首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The speciation and partition of mercury in a macrotidal estuary (Seine estuary, France) was studied in order to explore the role of the high turbidity zone (HTZ) in mercury transfer to the adjacent coastal waters. Water and particles were analyzed to determine the concentrations of various mercury species, including monomethylmercury and the inorganic fraction. The exchangeable particulate mercury, which varies with salinity, and the mercury fraction associated with the amorphous oxyhydroxides were evaluated. The distribution of dissolved mercury species during early mixing suggests non-conservative behavior of organically bound mercury at the head of the estuary. Mercury in the particles covaried positively with suspended particulate matter concentrations up to a threshold, which constitutes the typical mercury load of particles and deposited sediments of the HTZ. This distribution pattern is well explained by a dilution model: a slowly settling, low metal population of particle, characterized by relatively invariant turbidity, becomes admixed with a variable amount of higher metal content particles derived from the resuspension in the HTZ. In addition, in the HTZ, which acts as a degradation reactor for particulate organic matter, particulate mercury concentrations increase with increasing C:N ratios and amorphous oxyhydroxides particles. Mercury reaches the estuarine HTZ mainly associated with the riverine and marine particles, including organic matter and oxyhydroxides, which are temporarily trapped in the HTZ and mixed with autochthonous HTZ particles. The largest particles periodically settle and undergo diagenetic reactions and resuspensions, which lead to their mercury enrichment. Depending upon hydrodynamic conditions, mercury escapes seaward as fine particulate within the plume, partially associated with the oxyhydroxides. A surface complexation model reproduces most of the partitioning observed. In the dissolved phase the model simulation suggests that a very strong ligand must be present to explain the field observations.  相似文献   

2.
A study of contamination of the biological compartment of the Seine estuary was carried out by measuring the concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in 29 estuarine and marine species belonging to 6 phyla. Species came from three main biological zones of the estuary: the Seine channel (copepods, mysids, shrimps, and fish), the intertidal mudflats (Macoma balthica community), and the subtidal mudflats (Abra alba community). Two fish species, the bass (Dicentrarchus labrax) and the flounder (Platichthys flesus), were also selected for analyses. A comparison of metal concentrations in estuarine species of the Seine with those found in the same species collected on contaminated and non-contaminated sites showed a contamination of the estuary by Cu, Zn, and Pb. For Cd, the contamination is mainly observed in bivalves, although the concentrations observed were low and less than 2 μg g?1 d.w. High concentrations of Cu were found in copepods, shrimps, and fish. Pb contamination was mainly found in species living in the Seine channel where the copepodEurytemora affinis shows an average concentration of 22 μg g?1 d.w. High concentrations of Pb (>10 μg g?1 d.w.) were found in deposit-feeders benthic invertebrates. Elevated levels of Zn were seen in all species collected in the Seine estuary, including fish and in particular small flounder. The concentrations of Cd, Cu, Pb, and Zn found in edible estuarine species (shrimp and fish) were in the same order of magnitude than those found in fish and shrimps fished along the French coast.  相似文献   

3.
The Delaware River and Bay Estuary is one of the major urbanized estuaries of the world. The 100-km long tidal river portion of the estuary suffered from major summer hypoxia in the past due to municipal and industrial inputs in the urban region; the estuary has seen remarkable water quality improvements from recent municipal sewage treatment upgrades. However, the estuary still has extremely high nutrient loading, which appears to not have much adverse impact. Since the biogeochemistry of the estuary has been relatively similar for the past two decades, our multiple year research database is used in this review paper to address broad spatial and seasonal patterns of conditions in the tidal river and 120 km long saline bay. Dissolved oxygen concentrations show impact from allochthonous urban inputs and meteorological forcing as well as biological influences. Nutrient concentrations, although high, do not stimulate excessive algal biomass due to light and multiple nutrient element limitations. Since the bay does not have strong persistent summer stratification, there is little potential for bottom water hypoxia. Elevated chlorophyll concentrations do not exert much influence on light attenuation since resuspended bottom inorganic sediments dominate the turbidity. Dissolved inorganic carbon and dissolved and particulate organic carbon distributions show significant variability from watershed inputs and lesser impact from urban inputs and biological processes. Ratios of dissolved and particulate carbon, nitrogen, and phosphorus help to understand watershed and urban inputs as well as autochthonous biological influences. Owing to the relatively simple geometry of the system and localized anthropogenic inputs as well as a broad spatial and seasonal database, it is possible to develop these biogeochemical trends and correlations for the Delaware Estuary. We suggest that this biogeochemical perspective allows a revised evaluation of estuarine eutrophication that should have generic value for understanding other estuarine and coastal waters.  相似文献   

4.
A complexation model (MOCO) was used to describe cadmium (Cd) speciation during estuarine transit in the Seine estuary. This model was developed from field data. Laboratory experiments based on the use of109Cd enabled checking of certain model simplifications and hypotheses and evaluation of parameters which could not be measured directly. MOCO was coupled with a 3D multivariable hydrosedimentary model (SAM3D) to simulate Cd dynamics in the estuary. These results were compared with measurements (dissolved and particulate Cd) obtained during cruises representative of various hydrodynamic conditions. The purpose of this article is to present the modeling approach used, and its expected applications and limits.  相似文献   

5.
This study was designed to establish the distributions of trace metals (Cd, Co, Cu, Ni, Pb, and Zn), dissolved organic carbon (DOC), and inorganic nutrients (PO4 and H4SiO4) in the water column of the small, relatively pristine Peconic River estuary. We were also able to examine the effects of a harmful microalgal bloom, known as the brown tide, which occurred in the area during our study. Because river inflow to the Peconic estuary is restricted by a small dam at the head of the estuary, direct evaluation of the relative importance of riverine inputs on estuarine metal distributions was possible. The simultaneous analyses of geochemical carrier metals (Al, Fe, and Mn), an indicator of sewage (Ag), and other ancillary parameters (e.g., suspended particulate matter, dissolved O2, chlorophylla) were used to describe the major processes controlling metal concentrations in the dissolved phase. The trace metal distributions indicated two distinct biogeochemical regimes within the estuary: an anthropogenically perturbed region with high metal levels (e.g., Ag, 165 pM; Cu, 51 nM; Zn, 57 nM) at the head (Flanders Bay), and a larger outer region with relatively low metal concentrations. The very similar distributions of some metals (e.g., Mn, Ni) in the Peconic estuary compared to those in estuaries having much higher river flow demonstrated the dominant role of internal processes (e.g., diagenetic remobilization) in controlling these metal patterns. An inverse relationship between dissolved Fe and DOC with cell counts of the brown tide microalgaeAureococcus anophagefferens in our field study suggested a close association with the bloom, although a similar relationship was observed between dissolved Al and brown tide cell counts, implying that removal of Fe could be due to particle scavenging rather than biological uptake.  相似文献   

6.
Seasonal dynamics of dissolved trace metals (Cd, Co, Cu, Ni and Zn) and its relationship with redox conditions and phytoplankton activity has been studied in the Scheldt estuary, during nine surveys carried out between May 1995 and June 1996. Seasonal profiles of dissolved trace metals and general estuarine water quality variables are compared, to identify the geochemical and biological processes responsible for the observed trace metal distributions. In keeping with previous studies, the behavior of dissolved Cd, Cu, and Zn can be explained by the presence of anoxic headwaters and the restoration of dissolved oxygen within the estuary. In the river water, the concentration of dissolved Cu and Zn is generally low, except during winter when dissolved oxygen is present in the water column, although highly undersaturated. Mobilization of particle-bound Cd, Cu, and Zn occurs as dissolved oxygen increases with increasing salinity, possibly because of oxidation of metal sulfides in the suspended matter. The geochemistry of dissolved Co is also related to the redox conditions but in an opposite way. Dissolved Co is mobilized in the anoxic upper estuary, along with the reduction in Mn (hydro) oxides, and subsequently coprecipitated with Mn (hydro) oxides when dissolved oxygen is restored. Conservative behavior is observed for dissolved Ni within the estuary. In the middle estuary, Cd and Zn are readsorbed during phytoplankton blooms, as suggested by the low concentrations of these metals during the most productive periods in spring and early summer. The removal may be caused by direct biological uptake and/or increased adsorption to suspended matter because of the pH increase associated with algae blooms. In the lower estuary, chemical gradients are much weaker and dilution with seawater is the dominant process.  相似文献   

7.
Cadmium (Cd) variations were investigated over an annual cycle (12 surveys between February 1998–January 1999) in the Morlaix estuary (Brittany, France) in both the water column and the benthic compartment in relation to hydrological conditions. The drainage basin of the Morlaix River estuary is predominantly agricultural in character. Dissolved Cd concentrations in the water column varied from 0.04 to 0.48 nM. Particulate Cd concentrations ranged from 1 to 64 nmol g−1. These concentrations reach levels commonly observed in estuaries affected by heavy industrial activities. Extensive agricultural activities in the drainage basin may be responsible for Cd levels above pristine conditions. Metal concentrations varied significantly over the seasonal cycle and the dissolved fraction exhibited high values in summer months. Particulate concentrations were always lowest during this season. In the benthic compartment, Cd concentrations in surface sediment varied from 0.4 to 5.0 nmol g−1 and from 0.2 to 5.0 nM in porewaters. Concentrations in sediment were slightly affected by Cd contamination and temporal changes were important over the seasonal cycle. The variations seem to be controlled by the succession of sedimentation and erosion processes, which are tightly linked to seasonal changes in river discharge. A box model was constructed based on known Cd sources and sinks in the estuary. Cd is chiefly brought into the estuary by the Morlaix River and accumulates within the estuary. The accumulation within the estuary represents from 6.3 to 7.2 kg yr−1.  相似文献   

8.
The longitudinal distribution of total suspended matter and total, dissolved, and particulate manganese in a small coastal plain estuary is described. The distribution of manganese is a consequence of estuarine circulation; a within-estuary maximum is inversely correlated with river flow, and is a function of residence time in the estuary, resuspension in the upper estuary, and desorption from particles introduced from within the estuary or from the river. The turbidity maximum is similarly most pronounced during low river flows. The upper estuary (salinity <15‰), comprising a small percentage of the total estuary volume during low flow, receives material from the river and along the bottom from the lower estuary; this material is returned to the water column by resuspension and desorption from estuarine and riverine particles. The lower estuary tends to damp out these processes because of the greater volume and (residence) time available for mixing.  相似文献   

9.
Sixty samples were collected in June 1996 at regular intervals within the Seine estuary in France in order to study the arsenic (As) behavior in response to climatic and hydrologic conditions leading to major events in chlorophyll activity, anoxia, turbidity, and salinity. It was determined that arsenate (As5, 15–23 nM) is still the dominant chemical form of dissolved As in the upper, estuary. A concentration of up to 37 nM was observed in the high turbidity zone at the freshwater-seawater interface, presumably a result of pumping and remineralization of plankton particles that develop at salinities >10. The formation of arsenite (As3) was related to two processes: anoxia in the upper estuary and primary production in the superoxygenated, lower estuary. Dimethyl arsenic (DMA) concentrations (0 to 2.2 nM) were not directly correlated with chlorophyll content, but rather with oxygenation rates. Monomethyl arsenic (MMA) concentrations were low. Dissolved organoarsenic concentrations refractory to the formation of volatile hydrides showed high concentrations in the river estuary (1 to 6 nM), and their degradation was probably the cause of DMA and MMA and ultimately of the recycling of dissolved inorganic As. The remineralization of particulate arsenic (AsP) in the high turbidity zone at the freshwater-seawater interface, was apparent once AsP concentrations were normalized with respect to aluminium. This remineralization process, even though it does not exclude the possibility of intra-estuarine As inputs, could account for a major part of the high dissolved total As concentration observed in this specific zone, both in the Seine and other estuaries.  相似文献   

10.
Distribution of colloidal trace metals in the San Francisco Bay estuary   总被引:11,自引:0,他引:11  
The size distribution of trace metals (Al, Ag, Cd, Cu, Fe, Mn, Ni, Sr, and Zn) was examined in surface waters of the San Francisco Bay estuary. Water samples were collected in January 1994 across the whole salinity gradient and fractionated into total dissolved (<0.2 μm colloidal (10 KDa–0.2 μm) and < 10 kDa molecular weight phases. In the low salinity region of the estuary, concentrations of colloidal A1, Ag, and Fe accounted for ≥84% of the total dissolved fraction, and colloidal Cu and Mn accounted for 16–20% of the total. At high salinities, while colloidal Fe was still relatively high (40% of the dissolved), very little colloidal Al, Mn, and Cu (<10%) and no colloidal Ag was detectable. Colloidal Zn accounted for <3% of the total dissolved along the estuary, and colloidal Ni was only detectable (<2%) at the river endmember. All of the total dissolved Cd and Sr throughout the estuary consisted of relatively low molecular weight (<10 kDa) species. The relative affinity of metals for humic substances and their reactivity with particle surfaces appear to determine the amounts of metal associated with colloids. The mixing behavior of metals along the estuary appears to be determined by the relative contribution of the colloidal phase to the total dissolved pool. Metals with a small or undetectable colloidal fraction showed a nonconservative excess (Cd, Cu, Ni, and Mn) or conservative mixing (Sr) in the total dissolved fraction, relative to ideal dilution of river water and seawater along the estuary.

The salt-induced coagulation of colloidal A1, Fe, and Cu is indicated by their highly nonconservative removal along the salinity gradient. However, colloidal metals with low affinity for humic substances (Mn and Zn) showed conservative mixing behavior, indicating that some riverine colloids are not effectively aggregated during their transport to the sea. While colloidal metal concentrations correlated with dissolved organic carbon, they also covaried with colloidal Al, suggesting that colloids are a mixture of organic and inorganic components. Furthermore, the similarity between the colloidal metal:A1 ratios with the crustal ratios indicated that colloids could be the product of weathering processes or particle resuspension. Distribution coefficients for colloidal particles (Kc) and for large, filter-retained particles (Kd) were of the same magnitude, suggesting similar binding strength for the two types of particles. Also, the dependence of the distribution coefficients on the amount of suspended particulate matter (the so-called particle concentration effect) was still evident for the colloids-corrected distribution coefficient (Kp+c) and for metals (e.g., Ni) without affinity for colloidal particles.  相似文献   


11.
The unique database of water quality measurements made in the Seine estuary over 45 years by the Service de la Navigation de la Seine at Rouen is used here to reconstruct the evolution of oxygen status in the estuary and the nutrient fluxes to the Seine Bight during the last half century. The Riverstrahler model is used to establish the link between these long-term trends in the functioning of the Seine system and the evolution of agricultural, domestic, and industrial activity in the watershed over this period taking into account natural and man-induced hydrological variations. Oxygenation of the fluvial sector below Paris has increased considerably owing to improved wastewater treatment, but a large part of the estuary remains completely anoxic during the spring and summer months. Nitrogen input to surface waters from urban sources has remained essentially constant while diffuse inputs from agricultural soils have increased 5-fold as a result of more intensive agricultural practices as well as the loss of retention capacity in riparian zones. Phosphorus inputs from domestic and industrial sources increased 3-fold from 1950 to 1980, but have decreased gradually in recent years. The generally high level of phosphorus contamination has favored strong algal development in all large tributaries of the Seine River upstream of paris since the 1960s. Silica inputs, originating mainly from the weathering of rocks, fluctuate widely depending on hydrology. In-stream retention of silica, linked to diatom blooms, has increased but remains limited. These changes have induced several shifts in the nutrient limitation conditions of the Seine Bight.  相似文献   

12.
The speciation of dissolved organic phosphorus (DOP) in the temperate Tamar estuary of SW England is described. Eight stations from the riverine to marine end-members were sampled during four seasonal campaigns in 2007 and the DOP pool in the water column and sediment porewater was characterized and quantified using a flow injection manifold after sequential enzymatic hydrolysis. This enabled the enzymatically hydrolysable phosphorus (EHP) fraction and its component labile monoester phosphates, diester phosphates and a phytase-hydrolysable fraction that includes myo-inositol hexakisphosphate (phytic acid), to be determined and compared with the total DOP, dissolved reactive phosphorus (DRP) and total dissolved phosphorus (TDP) pools. The results showed that the DOP pool in the water column varied temporally and spatially within the estuary (1.1-22 μg L−1) and constituted 6-40% of TDP. The EHP fraction of DOP ranged from 1.1-15 μg L−1 and represented a significant and potentially bioavailable phosphorus fraction. Furthermore the spatial profiles of the three components of the EHP pool generally showed non-conservative behavior along the salinity gradient, with apparent internal estuarine sources. Porewater profiles followed broadly similar trends but were notably higher at the marine station throughout the year. In contrast to soil organic phosphorus profiles, the labile monoester phosphate fraction was the largest component, with diester phosphates also prevalent. Phytic acid concentrations were higher in the lower estuary, possibly due to salinity induced desorption processes. The EHP fraction is not commonly determined in aquatic systems due to the lack of a suitable measurement technique and the Tamar results reported here have important implications for phosphorus biogeochemistry, estuarine ecology and the development of efficient strategies for limiting the effects of phosphorus on water quality.  相似文献   

13.
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and nonpoint nutrient inputs to the Patuxent River estuary. We analyzed a 19-year dataset of water quality conditions, nutrient loading, and climatic forcing for three estuarine regions and also computed monthly rates of net production of dissolved O2 and physical transport of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) using a salt- and water-balance model. Point-source loading of DIN and DIP to the estuary declined by 40–60% following upgrades to sewage treatment plants and correlated with parallel decreases in DIN and DIP concentrations throughout the Patuxent. Reduced point-source nutrient loading and concentration resulted in declines in phytoplankton chlorophyll-a (chl-a) and light-saturated carbon fixation, as well as in bottom-layer O2 consumption for upper regions of the estuary. Despite significant reductions in seaward N transport from the middle to lower estuary, chl-a, turbidity, and surface-layer net O2 production increased in the lower estuary, especially during summer. This degradation of water quality in the lower estuary appears to be linked to a trend of increasing net inputs of DIN into the estuary from Chesapeake Bay and to above-average river flow during the mid-1990s. In addition, increased abundance of Mnemiopsis leidyi significantly reduced copepod abundance during summer from 1990 to 2002, which favored increases in chl-a and allowed a shift in total N partitioning from DIN to particulate organic nitrogen. These analyses illustrate (1) the value of long-term monitoring data, (2) the need for regional scale nutrient management that includes integrated estuarine systems, and (3) the potential water quality impacts of altered coastal food webs.  相似文献   

14.
Based on high spatial resolution monitoring, the first spatial distribution maps for the eight trace elements identified as priority contaminants in aquatic systems (i.e. As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in surface sediments of the Gironde Estuary (SW France) are presented. This large European fluvial–estuarine system is known for important historical multi-element (mainly Cd, Zn, Cu and Pb) pollution by former mining and mineral processing activation in the Riou-Mort watershed located 350 km upstream the estuary. As a consequence, oyster production in the estuary is prohibited, and Cd concentrations in oysters from the Marennes-Oléron area are close to consumption thresholds. Surface sediment samples were analysed for grain size, particulate organic C and trace element concentrations. Determination of trace elements was carried out by ICP-MS for As, Cd, Cr, Cu, Ni, Pb, Th and Zn, and by CV-AAS for Hg. Total and potentially released trace element stocks in the surface sediment were evaluated by using concentrations in the estuary and in selected sediment core. Assuming that sediment resuspension affects mainly the uppermost sediment layer, the total trace element stocks in the studied 0–10 cm depth range may represent the equivalent of one (Cd) to eight (As, Cr) times the annual fluvial trace element inputs into the estuary. Comparing total trace element concentrations in surface sediment with: (i) data on the regional geochemical baseline to evaluate the potentially remobilised fraction and (ii) the potentially bioavailable fraction aimed at establishing a first spatially resolved risk assessment of the trace element “cocktail” present in these sediments at the estuary scale. After correction for grain size effects by Th normalisation, potentially highly toxic metals such as Cd and Hg showed the highest enrichment factors. From ecotoxicological indices, areas were identified and quantified where trace element levels and mobility may bear a risk to benthic organisms. The GIS-based spatial distribution of ecotoxicological indices for the trace element “cocktail” suggests that ∼95% of the surface sediment are ‘Low–Medium’-priority zones, highlighting the need for further impact studies. The produced maps of trace element distributions and associated risk potentials are likely to be a useful tool to authorities in charge of sustainable estuarine management, e.g. for the optimisation of dredging activities or development of the estuarine infrastructure.  相似文献   

15.
High-resolution sedimentological and rock magnetic analyses from sediment cores collected in the Seine estuary record changes in coastal sedimentary dynamics linked to climatic variations during the late Holocene. Using AMS 14C and paleomagnetic data we present a first attempt in developing a reliable age model on macrotidal estuarine archives, with a decadal resolution. Correlations between sedimentary successions from the outer Seine estuary document the main sedimentary infilling phases of the system during the last 3000 years. Between 3000 and 1150 cal. BP sedimentary patterns reveal that sequence deposition and preservation are predominantly controlled by marine and tidal hydrodynamics while severe storm events are recorded at ca. 2700 and 1250 cal. BP in the outermost estuary. Conversely, the Medieval Warm Period (MWP; 900–1200 AD) is characterized by a drastic waning of the influence of marine hydrodynamics on sediment preservation. Pronounced episodes of Seine river floods indicate a much stronger impact of continental inputs on sedimentary patterns during this period. The onset of the Little Ice Age marks a diminishing influence of continental inputs while tidal and open marine hydrodynamics again exerted a primary control on the sedimentary evolution of the system during 1200–2003 AD. Coastal sedimentary dynamics as preserved within sedimentary successions appear to have been largely influenced by changes in storminess during the last 3000 years. We have matched the preservation of MWP Seine river floods, as revealed by sedimentological and rock magnetic proxy data, to a prolonged interval of weakened storminess in Normandy permitting the preservation of estuarine flood deposits within a context of reduced coastal erosion in northern Europe. The preservation of sedimentary successions in the Seine estuary is therefore maximal when climate conditions resembled those of the preferred low phase of the NAO on multidecadal timescales such as during 800–1200 AD (MWP). In contrast, increased removal and transport of estuarine sediments occur when winter storm activity greatly intensified over northwestern France. We report four prominent centennial-scale periods of stronger storminess, occurring with a pacing of ~1500 years, which are likely to be related to the last four Bond's Holocene cold events. Our results documenting a close link between coastal sedimentary dynamics, millennial-scale variations in Holocene climate and North Atlantic atmospheric circulation are fairly consistent with other records from Scandinavia, central Greenland and southern Europe.  相似文献   

16.
Dissolved and particulate hydrocarbons of biogenic origin were investigated for the first time in surface waters along the Seine River and its estuary. They comprise n-alkanes (n-ALKs) and diagenetic polycyclic aromatic hydrocarbons (PAHs). Samples were collected in three different sections of the estuary: the riverine zone, the mixing zone, and the marine zone. At the river mouth, two mooring stations were used for the collection of samples over tidal cycles. Total particulate n-ALK concentrations ranged from 31 ng 1?1 to 2,918 ng 1?1, or 5 μg g?1 dry ng 1?1, or 2 μg g?1 of SM. Concentrations varied with the SM load and could be related to sedimentation and estuarine mixing. The sources of the n-ALKs were different in each zone of the estuary. The dissolved n-ALKs displayed lower concentrations than the particulate phase, varying from 136 ng 1?1 to 344 ng 1?1, while biogenic dissolved PAHs were almost absent.  相似文献   

17.
《Applied Geochemistry》2005,20(6):1195-1208
The upper intertidal zone, and salt marshes in particular, have been shown by numerous authors to be effective medium to long-term storage areas for a range of contaminants discharged or transported into the estuarine environment. A detailed understanding of the specific controls on the trapping and storage of contaminants, however, is absent for many estuarine systems. This paper examines heavy metal distribution and accumulation in two contrasting Spartina sp.-dominated macrotidal salt marsh systems – a rapidly prograding, relatively young marsh system at the Vasiere Nord, near the mouth of the Seine estuary, France, and a more mature, less extensive marsh system in the Medway estuary, UK. The spatial distribution of the heavy metals Zn, Cu, Pb, Ni and Co is assessed and compared in both systems via detailed surface sampling and analysis, while the longer-term accumulation of these metals and its temporal variability is compared via analysis of dated sediment cores. Of the two sites studied, the more extensive marsh system at the Vasiere Nord in the Seine estuary shows a clear differentiation of heavy metals across the marsh and fronting mudflat, with highest metal concentrations found in surface sediments from the more elevated, interior marsh areas. At Horrid Hill in the Medway estuary, the spatial distribution of heavy metals in surface sediments is more irregular, and there is no clear relationship between heavy metal concentration and site elevation, with average concentrations similar in the marsh and fronting mudflats. Sediment core data indicate that the more recent near-surface sediments at Horrid Hill are clearly more contaminated than those at greater depth, with most heavy metal contamination confined to the upper 20 cm of the sediment column (with peak metal input in the late 1960s/early 1970s). In contrast, due to extremely rapid sediment accretion at the mouth of the Seine, heavy metal distribution with depth at the Vasiere Nord site is relatively erratic, with metal concentrations showing a general increase with depth. These sediments provide little information on temporal trends in heavy metal loading to the Seine estuary. Overall, heavy metal concentrations at both sites are within typical ranges reported for other industrialised estuaries in NW Europe.  相似文献   

18.
The decline of submersed aquatic vegetation (SAV) in tributaries of the Chesapeake Bay has been associated with increasing anthropogenic inputs, and restoration of the bay remains a major goal of the present multi-state “Bay Cleanup” effort. In order to determine SAV response to water quality, we quantified the water column parameters associated with success of transplants and natural regrowth over a three-year period along an estuarine gradient in the Choptank River, a major tributary on the eastern shore of Chesapeake Bay. The improvement in water quality due to low precipitation and low nonpoint source loadings during 1985–1988 provided a natural experiment in which SAV was able to persist upstream where it had not been for almost a decade. Mean water quality parameters were examined during the growing season (May–October) at 14 sites spanning the estuarine gradient and arrayed to show correspondence with the occurrence of SAV. Regrowth of SAV in the Choptank is associated with mean dissolved inorganic nitrogen <10 μM; mean dissolved phosphate <0.35 μM; mean suspended sediment <20 mg l?1; mean chlorophylla in the water column <15 μg l?1; and mean light attenuation coefficient (Kd) <2 m?1. These values correspond well with those derived in other parts of the Chesapeake, particularly in the lower bay, and may provide managers with values that can be used as target concentrations for nutrient reduction strategies where SAV is an issue.  相似文献   

19.
The waters of the Seine river estuary, located in a highly anthropogenicized area in the northern part of France, are of poor microbiological quality; the concentrations of faecal bacteria usually exceed the European Union bathing and recreational water directives. The aim of the present study was to identify the main sources of the faecal pollution of the Seine estuary in order to help define priorities for management and sanitation efforts. Budgets of faecal coliform (FC) inputs to the estuary were established for various hydrological conditions. Main sources of FC were the outfalls of the treated effluents of the wastewater treatment plants (WWTPs) located along the estuary, the faecal bacteria brought in through the tributaries of the Seine estuary, and the faecal bacteria transported by the Seine river flow at the estuary entrance at Poses dam. In order to quantify these inputs, FC were enumerated during sampling campaigns conducted for various hydrological conditions in the Seine at the entrance of the estuary, in the tributaries close to their confluence with the estuary, and in the effluents of some WWTPs located along the estuary. The importance of the flux of FC transported by the Seine river flow at the estuary entrance at Poses dam decreased from 92% of the total FC input when the flow rate was high (717 m3 s−1) to 5% when flow rate was low (143 m3 s−1). The release of the domestic wastewaters of the large city of Paris located 120 km upstream from the entrance of the estuary was mainly responsible for this microbiological pollution. At low flow rates, the tributaries represent the most important source of FC (64–76% for flow rates of the Seine at Poses at approximately 150 m3 s−1), mainly from the Robec and Eure rivers. The treated wastewater of the WWTPs located along the estuary was the second source of FC for low flow conditions (19–30%); it was less important for high to intermediate flow rate conditions.  相似文献   

20.
The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in the upper estuary since the early 1990s, but have worsened in the lower estuary. The overall system-wide eutrophication impact is high, despite a decrease in nitrogen loads from the upper basin and declining surface water nitrate nitrogen concentrations over that period; (3) eutrophic conditions in the Potomac River Estuary are representative of Chesapeake Bay region and other US estuaries; moderate to high levels of nutrient-related degradation occur in about 65 % of US estuaries, particularly river-dominated low-flow systems such as the Potomac River Estuary; and (4) shellfish (oyster) aquaculture could remove eutrophication impacts directly from the estuary through harvest but should be considered a complement—not a substitute—for land-based measures. The total nitrogen load could be removed if 40 % of the Potomac River Estuary bottom was in shellfish cultivation; a combination of aquaculture and restoration of oyster reefs may provide larger benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号