度带(Meissner and Mooney,1998)是上述俯冲陆壳分层脱耦现象发生的依据。因此,俯冲上地壳及部分长英质下地壳的第一次快速抬升折返是俯冲过程中大陆地壳内部分层脱耦和俯冲板片断离的综合结果。上述过程只能使已脱耦的上地壳及部分长英质下地壳抬升折返,而未与俯冲岩石圈脱耦的下地壳在板片断离后仍可继续俯冲。俯冲板片断离后,两大陆块在晚三叠世和早-中侏罗世继续汇聚,导致华南陆块下地壳继续俯冲,及已经脱耦并折返至中上地壳的超高压岩片向北仰冲。这一仰冲可能是导致超高压变质岩第二次快速抬升的重要机制。强面理化榴辉岩二次多硅白云母的 Rb-Sr 年龄(182.7±3.6Ma)可能记录了这一超高压岩片仰冲事件发生的时代。惠兰山基性麻粒岩年代学研究揭示了罗田穹隆在早白垩世的快速抬升,与此同时大别山发生了大规模岩浆事件。山体快速抬升与大规模岩浆事件的耦合关系指示了大别造山带早白垩世的去根作用,或岩石圈拆离事件。伴随这一山体快速抬升,大别山超高压变质岩开始大面积出露地表。  相似文献   

9.
江尕勒萨依地区位于东昆仑西段—南阿尔金造山带,地处秦—祁—昆造山带西段,本次在该区部署实施了1∶5万基础地质调查工作,对该区高压—超高压变质岩的主要类型、地质特征、岩石学和年代学特征进行了分析,详细讨论了其变质期次和温压条件,并对其折返机制及构造意义进行了研究,将南阿尔金早古生代俯冲碰撞杂岩带的构造演化过程划分了五个阶段:洋盆扩张阶段(622~517 Ma),洋壳俯冲阶段(517~500 Ma),陆壳深俯冲阶段(500~487 Ma),俯冲板片断离及折返阶段(460~451 Ma)及碰撞后伸展阶段(425~385 Ma)。从而重建了东昆仑西段—南阿尔金地区早古生代以来的地质构造演化历史,对于探讨该区壳-幔相互作用、洋-陆转换及大陆地壳演化等地球动力学过程等具有十分重要的科学意义。  相似文献   

10.
大别山超高压变质岩折返机制与华北-华南陆块碰撞过程   总被引:18,自引:0,他引:18  
李曙光 《地学前缘》2004,11(3):63-70
古地磁研究表明华北和华南陆块的碰撞始于三叠纪初 ,止于晚侏罗世 ;同位素年代学研究及大别山北部中—上侏罗统砾岩层中榴辉岩砾石的发现表明大别山超高压变质岩形成于三叠纪初 ,并在中—晚侏罗世出露于地表。因此 ,超高压变质岩是在陆陆碰撞过程中完成它的折返出露过程。揭示超高压变质岩的折返历史与机制有助于我们认识大陆的碰撞过程。大别山超高压变质岩及其围岩θ t冷却曲线显示超高压变质岩从 80 0℃到 3 0 0℃经历了三个阶段 :( 2 2 6± 3 )~ ( 2 1 9± 7)Ma期间从80 0℃到 5 0 0℃的第一次快速冷却 ,1 80~ 1 70Ma期间从 4 5 0℃到 3 0 0℃的第二次快速冷却 )和介于两者之间的等温过程。这一具有两次快速冷却的θ t曲线已被近年来的若干年代学数据所证实。超高压变质岩的两次快速冷却事件反映了两次快速抬升过程。在东秦岭及苏鲁地体东端发育的同碰撞花岗岩U Pb年龄值为 2 2 5~ 2 0 5Ma,与超高压变质岩第一次快速冷却时代吻合。这种时代耦合关系表明俯冲板片断离可能是超高压变质岩第一次快速抬升和冷却的重要机制。大别山Pb同位素填图揭示出南大别带超高压变质岩具有高反射成因Pb特征 ,因而源于俯冲的上地壳 ;而北大别带超高压变质岩具有低放射成因Pb特征 ,源于俯冲长英质下地壳。这表明在俯  相似文献   

11.
Critical but controversial problems in the study of UHP metamorphic rocks from the Dabie-Sulu region include: (1) the possible existence of ophiolitic mélange; (2) the “in situ” versus “foreign” origin of UHP eclogites and their enclosing gneisses; (3) the possible presence and role of fluids during ultrahigh-pressure (UHP) recrystallization; (4) the timing of collision between the Yangtze and Sino-Korean continental blocks; (5) the polarity of syncollisional subduction; and (6) a single-versus multistage exhumation scenario for the UHP rocks. These questions are discussed in light of new geological, geochemical, and isotopic constraints.

Our conclusions for the Dabie-Sulu belt are as follows: (1) Mafic-ultramafic blocks are of two distinct origins: one group samples lithosphere of the suprasubductionzone mantle wedge, whereas the second group represents postcollisional magmatic intrusions. Neither lithologic group represents true oceanic crust. (2) Quartzofeldspathic gneisses enveloping the eclogites are of two types— metasedimentary “in situ” and igneous “foreign.” The paragneisses contain UHP garnets + white micas, and are uniformly older (235 ± 5 Ma) than the orthogneisses (210 ± 5 Ma), which are devoid of UHP mineralogic indicators. (3) Fluids were active under UHP conditions and allowed the formation of UHP hydrous phases such as phengite and zoisite. However, the aqueous fluids may have been restricted to certain channels/pathways during exhumation. External fluids were absent until ascent of the UHP rocks to middle-crustal levels. (4) The Yangtze and Sino-Korean continental blocks collided during 230 to 240 Ma, when supracontinental rocks experienced UHP metamorphism. The HP metamorphic event dated as >400 Ma might record a subduction of oceanic crust during the Paleozoic. (5) An ancient mantle wedge is revealed by geochemical characteristics of Mesozoic magmatic rocks developed on the southern margin of the Sino-Korean craton, the hanging wall of the UHP-rock-bearing unit. Seismic tomography images reveal that the Yangtze block extends beneath the Dabie-Sulu orogenic belt. This indicates that both oceanic and continental crust had a northward subduction polarity. (6) Taking petrologic and geochronological data into account, we prefer a multistage exhumation model. The UHP rocks were exhumed rapidly during the first stage (230 to 200 Ma), perhaps reflecting a corner-flow mechanism. Then, buoyancy and mantle upwelling brought the UHP rocks up to middle-crustal levels during the second stage (200 to 170 Ma). Extension and thermal uplift, as well as erosion, eventually exposed the UHP rocks to the surface in the third stage (170 to 120 Ma).  相似文献   

12.
Two processes are suggested to explain how UHP rocks are exhumed from mantle depths. One is removal of the overburden either by erosion or by extension, whereas the other involves the uplifting of the UHP rocks through the overburden. Application of either of these mechanisms to the Dabie Mountains, however, is fraught with difficulty. When combined with previously published data, new studies on metamorphic P-T paths, regional structures, and deep upper-mantle architecture revealed by seismic tomography lend support to a multi-stage exhumation process that operated in the Dabie Mountains.

The first stage (230 to 200 Ma) is characterized by ductile deformation, produced during eclogite-facies recrystallization under a geothermal gradient as low as 10°C/km, implying a synsubduction exhumation. Some of the UHP rocks evidently were exhumed to a depth of ~60 km, as indicated by petrological study of the Shuanghe eclogite. The second stage (200 to 170 Ma) attended ductile deformation and amphibolite-facies retrograde metamorphism. Subduction of the Yangtze block was halted by slab breakoff at a depth of ~200 km. The resultant geothermal gradient recovered to ~20″C/km. Slab breakoff permitted buoyancy-driven ascent of the UHP low-density melange to shallow crustal levels in a diapir structure. When the UHP portion of the mountain root rose, the shallow portion was heated to a temperature higher than that of the peak metamorphic pressure. The third stage (170 to 120 Ma) is characterized by extension and thermal uplift, as well as erosion. Sedimentary basins and volcanic rocks developed on both sides of the Dabie Mountains. Gab-bro-pyroxenite intruded the hanging wall of the UHP terrane, and granite, as well as migmatite, developed in that stage.

Exhumation mechanisms might include corner flow for the first stage, buoyancy-driven squeezing-up for the second stage, and crustal extension, as well as erosion, for the third. Rupture and loss of the subducted lithospheric plate generated the gravity instability that resulted in exhumation of the subducted UHP section.  相似文献   

13.
Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphism during subduction, and later retrograde metamorphism during exhumation. Inherited (detrital) and metamorphic zircons were distinguished on the basis of transmitted light microscopy, cathodoluminescence (CL) imaging, trace element contents and mineral inclusions. The distribution of mineral inclusions combined with CL imaging of the metamorphic zircon make it possible to relate zircon zones (domains) to different metamorphic stages. Domain 1 consists of rounded, oblong and spindly cores with dark-luminescent images, and contains quartz eclogite facies mineral inclusion assemblages, indicating formation under high-pressure (HP) metamorphic conditions of T = 571-668℃and P = 1.7-2.02 GPa. Domain 2 always surrounds domain 1 or occurs as rounded and spindly cores with white-luminescent images. It contains coesite edogite facies mineral inclusion assemblages, indicating formation under UHP metamorphic conditions of T = 782-849℃and P > 5.5 GPa. Domain 3, with gray-luminescent images, always surrounds domain 2 and occurs as the outermost zircon rim. It is characterized by low-pressure mineral inclusion assemblages, which are related to regional amphibolite facies retrograde metamorphism of T = 600-710℃and P = 0.7-1.2 GPa. The three metamorphic zircon domains have distinct ages; sample H1 from the Dabie terrane yielded SHRIMP ages of 245±4 Ma for domain 1, 235±3 Ma for domain 2 and 215±6 Ma for domain 3, whereas sample H2 from the Sulu terrane yielded similar ages of 244±4 Ma, 233±4 Ma and 214±5 Ma for Domains 1, 2 and 3, respectively. The mean ages of these zones suggest that subduction to UHP depths took place over 10-11 Ma and exhumation of the rocks occurred over a period of 19-20 Ma. Thus, subduction from~55 km to > 160 km deep mantle depth took place at rates of approximately 9.5-10.5 km/Ma and exhumation from depths >160 km to the base of the crust at~30 km occurred at approximately 6.5 km/Ma. We propose a model for these rocks involving deep subduction of continental margin lithosphere followed by ultrafast exhumation driven by buoyancy forces after break-off of the UHP slab deep within the mantle.  相似文献   

14.
High‐ to ultrahigh‐pressure (HP‐UHP) metamorphic rocks that resulted from deep continental subduction and subsequent exhumation in the Sulu orogenic belt, China, have experienced multiphase deformation and metamorphic overprint during its long journey to the mantle and return to the surface. HP‐UHP shear zones are strain‐localized weak zones on which the UHP slab is transported over long distances. HP‐UHP shear zones are well exposed along a 200‐km belt in the Sulu UHP metamorphic belt. The shear zones lie structurally below the UHP rocks and above the non‐UHP rocks, suggesting the early exhumation of the UHP rocks by thrusting. The large area distribution, HP‐UHP nature, high strain and structural association of the shear zones with the UHP rocks suggest that the shear zones are probably a regional detachment developed during the early stage of exhumation of the UHP rocks. Kinematic indicators suggest top‐to‐the N–NW motion of the UHP slab during the exhumation, which, combined with isotope signature in Mesozoic igneous rocks, leads us to the interpretation that the subduction polarity is the North China plate down to the south rather than the Yangtze plate down to the north in the Sulu region.  相似文献   

15.
自20世纪80年代在大陆地壳岩石中发现柯石英和金刚石等超高压变质矿物以来,大陆深俯冲和超高压变质作用就成为了固体地球科学研究的前沿和热点领域之一。经过三十余年的研究,已经在大陆地壳的俯冲深度、深俯冲岩石变质P-T-t轨迹、俯冲地壳岩石的折返机制、深俯冲岩石的原岩性质、大陆碰撞过程中的熔/流体活动与元素活动性、俯冲隧道内部不同类型壳幔相互作用、碰撞后岩浆岩的成因、大陆碰撞造山带成矿作用等方面取得了许多重要成果。本文重点对大陆俯冲带超高压岩石部分熔融和不同类型壳幔相互作用近十年来的研究进展进行回顾和总结,并对存在的相关科学问题和未来的研究方向进行了展望。深俯冲大陆地壳的部分熔融主要出现在两个阶段:折返的初期阶段和碰撞后阶段,前者产生了碱性熔体,后者产生了钙碱性熔体。大陆俯冲带壳幔相互作用有两种类型,涉及地幔楔与两种俯冲带流体的交代反应:一是来自深俯冲陆壳的变质脱水/熔融,二是来自先前俯冲古洋壳的变质脱水/熔融。  相似文献   

16.
追溯和重塑超高压变质岩由100多千米地幔深度折返至上地壳及地表的过程,对理解会聚板块边缘及大陆碰撞带的运动学和动力学是极为重要的.主要依据构造学、岩石学、地球化学和可利用的地质年代学资料,结合区域多期变形分析,大别-苏鲁区超高压变质岩的折返过程至少可分解出4个大的阶段.块状榴辉岩记录了三叠纪(约250~230 Ma)大陆壳岩石的深俯冲/碰撞作用.超高压变质岩早期迅速折返发生于超高压峰期变质作用(P>3.1~4.0 GPa,T≈800±50 ℃)之后,处于地幔深度和柯石英稳定域,相当于区域D2变形期阶段.分别与区域变形期D3、D4和D5对应的折返过程,以及后成合晶、冠状体等卸载不平衡结构发育和减压部分熔融作用2个中间性构造热事件,均发生在地壳层次. 网络状剪切带在折返过程的不同阶段和不同层次均有发育,标志着在超高压变质带内的变质和变形分解作用曾重复进行.着重指出,超高压变质岩的折返,主要是由大陆壳的深俯冲/碰撞和伸展作用控制的构造过程,且受到俯冲带内、带外诸多因素的约束,其中水流体就起关键作用.   相似文献   

17.
大别山造山带高压-超高压变质岩的折返过程   总被引:1,自引:1,他引:0  
王清晨 《岩石学报》2013,29(5):1607-1620
高压-超高压变质岩的形成与折返是地球动力学过程,虽人眼不能见及,但在岩石中留下种种记录。本文以大别山为例对高压-超高压变质岩的折返过程进行了探讨。文中(1)综合构造地质学和地球物理学观测资料,剖析了大别山造山带的结构构造,指出了作为高压-超高压变质岩折返通道的莫霍面断口和折返形成的挤压穹隆地壳结构;(2)综合变质岩石学P-T-t轨迹研究资料,追踪高压-超高压变质岩在地下的运动轨迹,揭示了其在俯冲-折返过程不同时段经过的深度和运动速率,并指出其向南的折返极性;(3)结合沉积岩石学研究资料,利用合肥盆地中砾岩成分和碎屑白云母Si含量记录,限定了高压-超高压变质岩折返至地表的时间为中侏罗世前。基于上述资料,本文重建了大别山高压-超高压变质岩的三阶段折返过程,指出大别山包含三个岩片,于230Ma左右分别从不同深度快速折返,折返速率为3~10km/Ma,于210Ma左右进入中地壳,并于180Ma左右快速折返(折返速率为3km/Ma左右)至上地壳,白垩纪折返速率极慢(0.1km/Ma左右)。  相似文献   

18.
桐柏-大别山区高压变质相的构造配置   总被引:18,自引:3,他引:15  
作为华北和扬子陆块间的碰撞造山带桐柏大别山区以发育高压、超高压变质带为特征,从南到北变质相从低级到高级,代表俯冲带深度不同的变质产物,整体形成高压变质相系列。不过现今各变质相岩石的分布极受后期地壳规模的伸展构造控制,大别杂岩的穹隆作用更使高压变质相带的空间分布复杂化。超高压变质岩今日多呈大小不等的块体嵌布于相对低压的大别杂岩之内,造山带根部物质的热软化,使许多深层地幔物质得以像挤牙膏一样挤出于大别杂岩内。它们之中广泛发育着减压退变质的显微结构,与大别杂岩内一些麻粒岩相表壳岩所保存的减压退变质证迹一样,同是挤出作用和碰撞后隆升的构造证迹。高压相系的发育使南桐柏山和大别山迥然不同于桐商( 商丹) 断裂以北的北秦岭北淮阳变质带。新近发表的同位素年代学(40Ar 39 Ar) 资料:316 ~434 Ma ,已证明北秦岭是古生代变质带,它与桐柏- 大别印支期碰撞造山带差异甚大。这两个变质地温梯度差异甚大的变质地体的拼合,说明华北和扬子陆块碰撞的主缝合带是商丹- 桐商断裂带  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号