首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Provenance studies on Early to Middle Ordovician clastic formations of the southern Puna basin in north-western Argentina indicate that the sedimentary detritus is generally composed of reworked crustal material. Tremadoc quartz-rich turbidites (Tolar Chico Formation, mean composition Qt89 F7 L4) are followed by volcaniclastic rocks and greywackes (Tolillar Formation, mean Qt33 F42 L25). These are in turn overlain by volcaniclastic deposits (mean Qt24 F30 L46) of the Diablo Formation (late Arenig–early Llanvirn) that are intercalated by lava flows. All units were deformed in the Oclóyic Orogeny during the Middle and Late Ordovician. Sandstones of the Tolar Chico Formation are characterized by Th/Sc ratios > 1, La/Sc ratios ≈ 10, whereas associated fine-grained wackes show slightly lower values for both ratios. LREE (light rare earth elements) enrichment of the arenites is ≈ 50× chondrite, Eu/Eu* values are between 0·72 and 0·92, and flat HREE (heavy rare earth elements) patterns indicate a derivation from mostly felsic rocks of typical upper crustal composition. The εNd(t = sed) values scatter around −11 to −9. The calculated Nd-TDM residence ages vary between 1·8 and 2·0 Ga indicating contribution by a Palaeoproterozoic crustal component. The Th/Sc and La/Sc ratios of the Tolillar Formation are lower than those of the Tolar Chico Formation. Normalized REE (rare earth elements) patterns display a similar shape to PAAS (post-Archaean average Australian shale) but with higher abundances of HREEs. Eu/Eu* values range between 0·44 and 1·17, where the higher values reflect the abundance of plagioclase and feldspar-bearing volcanic lithoclasts. Average εNd(t = sed) values are less negative at −5·1, and Nd-TDM are lower at 1·6 Ga. This is consistent with characteristics of regional rocks of upper continental crust composition, which most probably represent the sources of the studied detritus. The rocks of the Diablo Formation have the lowest Th/Sc and La/Sc ratios, lower LREE abundances than the average continental crust and are slightly enriched in HREEs. Eu/Eu* values are between 0·63 and 1·17. The Nd isotopes (εNd(t = sed) = −3 to −1; TDM = 1·2 Ga) indicate that one source component was less fractionated than both the underlying Early Ordovician and the overlying Middle Ordovician units. Synsedimentary vulcanites in the Diablo Formation show the same isotopic composition. Our data indicate that the sedimentary detritus is generally composed of reworked crustal material, but that the Diablo Formation appears to contain ≈ 80% of a less fractionated component, derived from a contemporaneous continental volcanic arc. There are no data indicating an exotic detrital source or the accretion of an exotic block at this part of the Gondwana margin during the Ordovician.  相似文献   

2.
The southernmost outcrops of the Río de la Plata cratonic region are exposed in the Tandilia System in eastern Argentina. The geological evolution comprises mainly an igneous-metamorphic Paleoproterozoic basement named Buenos Aires Complex, which is covered by Neoproterozoic to Early Paleozoic sedimentary units which display subhorizontal bedding. The basement of calc-alkaline signature consists mainly of granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks, and granitoid plutons. Subordinate rock-types include schists, marbles, and dykes of acid and mafic composition. Tandilia was recognized as an important shear belt district with mylonite rocks derived mainly from granitoids. The tectonic scenario seems related to juvenile accretion event (2.25?C2.12?Ga) along an active continental margin, followed by continental collision (2.1?C2.08?Ga) after U?CPb zircon data. The collisional tectonic setting caused thrusting and transcurrent faulting favouring the anatexis of the crustal rocks. The tholeiitic dykes constrain the time of crustal extension associated with the last stages of the belt evolution. The basement was preserved from younger orogenies such as those of the Brasiliano cycle. After a long paleoweathering process, the Sierras Bayas Group (c. 185?m thick) represents a record of the first Neoproterozoic sedimentary unit (siliciclastic, dolostones, shales, limestones), superposed by Cerro Negro Formation (c. 150?C400?m thick, siliciclastics) assigned to Upper Neoproterozoic age. The final sedimentary transgression during Early Paleozoic was the Balcarce Formation (c. 90?C450?m thick) deposited over all the mentioned Precambrian units. Based on all the geological background, a tectonic evolution is offered.  相似文献   

3.
The Eastern Sierras Pampeanas were structured by three main events: the Ediacaran to early Cambrian (580?C510?Ma) Pampean, the late Cambrian?COrdovician (500?C440?Ma) Famatinian and the Devonian-Carboniferous (400?C350?Ma) Achalian orogenies. Geochronological and Sm?CNd isotopic evidence combined with petrological and structural features allow to speculate for a major rift event (Ediacaran) dividing into two Mesoproterozoic major crustal blocks (source of the Grenvillian age peaks in the metaclastic rocks).This event would be coeval with the development of arc magmatism along the eastern margin of the eastern block. Closure of this eastern margin led to a Cambrian active margin (Sierra Norte arc) along the western margin of the eastern block in which magmatism reworked the same crustal block. Consumption of a ridge segment (input of OIB signature mafic magmas) which controlled granulite-facies metamorphism led to a final collision (Pampean orogeny) with the western Mesoprotrozoic block. Sm?CNd results for the metamorphic basement suggest that the T DM age interval of 1.8?C1.7?Ga, which is associated with the less radiogenic values of ??Nd(540) (?6 to ?8), can be considered as the mean average crustal composition for the Eastern Sierras Pampeanas. Increasing metamorphic grade in rocks with similar detrital sources and metamorphic ages like in the Sierras de Córdoba is associated with a younger T DM age and a more positive ??Nd(540) value. Pampean pre-540?Ma granitoids form two clusters, one with T DM ages between 2.0 and 1.75?Ga and another between 1.6 and 1.5?Ga. Pampean post-540?Ma granitoids exhibit more homogenous T DM ages ranging from 2.0 to 1.75?Ga. Ordovician re-activation of active margin along the western part of the block that collided in the Cambrian led to arc magmatism (Famatinian orogeny) and related ensialic back-arc basin in which high-grade metamorphism is related to mid-crustal felsic plutonism and mafic magmatism with significant contamination of continental crust. T DM values for the Ordovician Famatinian granitoids define a main interval of 1.8?C1.6, except for the Ordovician TTG suites of the Sierras de Córdoba, which show younger T DM ages ranging from 1.3 to 1.0?Ga. In Devonian times (Achalian orogeny), a new subduction regime installed west of the Eastern Sierras Pampeanas. Devonian magmatism in the Sierras exhibit process of mixing/assimilation of depleted mantle signature melts and continental crust. Achalian magmatism exhibits more radiogenic ??Nd(540) values that range between 0.5 and ?4 and T DM ages younger than 1.3?Ga. In pre-Devonian times, crustal reworking is dominant, whereas processes during Devonian times involved different geochemical and isotopic signatures that reflect a major input of juvenile magmatism.  相似文献   

4.
A new mappable rock unit, the Cerro Rajón Formation, is proposed for the Cambrian succession of the Caborca region, Sonora, México. Formerly Unit 1 of the Puerto Blanco Formation, the Cerro Rajón Formation is interpreted as a volcano-sedimentary succession deposited along the coast of a passive margin that was impacted by rift-related volcanism. At its proposed type locality, in Cerro Rajón, the Cerro Rajón Formation consists of 270–285 m of tuffaceous conglomerate, metabasalt, mafic tuff, mafic lapillistone, mafic agglomerate, and quartzite with minor siltstone, limestone, and dolostone- and quartzite-dominated conglomerate. The unit contains a major disconformity near its base, where m-to dm-thick conglomerate locally replaces the fine-grained clastics that make up the base of the Cerro Rajón Formation. δ13C chemostratigraphy and biostratigraphy of the Rajón and its bounding strata limits Rajón deposition to the Fortunian Stage of the Terreneuvian Series. Volcanic rocks in the Cerro Rajón Formation are represented by mafic to ultramafic flows, including picrobasalts and metabasalts with hydrothermal alteration characteristics, evidenced by replacement of clinopyroxenes by chlorite, actinolite, and epidote. The mineral paragenesis of these volcanic rocks suggests the succession experienced greenschist grade metamorphism. Basalt geochemistry is consistent with low silica (34.32–48.21%) magmatism with high TiO2 concentrations (3.63–7.52%), related to continental rift volcanism with OIB characteristics. This volcanism could represent the last southern evidence of the rifting process that occurred along the western margin of Laurentia or could be related to volcanic rift deposits further afield.  相似文献   

5.
The Tandilia Belt in northeast Argentina includes a Neoproterozoic sequence of sediments (Sierras Bayas Group), in which the Cerro Largo Formation, ca. 750 Ma in age, forms a siliciclastic, shallowing upward succession of subtidal nearshore to tidal flat deposits. Trace fossils Palaeophycus isp. and Didymaulichnus isp. have been described from the upper part of this succession. Specific sedimentary structures consisting of round-crested bulges, arranged in a reticulate pattern, and networks of curved cracks are associated with the trace fossils. These structures are considered to be related to epibenthic microbial mats that once colonized the sediment surface. They reflect stages of mat growth and mat destruction, if compared to analogous structures in modern cyanobacterial mats of peritidal, siliciclastic depositional systems. Also the trace fossils are interpreted as mat-related structures, partly forming components of networks of shrinkage cracks, partly representing the upturned and involute margins of shrinkage cracks or circular openings in desiccating and shrinking, thin microbial mats.

The definition of Didymaulichnus miettensis Young as a Terminal Proterozoic trace fossil is questioned, and it may be considered to interpret the ‘bilobate’ structure as the upturned, opposite margins of microbial shrinkage cracks which have been brought back into contact by compaction after burial.  相似文献   


6.
Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The TDM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion.  相似文献   

7.
ABSTRACT

We discuss the 2018 publication that reports petrographic, heavy mineral data, mineral chemistry, and zircon geochronology for Oligocene sandstones in the Cerro Pelón area in southern Mexico Sureste basin. As the title of their paper says, the goal of their study is to establish the source (s) of the voluminous Cenozoic section in this region, reaching several kilometres in thickness and important as a petroleum system. These authors conclude that Oligocene sandstones of La Laja Formation were mostly sourced from eclogite- to greenschist-facies metasedimentary, metaigneous, and ultramafic rocks of the Guatemala suture complex. Minor contributions from the Chiapas Massif Complex, exposed directly to the south ~60 km of the Cerro Pelón area, were also suggested by the authors. They thus conclude that the Palaeogene stratigraphic record in southeastern Mexico was mostly controlled by the development of the Caribbean–North America plate boundary rather than by orogenic processes at the Pacific margin of North America. Presently, we do not agree with the conclusions of Ortega Flores and colleagues who studied the Cerro Pelón section, thus some discussion is required. Serpentinite bearing Nanchital Conglomerate is well exposed in the Cerro Pelón area, and high- to low-grade metamorphic rocks experienced an uplift in the vicinity of the Cerro Pelón area at the time of deposition of the La Laja Formation. We believe the data are better explained by multiple local sources in southern and eastern Oaxaca as well as sources to the south and southwest, which include the Cenozoic coastal batholith, the Grenvillean/Guichicovi basement complexes, the Chiapas Massif, the Mazatlán schist and other units in the Cuicateco Belt, as well as the Mesozoic cover of these areas (Todos Santos Formation, Cretaceous carbonate rocks, and Paleogene strata such as the Soyaló and Bosque Formations).  相似文献   

8.
The Sierras Pampeanas orogen, in northwestern Argentina, hosts significant Sn–W mineralization in a variety of mostly epizonal granite stocks emplaced in variably metamorphosed country rocks. The San Blas, Huaco and El Durazno granite stocks in the Sierra de Velasco, the La Quebrada granite in the Sierra de Mazán, the Cerro Colorado granite in the Cerro Negro, and the Los Mudaderos and Sauce Guacho granite stocks in the Sierra de Ancasti, are largely peraluminous (ASI between 1.05 and 1.38) and represent S-type granites, are strongly fractionated (i.e., high Rb–Sr ratio), have a low oxidation state (low Fe2O3/Fe2O3 ratio) and are geotectonically linked to syncollisional magmatism. The U–Pb SHRIMP analyses on zircons from the Cerro Colorado and La Quebrada granites, located in the Cerro Negro and Sierra de Mazán, respectively, revealed ages from Lower Ordovician (Tremadocian) to Carboniferous. All granites display elevated LREE values, low HREE values and negative Eu anomalies. With regards to total REE values, two groups of granite stocks can be recognized. The granites with lower REE contents are highly evolved granites and are related to Sn–W mineralization. The mineralized granites display higher values of Sn, W and Rb, and lower values of Sr and Ba compared to barren granites. These trace element characteristics appear to be diagnostic for Sn–W mineralized granite stocks in the western Sierras Pampeanas. The western Sierras Pampeanas contains locally geochemically evolved Carboniferous granites, which are interpreted to be the main control of significant Sn–W mineralization. The Carboniferous age of western Sierras Pampeanas Sn–W mineralization sets it apart from the Triassic age of the Sn–W mineralization in the Eastern Tin belt of Bolivia.  相似文献   

9.
Detrital modes of sandstones and conglomerates of the Toro Negro Formation (Late Miocene-early Pliocene) were used to analyze the evolution of the broken-foreland stage of the Vinchina Basin (28°30′–29°00′ S and 68°30′–68°20′ W) of NW Argentina. This basin located in the Western Sierras Pampeanas is bounded to the west by the Precordillera and to the east by the Famatina System. Three sandstone petrofacies: plutonic-metamorphic, volcanic and mixed petrofacies and three conglomerate lithic associations: basement, sedimentary and volcanic lithic associations were recognized, allowing to establish three source areas: Western Sierras Pampeanas (Toro Negro and Umango Ranges), Cordillera Frontal and Precordillera.During the Late Miocene, the Toro Negro Range (to the north) together with the Cordillera Frontal and Precordillera (to the west) were the main sources for depositional sequences I and II (lower member of the Toro Negro Formation). On the contrary, during the latest Miocene-early Pliocene, Depositional Sequence III (upper member) exhibited a progressive increase in the supply from the eastern Precordillera (to the west) with additional material from the Umango Range to the south. Besides, evidence of synchronic volcanism is recorded in the upper part of Depositional Sequence II and the lower part of Depositional Sequence III.The coexistence of the three source areas and the changing distribution patterns due to re-accommodation of sediment dispersal routes demonstrate that the evolution of this type of basin is much more complex than previously envisaged. Therefore, an integrated analysis using different tools (sedimentary facies, paleocurrent measurements, sandstone petrography and conglomerate composition) is needed for a clearer understanding of broken-foreland basins.  相似文献   

10.
The chemical composition of metamorphosed siliciclastic rocks in the Orlica-?nie?nik Dome (Bohemian Massif) identifies the main sources for the Neoproterozoic [the M?ynowiec Formation (MF)], Early Cambrian [the Stronie Formation (SF)] and Late Cambrian/Early Ordovician [the Goszów quartzites (GQ)] sediments. The MF developed from erosion of a Cadomian magmatic arc along the northern Gondwana margin. The variegated SF, with supra-subduction affinities, shows chemical characteristics pointing to erosion of the freshly exhumed Cadomian orogen and detritus deposition in the back-arc basin. The very different chemical features of the GQ indicate deposition in a basin sited on a passive continental margin. The explanation proposed for the observed changes in chemical composition involves three main stages: (1) The pre ~540 Ma evolution of an active continental margin and related back-arc basin ceased with the collision and accretion of the magmatic arc to the Gondwana margin; (2) Early Cambrian rift to drift transition (540–500 Ma) and development of a depositional basin filled with detritus derived from remnants of the magmatic arc; (3) Peri-Gondwana break-up leading to the formation of shallow-water passive margin depositional basins filled with quartz-rich detritus resembling Early Ordovician Armorican quartzites known from other parts of the Variscan Belt.  相似文献   

11.
The Vinchina Formation is one of the thickest Cenozoic units related to the Andean orogeny in Argentina totaling more than 5100 m in thickness. Different ages, from Eocene to latest Miocene, have been postulated for this red-bed succession based on fission track, magnetostratigraphy and whole rock isotopic analyses. Two new high precision U-Pb zircon ages are reported herein for this unit. A maximum U-Pb age of 15.6 ± 0.4 Ma was obtained from detritic zircons collected from a thick tuffaceous interval of the Lower Member of the Vinchina Formation at La Cueva (Precordillera), while a depositional U-Pb age of 9.24 ± 0.034 Ma was derived from volcanic zircons collected from a thin tuff bed in the Upper Member at Quebrada de Los Pozuelos (Northwestern Sierras Pampeanas).At La Cueva, the Vinchina Formation unconformably overlies eolian sandstones of the Vallecito Formation and was divided into four units representing 1) deposits of high-sinuosity ephemeral rivers associated with 2) a playa-lake passing upwards to 3) low-sinuosity sandy ephemeral rivers and finally, 4) a gravelly-sandy braided plain. The tuffaceous level corresponding to unit 1 is located 280 m above the base of the formation.At Quebrada de Los Pozuelos, the Vinchina Formation unconformably overlies the Vallecito Formation and is covered by a deeply incised surface at the base of the Toro Negro Formation. We divided the Vinchina Formation into four units. Unit 1 represents sedimentation in shallow fluvial channels with sandy to muddy floodplains. Units 2 and 3 record sedimentation in braided, meandering and anastomosing rivers. Finally unit 4 represents deposition in braided and wandering fluvial systems. The sampled tuff is located within unit 4 at ∼3470 m above the base of the formation.The new ages indicate that the bulk of the Vinchina Formation is Miocene in age but they do not preclude a longer time span for the sedimentation of the whole unit. Ages of the sampled volcanic zircons match an important episode of volcanism recorded in the Cerro Las Tórtolas Formation, located ∼90 km to the west in the Andean Cordillera, but also the upper tuff could be related to the late Miocene Puna volcanism. Comparison of the new ages with previous chronological data suggests coetaneous sedimentation along different depocenters of the Bermejo basin (e.g., Vinchina and Talampaya depocenters in Western Sierras Pampeanas and La Troya depocenter and Huaco-Mogna sections in Precordillera) and strenghten the need for correlation among them. In addition the age of 15.6 ± 0.4 Ma constrains the end of the severe arid conditions recorded in the Sierras Pampeanas and Precordillera region.  相似文献   

12.
A ca. 600 m thick siliciclastic succession in northern Russia contains abundant and diverse microfossils that document early to middle Ediacaran deposition along the northeastern margin of the East European Platform. The Vychegda Formation is poorly exposed but is well documented by a core drilled in the Timan trough region (Kel’tminskaya-1 borehole). Vychegda siliciclastics lie unconformably above Tonian to lower Cryogenian strata and below equivalents of the late Ediacaran Redkino succession that is widely distributed across the platform. The basal 10 m of the formation preserve acritarchs and fragments of problematic macrofossils known elsewhere only from pre-Sturtian successions. In contrast, the upper, nearly 400 m of the succession contains abundant and diverse large acanthomorphic acritarchs attributable to the Ediacaran Complex Acanthomorph Palynoflora (ECAP). This distinctive set of taxa is known elsewhere only from lower, but not lowermost, Ediacaran rocks. In between lies an additional assemblage of relatively simple filaments and stratigraphically long ranging sphaeromorphic acritarchs interpreted as early Ediacaran in age. Bearing in mind that knowledge of late Cryogenian (post-Strurtian/pre-Marinoan) microfossils is sparse, the Vychegda record is consistent with data from Australia and China which suggest that diverse ECAP microfossil assemblages appeared well into the Ediacaran Period. Accumulating paleontological observations underscore both the promise and challenges for the biostratigraphic characterization of the early Ediacaran Period.  相似文献   

13.
The first data on the age of detrital zircons are given for Late Precambrian terrigenous rocks of the Baikal Group and Ushakovka Formation of the southern flank of the Siberian Craton. The ages obtained for 348 zircons cover the Paleoarchean to Late Ediacaran period, demonstrate the dynamics of change of sources of the clastic material in the sedimentation basin, and mark the changes of the Late Precambrian tectonic regimes. The age of the youngest group of detrital zircons extracted from the rocks of the Kachergat Formation allows us to restrict the upper age limit of accumulation of the rocks of the Baikal Group to the Late Ediacaran (Late Vendian).  相似文献   

14.
《Gondwana Research》2016,29(4):1449-1465
We report here in-situ U–Pb and Hf isotopic results of detrital zircons from sixteen Cambrian–Silurian siliciclastic samples across the Nanhua foreland basin, South China. Together with published data from Ediacaran–Silurian sandstones in the region, we establish the temporal and spatial provenance evolution across the basin. Except for samples from northeast Yangtze, all other Ediacaran–Silurian samples exhibit a prominent population of 1100–900 Ma, moderate populations of 850–700 Ma and 650–490 Ma, and minor populations of 2500 Ma and 2000–1300 Ma, grossly matching that of crystalline and sedimentary rocks in northern India. Zircon Hf isotopes further reveal four episodes of juvenile crustal growth at 2.5 Ga, 1.8 Ga, 1.4 Ga and 1.0 Ga in the source regions. Utilizing the basin history and late Neoproterozoic to early Paleozoic paleogeography of South China, we conclude that the Ediacaran–Cambrian sediments in the Nanhua foreland basin were mainly sourced from northern India and adjacent orogens, and the Ordovician–Silurian sediments were derived from both locally recycled Ediacaran–Cambrian rocks and eroded Cathaysian basement. The Wuyi–Yunkai late-orogenic magmatic rocks also contributed to the Silurian sediments in the basin. The upper-Ordovician to Silurian samples in northeast Yangtze received higher proportions of local Cryogenian (850–700 Ma) magmatic rocks which were uplifted during late-Ordovician to Silurian time. We speculate that there was an Ediacaran–Cambrian collisional orogen between South China and northern India, shedding sediments to the early Nanhua foreland basin. Far-field stress during the late stage of this collisional orogeny triggered the Ordovician–Silurian intraplate Wuyi–Yunkai orogeny in South China, and erosion of the local Wuyi–Yunkai orogen further provided detritus to the late Nanhua foreland basin.  相似文献   

15.
东昆仑地区发育一套显生宙碎屑岩地层,包括下寒武统沙松乌拉组、中—上奥陶统纳赤台群、上石炭统—下二叠统浩特洛哇组、下三叠统洪水川组、中三叠统希里科特组以及上三叠统八宝山组。研究区砂岩的CIA值反映沙松乌拉组砂岩源区化学风化程度较高,其余各组砂岩源区化学风化程度较低。主量和微量元素研究结果表明各组砂岩源区以长英质岩石为主,包含少量中性成分。La、Ce、Th、U、∑REE含量和La/Sc、Th/Sc、Sc/Cr、La/Y比值指示沙松乌拉组和纳赤台群砂岩沉积环境为大陆岛弧或活动大陆边缘,浩特洛哇组砂岩形成于被动大陆边缘环境,洪水川组砂岩沉积环境为活动大陆边缘,希里科特组砂岩的微量元素含量及其比值接近于活动大陆边缘和被动大陆边缘,八宝山组砂岩沉积环境为活动大陆边缘。综合分析认为沙松乌拉组和纳赤台群砂岩形成于原特提斯洋俯冲阶段,浩特洛哇组砂岩形成于古特提斯洋持续扩张阶段,洪水川组砂岩形成于古特提斯洋俯冲阶段,希里科特组砂岩形成于陆(弧)陆初始碰撞阶段,八宝山组砂岩形成于陆陆全面碰撞—碰撞后阶段。  相似文献   

16.
早奥陶世和早志留世是北祁连加里东造山带构造演化和盆地转变的关键时期。在造山带东段景泰地区,下奥陶统阴沟组和下志留统肮脏沟组两套砂岩的微量元素和稀土元素特征显示,阴沟组杂砂岩样品(Cj1和Cj3)具有最小的Eu/Eu*及最大的Th/Sc和REE,肮脏沟组杂砂岩具有较小的Eu/Eu*和较大的Th/Sc及REE;阴沟组岩屑砂岩样品(Cj13、Cj15和Cj18)具有最大的Eu/Eu*及最小的Th/Sc、REE和La/Yb。多个物源、构造背景判别图解和多元素蛛网图分析表明,阴沟组杂砂岩样品具大陆边缘的构造背景,主要物源为大陆上地壳再旋回沉积物和长英质岩石;岩屑砂岩样品为岛弧构造背景,以中基性安山质岩石为主要物源,可能受陆源物质的微弱影响。肮脏沟组杂砂岩构造背景复杂,表现出大陆岛弧、活动陆缘和被动陆缘三种环境共存的特点,受中基性火山弧物质、长英质岩石和再旋回沉积岩的混合物源的影响。两套砂岩的元素特征表明二者可能具有相似的源区。阴沟组杂砂岩源区可能为阿拉善地块南缘海原群变沉积岩或其他相似的陆源再旋回沉积物,砂岩碎屑以来自初始火山弧物质为主,以石灰沟岛弧型中基性火山岩作为其源岩最合适。阴沟组形成于初始弧后盆地环境,是岛弧活动的直接记录。肮脏沟组可能的源岩为阿拉善地块南缘海原群变沉积岩和中高等成熟度的石灰沟岛弧型火山岩及海原群岛弧型变火山岩,沉积于弧后前陆盆地,对构造环境的反映存在滞后性。  相似文献   

17.
The Ediacaran Jibalah Group comprises volcano‐sedimentary successions that filled small fault‐bound basins along the NW–SE‐trending Najd fault system in the eastern Arabian‐Nubian Shield. Like several other Jibalah basins, the Antaq basin contains exquisitely preserved sedimentary structures and felsic tuffs, and hence is an excellent candidate for calibrating late Ediacaran Earth history. Shallow‐marine strata from the upper Jibalah Group (Muraykhah Formation) contain a diversity of load structures and intimately related textured organic (microbial) surfaces, along with a fragment of a structure closely resembling an Ediacaran frond fossil and a possible specimen of Aspidella. Interspersed carbonate beds through the Muraykhah Formation record a positive δ13C shift from ?6 to 0‰. U‐Pb zircon geochronology indicates a maximum depositional age of ~570 Ma for the upper Jibalah Group, consistent with previous age estimates. Although this age overlaps with that of the upper Huqf Supergroup in nearby Oman, these sequences were deposited in contrasting tectonic settings on opposite sides of the final suture of the East African Orogen.  相似文献   

18.
Lower Paleozoic moderately sorted quartz–arenites from the Balcarce Formation deposited in eastern Argentina (Tandilia System) comprise mainly detrital material derived from old upper crustal material. The sources were magmatic, sedimentary, and subordinated felsic metamorphic terranes. High concentrations of tourmaline and Ti-rich heavy minerals, including zircon and nearly euhedral chromite, are common. Trace element concentrations (Nb, Cr) on rutile indicate pelitic and metabasaltic sources, respectively. Major element analyses on chromites indicate a basic volcanic protolith of mid-oceanic ridge origin, which was exposed close to the depositional basin. The delivery of chromite may be associated with convergent tectonics causing the consumption and obduction of oceanic crust during pre-Upper Ordovician times. The oblique/orthogonal collision of the Precordillera Terrane with the western border of the Rio de la Plata Craton, west of the Balcarce Basin or source further to the east from a Lower Palaeozoic extensional basin are possibilities.Geochemical and petrographic data exclude the underlying Precambrian and Cambrian sedimentary rocks as dominant sources, and favour the basement of the Río de La Plata Craton, including Cambrian rift-related granites of South Africa and the Sierras Australes (eastern Argentina), as main suppliers of detritus. Trace element geochemistry of recycled pyroclastic material, associated with the quartz–arenites, also suggests volcanic arc sources. The provenance of the pyroclastic material may either be the Puna–Famatina arc, located in north and central Argentina, or a hypothetical active margin further to the south. These ash layers are equivalent in age to volcanic zircons found in the Devonian Bokkeveld Group in western South Africa.The deposition of a glacial diamictite of Hirnantian age (Sierra del Volcán Diamictite) is interpreted as a member of the Balcarce Formation. Based on the stratigraphic re-location of the glacial diamictite and trace fossils, the Balcarce Formation is considered here to be Ordovician to Silurian in age. The Balcarce Formation can be correlated with similar rocks in South Africa, the Peninsula Formation, and the upper Table Mountain Group (Windhoek and Nardouw subgroups), including the Hirnantian glacial deposit of the Pakhuis Formation.  相似文献   

19.
Petrographic and geochemical studies characterize lithologies of the Khambal Formation deposited in the Sindreth Basin as arkosic, subarkosic, and quartzarenite. Weathering indices, such as CIA and CIW in conjunction with the ACNK diagram, prescribe mostly moderate chemical weathering with intermittent pulses of extreme weathering in the source area. The discrimination diagrams suggest that these Neoproterozoic clastics were deposited in an active rift basin. Provenance indicators of the detritus components point to a terrane possessing subordinate mafic material in conjunction with large felsic components. A comparison of immobile element ratios with probable source rocks suggest that the Mesoproterozoic Delhi arc situated to the east of the Sindreth Basin could be the possible source. Our mixing calculation defines the proportion of end member components in the Delhi arc. Geodynamic considerations relate the origin of the Sindreth Basin to the processes of disintegration and reassembly of supercontinents.  相似文献   

20.
The stratigraphy in Vines 1, a 2017.5 m-deep cored stratigraphic hole drilled by the Geological Survey of Western Australia in 2001 near the Western Australian – South Australian border, has been reinterpreted with implications for the Neoproterozoic to Cambrian geological history of the Officer Basin. A previous interpretation considered the intersected succession as a conformable stratigraphic package, the Vines Formation. An assemblage of palynomorphs, found throughout the hole and previously used to infer an age of no older than earliest Cambrian, is now thought to consist of contaminants. An older assemblage, which is considered to be reworked and inherited from underlying rocks, provides a new maximum age constraint of mid-Neoproterozoic. Based on sedimentological interpretations and comparisons with other drillholes in the western Officer Basin, and the succession in the eastern Officer Basin, the Vines 1 succession is reinterpreted as four discrete sedimentary packages, the Pirrilyungka (new name), Wahlgu, Lungkarta and Vines (redefined) Formations, in ascending order. The Pirrilyungka and Wahlgu Formations include glacigenic sediments and may correlate with similar glacial successions in Supersequences 2 and 3 (mid to late Cryogenian) of the Centralian Superbasin, and the Sturt Tillite and Elatina Formation and their equivalents in the Adelaide Rift Complex of South Australia, respectively. The eolian Lungkarta Formation and fluvial Vines Formation are considered, on regional evidence, to be most likely of Ediacaran to earliest Cambrian age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号